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Abstract

We analyze the complexity of reasoning with cir-
cumscribed low-complexity DLs such as DL-lite
and the EL family, under suitable restrictions on
the use of abnormality predicates. We prove that
in circumscribed DL-liteR complexity drops from
NExpNP to the second level of the polynomial hier-
archy. In EL, reasoning remains ExpTime-hard, in
general. However, by restricting the possible occur-
rences of existential restrictions, we obtain mem-
bership in Σp

2 and Πp
2 for an extension of EL.

1 Introduction

The ample literature on nonmonotonic extensions of descrip-
tion logics (DLs) witnesses a long-standing interest for this
topic (for some early approaches see [Brewka, 1987; Straccia,
1993; Baader and Hollunder, 1995]). Recently, fresh motiva-
tions came from the construction of ontologies for biomed-
ical domains (cf. [Rector, 2004; Stevens et al., 2007]) and
from the use of description logics as policy languages [Us-
zok et al., 2004; Kagal et al., 2003; Tonti et al., 2003] where
nonmonotonic reasoning is needed to properly encode default
policies and authorization inheritance (cf. [Bonatti and Sama-
rati, 2003]). Several recent works [Donini et al., 1998; 1997;
2002; Bonatti et al., 2006; Giordano et al., 2008] improved
our understanding of the complexity of nonmonotonic de-
scription logics based on default logic, autoepistemic logic,
and circumscription. Unfortunately, nonmonotonic DLs are
typically very complex. For example, reasoning with cir-
cumscribed ALC knowledge bases is NExpNP-hard [Bonatti
et al., 2006], and a tableaux calculus for reasoning with au-
toepistemic knowledge bases is in 3-ExpTime [Donini et al.,
2002]. Besides such complexity results, it turns out that some
theoretical properties that are very important for the imple-
mentation of reasoning in “classical” DLs—such as the tree
model property for example— do not carry over to nonmono-
tonic DLs.

Independently from the works on nonmonotonic DLs, low-
complexity (monotonic) DLs of practical interest have been
recently studied. Here we will focus on DL-liteR [Cal-
vanese et al., 2005] and the EL family [Baader, 2003;
Baader et al., 2005], whose inferences are in PTIME. The
former is motivated by efficient query processing over large

bodies of semantic web knowledge. The latter is interesting
because it is spontaneously adopted in major biomedical on-
tologies. It is interesting to investigate whether the syntactic
restrictions obeyed by such logics decrease the complexity of
reasoning also in a nonmonotonic context.

In this paper, we identify less complex circumscribed DLs
by (i) using the constructs supported by DL-liteR and by the
EL family, and (ii) restricting the use of abnormality predi-
cates by hiding them into “defeasible” inclusion axioms, sim-
ilar to those adopted by [Straccia, 1993]. The latter restriction
is also expected to make the formalism easier to use. Under
such restrictions, we prove that (i) satisfiability checking for
circumscribed knowledge bases (KB) is equivalent to classi-
cal KB satisfiability, and hence in P (sometimes even triv-
ial) for the logics we consider here: DL-liteR, EL, and EL⊥;
(ii) concept satisfiability, instance checking, and subsumption
over circumscribed DL-liteR and left local EL⊥ KBs remain
within the second level of the polynomial hierarchy; (iii) the
same reasoning tasks for circumscribed EL⊥ KBs, unfortu-
nately, remain ExpTime-hard.

Further related approaches are [Cadoli et al., 1990; Strac-
cia, 1993]. In [Cadoli et al., 1990], a fragment of ALE under
minimal entailment (an instance of circumscription where all
predicates are minimized with the same priority) is proved
to belong to Πp

2. Our approach adopts different DLs and
more general forms of circumscription, supporting priorities
as well as fixed and variable predicates. In [Straccia, 1993]
the underlying nonmonotonic logic is a prioritized version of
default logic. The paper contains NP-hardness results for ex-
tremely simplified DLs.

The rest of the paper is organized as follows: In Section 2,
we recall the basics of DLs. Section 3 introduces the special-
ized circumscription framework we adopt here. After some
auxiliary results (Section 4), sections 5 and 6 illustrate the re-
sults on DL-liteR and the EL family, respectively. Section 7
concludes the paper with a summary of the results and some
directions for future work.

2 Preliminaries

In DLs, concepts are inductively defined with a set of con-
structors, starting with a set NC of concept names, a set NR

of role names, and (possibly) a set NI of individual names (all
countably infinite). We use the term predicates to refer to ele-

696



Name Syntax Semantics

inverse role R− (R−)
I

= {(d, e) | (e, d) ∈ RI}
nominal {a} {aI}
negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

existential
restriction

∃R.C {d ∈ ΔI | ∃(d, e) ∈ RI : e ∈ CI}

top � �I = ΔI

bottom ⊥ ⊥I = ∅

Figure 1: Syntax and semantics of some DL constructs

ments of NC ∪NR. Hereafter, letters A and B will range over
NC, P will range over NR, and a, b, c will range over NI. The
concepts of the DLs dealt with in this paper are formed using
the constructors shown in Figure 1. There, the inverse role
constructor is the only role constructor, whereas the remain-
ing constructors are concept constructors. Letters C, D will
range over concepts and letters R,S over (possibly inverse)
roles.

The semantics of the above concepts is defined in terms of
interpretations I = (ΔI , ·I). The domain ΔI is a non-empty
set of individuals and the interpretation function ·I maps each
concept name A ∈ NC to a set AI ⊆ ΔI , each role name
r ∈ NR to a binary relation rI on ΔI , and each individual
name a ∈ NI to an individual aI ∈ ΔI . The extension of ·I
to inverse roles and arbitrary concepts is inductively defined
as shown in the third column of Figure 1. An interpretation I
is called a model of a concept C if CI �= ∅. If I is a model
of C, we also say that C is satisfied by I.

A (strong) knowledge base is a finite set of (i) concept in-
clusions (CIs) C � D where C and D are concepts, (ii) con-
cept assertions A(a) and role assertions P (a, b), where a, b
are individual names, P ∈ NR, and A ∈ NC, (iii) role in-
clusions (RIs) R � R′. An interpretation I satisfies (i) a CI
C � D if CI ⊆ DI , (ii) an assertion C(a) if aI ∈ CI , (iii)
an assertion R(a, b) if (aI , bI) ∈ rI , and (iv) a RI R � R′

iff RI ⊆ R′I . Then, I is a model of a strong knowledge base
S iff I satisfies all the elements of S.

We write C �S D iff for all models I of S, I satisfies
C � D.

The logic DL-lightR [Calvanese et al., 2005] restricts con-
cept inclusions to expressions CL � CR, where

CL ::= A | ∃R R ::= P | P−

CR ::= CL | ¬CL

(as usual, ∃R abbreviates ∃R.	).
The logic EL [Baader, 2003; Baader et al., 2005] restricts

knowledge bases to assertions and concept inclusions built
from the following constructs:

C ::= A | � | C1 � C2 | ∃P.C

(note that inverse roles are not supported). The extension
of EL with ⊥, role hierarchies, and nominals (respectively)
are denoted by EL⊥, ELH, and ELO. Combinations are
allowed: for example ELHO denotes the extension of EL
supporting role hierarchies and nominals. Finally, EL¬A de-
notes the extension where negation can be applied to concept
names.

3 Defeasible knowledge

A defeasible inclusion (DI) is an expression A �n C whose
intended meaning is: A’s elements are normally in C.

A defeasible knowledge base (DKB) in a logic DL is a pair
(S,D) where S is a strong DL knowledge base, and D is a
set of DIs A �n C such that C is a DL concepts.
Example 3.1 The sentences: “in humans, the heart is usu-
ally located on the left-hand side of the body; in humans with
situs inversus, the heart is located on the right-hand side of
the body” [Rector, 2004; Stevens et al., 2007] can be formu-
lated with the following EL⊥ inclusions

Human 	n ∃has heart.∃has position.Left ;

Situs Inversus 	 ∃has heart.∃has position.Right ;

∃has heart.∃has position.Left �
∃has heart.∃has position.Right 	 ⊥ .

Intuitively, a model of (S,D) is a model of S that max-
imizes the set of individuals satisfying the defeasible inclu-
sions in D, resolving conflicts by means of specificity when-
ever possible.

In order to formalize this idea, we first have to specify how
DIs are prioritized. We determine specificity based on clas-
sically valid inclusions. For all DIs δ1 = (A1 �n C1) and
δ2 = (A2 �n C2), we write

δ1 ≺S δ2 iff A1 �S A2 and A2 ��S A1 .

For the sake of readability, the subscript S will be omitted
when clear from context.

Second, we have to specify how to deal with the predicates
occurring in the knowledge base: is their extension allowed
to vary in order to satisfy defeasible inclusions? A discussion
of the effects of letting predicates vary vs. fixing their exten-
sion can be found in [Bonatti et al., 2006]; they conclude that
the appropriate choice is application dependent. Here we let
roles vary to avoid undecidability problems (cf. [Bonatti et
al., 2006]). The set of concept names NC, on the contrary,
can be arbitrarily partitioned into two sets F and V contain-
ing fixed and varying predicates, respectively; we denote this
semantics with CircF .

The set F , the DIs D, and their ordering ≺ induce a strict
partial order over interpretations, defined below. As we move
down the ordering we find interpretations that are more and
more normal w.r.t. D. For all δ = (A �n C) and all interpre-
tations I let the set of individuals satisfying δ be:

satI(δ) = {x ∈ ΔI | x �∈ AI or x ∈ CI} .

Definition 3.2 For all interpretations I and J , and all F ⊆
NC, let I <D,F J iff:

1. ΔI = ΔJ ;
2. aI = aJ , for all a ∈ NI;
3. AI = AJ , for all A ∈ F ;
4. for all δ ∈ D, if satI(δ) �⊇ satJ (δ) then there exists

δ′ ∈ D such that δ′ ≺ δ and satI(δ′) ⊃ satJ (δ′) ;
5. there exists a δ ∈ D such that satI(δ) ⊃ satJ (δ).

The subscript D will be omitted when clear from context.
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Definition 3.3 [Model] Let KB = (S,D) and F ⊆ NC. An
interpretation I is a model of CircF (KB) iff I is a (classical)
model of S and for all models J of S, J �<F I.
Remark 3.4 This semantics is a special case of the circum-
scribed DLs of [Bonatti et al., 2006]. The correspondence
can be seen by (i) introducing for each DI A �n C a fresh
atomic concept Ab, playing the role of an abnormality pred-
icate; (ii) replacing A �n C with A � ¬Ab � C; (iii) min-
imizing the predicates Ab introduced above according to the
priorities over defeasible inclusions.

In order to enhance readability, we will use the following
notation for the special cases in which all concept names are
varying and the case in which they are all fixed: <var and
Circvar stand for <∅ and Circ∅, respectively; <fix and Circfix

stand respectively for <NC
and CircNC

.
In this paper, we consider the following standard reasoning

tasks over defeasible DLs:
Knowledge base consistency Given a DKB KB, decide

whether CircF (KB) has a model.
Concept consistency Given a concept C and a DKB KB,

check whether C is satisfiable w.r.t. KB , that is, there
exists a model I of CircF (KB) such that CI �= ∅.

Subsumption Given two concepts C, D and a DKB KB,
check whether CircF (KB) |= C � D, that is, for all
models I of CircF (KB), CI ⊆ DI .

Instance checking Given a ∈ NI, a concept C, and a DKB
KB, check whether CircF (KB) |= C(a), that is, for all
models I of CircF (KB), aI ∈ CI .

We conclude this section with an example taken from
[Bonatti et al., 2006].
Example 3.5 The following inclusions model a policy with
authorization inheritance and multiple overridings:
User 	n ¬∃hasAccessTo.ConfidentialFile
Staff 	 User
Staff 	n ∃hasAccessTo.ConfidentialFile
BlacklistedStaff 	 Staff�

¬∃hasAccessTo.ConfidentialFile .

Let S contain the second and fourth inclusions plus
the assertion Staff(John), and let D consist of the first
and third inclusions. Let KB = (S,D). Due to the
second inclusion, the DI for Staff has greater priority
than the DI for User. In all models of Circvar(KB),
John belongs to ∃hasAccessTo.ConfidentialFile and
not to BlacklistedStaff. On the contrary, there ex-
ist models of Circfix(KB) where John does not belong to
∃hasAccessTo.ConfidentialFile because John belongs
to BlacklistedStaff and Circfix does not allow to change
the extension of BlacklistedStaff to satisfy the DI for
Staff.

4 Auxiliary results

The logics we deal with enjoy the finite model property.
Lemma 4.1 Let KB = (S,D) be a DKB in DL-liteR or
ELHO⊥,¬. For all F ⊆ NC, CircF (KB) has a model only
if CircF (KB) has a finite model whose size is exponential in
the size of KB.

Proof. A simple adaptation of a result for ALCIO [Bonatti
et al., 2006], taking role hierarchies into account.

As a consequence, these logics preserve classical consis-
tency (because all <D,F -descending chains of models origi-
nating from a finite model must be finite):

Theorem 4.2 Let KB = (S,D) be a DKB in in DL-liteR or
ELHO⊥,¬. For all F ⊆ NC, S is (classically) consistent iff
CircF (KB) has a model.

Under very mild assumptions, CircF and Circfix (which is
a special case of the former) are equally expressive.

Theorem 4.3 If DL is a description logic supporting un-
qualified existential restrictions (∃R), then concept consis-
tency, subsumption, and instance checking in CircF (DL)
can be reduced in polynomial time to concept consis-
tency, subsumption, and instance checking (respectively) in
Circfix(DL).

The idea behind the proof is simple: Let KB be any given
DKB. Introduce a new role name RA for each (variable) con-
cept name A �∈ F . Then replace each occurrence of any
A �∈ F with ∃RA. The details of the proof are omitted here
for space limitations.

5 Complexity of circumscribed DL-liteR

In this section we focus on DL-liteR DKBs (S,D) that con-
sist in a DL-liteR KB S and a set D of inclusions A �n C
such that A � C is a (classical) DL-liteR CI. Our complex-
ity results for DL-liteR rely on the possibility of extracting a
small (polynomial-size) model from any model of a circum-
scribed DKB. We start with Circvar :

Lemma 5.1 Let KB be a DL-liteR knowledge base. For all
models I of Circvar(KB) and all x ∈ ΔI there exists a model
J of Circvar(KB) such that (i) ΔJ ⊆ ΔI , (ii) x ∈ ΔJ ,
(iii) for all DL-liteR concepts C, x ∈ CI iff x ∈ CJ , and
(iv) |ΔJ | is polynomial in the size of KB.

Proof. Assume that KB = (S,D), I is a model of
Circvar(KB), and x ∈ ΔI . Let cl(KB) be the set of all
concepts and individual names occurring in KB. Choose a
minimal set Δ ⊆ ΔI containing: (i) x, (ii) all aI such that
a ∈ NI∩cl(KB), (iii) for each concept ∃R in cl(KB) satisfied
in I, a node yR such that for some z ∈ ∃RI , (z, yR) ∈ RI .

Now define J as follows: (i) ΔJ = Δ, (ii) aJ = aI (for
a ∈ NI ∩ cl(KB)), (iii) AJ = AI ∩ Δ (A ∈ NC ∩ cl(KB)),
and (iv) PJ = {(z, yP ) | z ∈ Δ and z ∈ ∃P I} ∪ {(yP , z) |
z ∈ Δ and z ∈ ∃P−I} (P ∈ NR).

Note that by construction, for all z ∈ ΔJ and for all C ∈
cl(KB), z ∈ CJ iff z ∈ CI ; consequently, J is a classical
model of S. Moreover, the cardinality of ΔJ is linear in the
size of KB (by construction). So we are only left to show that
J is a <D,var-minimal model of KB.

Suppose not, and consider any J ′ <D,var J . Define I ′

as follows: (i) ΔI′
= ΔI , (ii) aI′

= aI , (iii) AI′
= AJ ′

,
(iv) P I′

= PJ ′
. Note that the elements in ΔI \ ΔJ ′

satisfy
no left-hand side of any DL-liteR inclusion (be it classical or
defeasible), therefore all inclusions are vacuously satisfied.
Moreover, the restriction of I ′ to ΔJ ′

is <D,var-smaller than
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the corresponding restriction of I in the interpretation order-
ing. It follows that I ′ <D,var I, and hence I cannot be a
model of Circvar(KB) (a contradiction).

The above proof can be refined and adapted to Circfix.

Lemma 5.2 Let KB be a DL-liteR knowledge base. For all
models I of Circfix(KB) and all x ∈ ΔI there exists a model
J of Circfix(KB) such that (i) ΔJ ⊆ ΔI , (ii) x ∈ ΔJ , (iii)
for all DL-liteR concepts C, x ∈ CI iff x ∈ CJ (iv) |ΔJ | is
polynomial in the size of KB.

Proof. We will employ a refined definition of Δ. It should
be a ⊆-minimal set containing: (i) x, (ii) all aI such that
a ∈ NI∩cl(KB), (iii) for each concept ∃R in cl(KB) satisfied
in I, a node yR such that yR ∈ (∃R−)I , and finally (iv)
for all inclusions C � ∃R or C �n ∃R in KB such that
(C � ∃R)I �= ∅, a node z ∈ (C � ∃R)I .

Define J as in the previous lemma, using the above Δ.
Recall that for all z ∈ ΔJ and for all C ∈ cl(KB), z ∈
CJ iff z ∈ CI ; consequently, J is a classical model of S.
Moreover, the cardinality of ΔJ is linear in the size of KB
(by construction). So we are only left to show that J is a
<D,fix-minimal model of KB.

Suppose not, and consider any J ′ <D,fix J . Define I ′ as
follows: (a) ΔI′

= ΔI , (b) aI′
= aI , (c) AI′

= AI , (d) each
RI′

is a minimal set such that (d1) RI′ ⊇ RJ ′
, (d2) for all

z ∈ ΔI \ΔJ , and for all inclusions C � ∃R or C �n ∃R in
KB such that z ∈ (C � ∃R)I , if RJ ′

contains a pair (v, w),
then (z, w) ∈ RI′

; finally, (d3) each P I′
is closed under the

role inclusion axioms of KB. Note that, by construction,

(*) for all z ∈ ΔI′ \ ΔJ ′
, z ∈ ∃RI′

only if z ∈ ∃RI ;

(**) for all z ∈ ΔI′ \ ΔJ ′
, z ∈ ∃RI′

only if there exists
v ∈ ΔJ ′

such that v ∈ ∃RJ ′
.

Now we prove that I ′ is a model of the CIs of KB. By con-
struction, the edges (z, w) introduced in (d2) do not change
the set of existential restrictions satisfied by the members of
ΔJ ′

; as a consequence—and since J ′ is a model of KB—the
members of ΔJ ′

satisfy all the CIs of KB.
Now consider an arbitrary element z ∈ ΔI′ \ΔJ ′

and any
CI γ of KB. If γ is ∃-free, then I and I ′ give the same in-
terpretation to γ by definition, therefore z satisfies γ. If γ is
∃R � A, ∃R � ¬A, ∃R � ¬∃S, or A � ¬∃R (and con-
sidering that I satisfies γ) z fails to satisfy γ only if for some
R′ ∈ {R,S}, z �∈ (∃R′)I and z ∈ (∃R′)I

′
; this is impos-

sible by (*). Next, suppose γ is ∃R � ∃S. If z ∈ (∃R)I
′
,

then by (**) there exists a v ∈ ΔJ ′
satisfying (∃R)J

′
and

hence (∃S)J
′

(as J ′ is a model of KB), therefore z ∈ (∃S)I
′

(by d2). We are only left to consider γ = A � ∃R: If
z ∈ AI′

= AI , then there exists wA ∈ AJ ′
(by construction

of Δ). Then z ∈ (∃R)I
′

(by d2). Therefore, in all possible
cases, z satisfies γ.

This proves that I ′ satisfies all the CIs of KB. It is not
hard to verify that I ′ satisfies also all role inclusions of KB.
Therefore, in order to derive a contradiction, we are left to
prove that I ′ <D,fix I (which implies that I is not a model of
Circfix(KB)).

Claim: For all δ ∈ D, if satJ (δ) ⊆ satJ ′(δ), then
satI(δ) ⊆ satI′(δ).

Suppose satJ (δ) ⊆ satJ ′(δ). It suffices to prove that for
all z ∈ ΔI′ \ ΔJ ′

, if z ∈ satI(δ) then z ∈ satI′(δ).
In all cases but those in which the right-hand side of δ is

∃R, the proof is similar to the proof for CIs (it exploits (*)
and the fact that all atomic concepts are fixed).

Finally, let δ be A �n ∃R and consider an arbitrary z ∈
ΔI′ \ ΔJ ′

such that z ∈ satI(δ) and z ∈ (A � ∃R)I . By
(iv), Δ contains a v ∈ (A � ∃R)I , and hence ΔJ ′

contains
a v ∈ (A � ∃R)J

′
; consequently, by (d2), z ∈ (∃R)I

′
and

hence z ∈ satI′(δ). This completes the proof of the claim.
Now, I ′ <D,fix I follows as a straightforward consequence

of the Claim.
Theorem 5.3 Concept consistency over circumscribed DL-
liteR DKBs is in Σp

2. Subsumption and instance checking over
circumscribed DL-liteR DKBs are in Πp

2.
Proof. (Sketch) By the above lemmas, it suffices to guess
a polynomial model I of the KB that proves consistency or
disproves subsumption/instance checking. Then, with an NP
oracle, one can check that I is minimal w.r.t. <var or <fix.

6 Circumscribing the EL family

In ELHO, that cannot express any contradictions, defeasi-
ble inclusions cannot be possibly blocked under Circvar, and
circumscription collapses to classical reasoning:
Theorem 6.1 Let KB = (S,D) be an ELHO DKB. Then I
is a model of Circvar(KB) iff I is a model of S ∪ D̂, where
D̂ = {A � C | (A �n C) ∈ D}.

By the results of [Baader et al., 2005], it follows that in
Circvar(ELHO), concept satisfiability is trivial, subsumption
and instance checking are in P.

If we make EL more interesting by adding ⊥ as a source
of inconsistency, then complexity increases significantly.

Theorem 6.2 In Circvar(EL⊥), concept satisfiability, in-
stance checking, and subsumption are ExpTime-hard. These
results still holds if knowledge bases contain no assertion.1

Proof. (Sketch) We first reduce TBox satisfiability in EL¬A

(which is known to be ExpTime-hard [Baader et al., 2005])
to the complement of subsumption in Circvar(EL⊥). Let T
be a TBox (i.e., a set of CIs) in EL¬A. First introduce for
each concept name A occurring in T a fresh concept name Ā
whose intended meaning is ¬A. Obtain T ′ from T by replac-
ing each literal ¬A with Ā. Let KB be the DKB obtained by
extending T ′ with the following inclusions, where U and UA

— for all A occurring in T — are fresh concept names (rep-
resenting undefined truth values), and R is a fresh role name:

A � Ā 	 ⊥ (1)
A � UA 	 ⊥ (2)
Ā � UA 	 ⊥ (3)

UA 	 U (4)

� 	n A (5)
� 	n Ā (6)
� 	n UA (7)
� 	n ∃R.UA (8)
U 	n UA (9)

1Equivalently, in DL’s terminology: ABoxes are empty.
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It can be verified that T is satisfiable iff in some
model of Circvar(KB) all UA are empty, which holds
iff Circvar(KB) �|= 	 � ∃R.U . Consequently, subsumption
in Circvar(EL⊥) is ExpTime-hard.

Similarly, for any given a ∈ NI, T is satisfiable iff there
exists a model I of Circvar(KB) such that aI �∈ (∃R.U)I .
Therefore, instance checking in Circvar(EL⊥) is ExpTime-
hard as well.

Finally, add a fresh concept name B and all the inclusions
B �∃R.UA � ⊥; call the new DKB KB′. Note that T is sat-
isfiable iff in some model of Circvar(KB) all UA are empty,
which holds iff B is satisfiable w.r.t. Circvar(KB′). Conse-
quently, concept satisfiability in Circvar(EL⊥) is ExpTime-
hard.

Since Circvar is a special case of CircF , and by Theo-
rem 4.3, the above theorem applies to CircF and Circfix, too:

Corollary 6.3 For X = F, fix, concept satisfiability check-
ing, instance checking, and subsumption in CircX(EL⊥) are
ExpTime-hard. These results still hold if ABoxes are empty
(i.e. assertions are not allowed).

The above proof can be adapted to CircF (EL). First we
have to introduce a new concept name D representing 	 and
translate each concept C into C∗ as follows:

• C∗ = C if C is a concept name;

• C∗ = Ā if C is ¬A (for all A, Ā is a new concept name);

• C∗ = D � ∃R.(C∗1 � D) if C is ∃R.C1;

• C∗ = C∗1 � C∗2 if C is C1 � C2.

Each C1 � C2 in T is translated into C∗
1 � C∗

2 .
Then we extend the translated TBox with the follow-
ing inclusions, where Bot (representing ⊥), all UA, and
Bad are new concept names and R is a new role name:

A 	 D (10)
Ā 	 D (11)

UA 	 D (12)
A � Ā 	 Bot (13)

A � UA 	 Bot (14)
Ā � UA 	 Bot (15)

D 	n A (16)
D 	n Ā (17)

D 	n UA (18)
D 	 D′ (19)
D′ 	n ∃R.UA (20)
D′ 	n ∃R.Bot (21)

∃R.UA 	 Bad (22)
∃R.Bot 	 Bad (23)

D(a) (ABox assertion) (24)

Let KB be the resulting DKB. Finally set F = {D,Bot}.
Now (24) guarantees that D is nonempty; the translation (·)∗,
(10) and (11) make sure that by restricting to D any model I
of CircF (KB) where all UA and Bot are empty one obtains a
model of T . Inclusion (19) gives (20) and (21) lowest priority.
These two DIs and (22)-(23) include D′ into Bad whenever
the intended meaning of the atoms Ā is violated. Then T
is satisfiable iff for some model I of CircF (KB), BadI =
∅. In turn, this happens iff CircF (KB) �|= D � Bad , and
iff aI �∈ BadI . Then we have the desired reduction from
EL¬A TBox satisfiability to the complement of subsumption
and instance checking in CircF (EL). As a consequence, and
by Theorem 4.3:

Theorem 6.4 Instance checking and subsumption are
ExpTime-hard both in CircF (EL) and in Circfix(EL). The
same holds in the restriction of EL not supporting 	.

Concept consistency is simpler, instead. Call an interpre-
tation I maximal iff for all A ∈ NC, AI = ΔI , and for
all P ∈ NR, P I = ΔI × ΔI . It is not hard to verify that
all ELHO concepts and all ELHO inclusions (both classical
and defeasible) are satisfied by all x ∈ ΔI , therefore maxi-
mal models are always models of CircF (KB), for all DKBs
KB and all F ⊆ NC. As a consequence we have that concept
consistency is trivial:

Theorem 6.5 For all EL concepts C, DKBs KB, and F ⊆
NC, C is satisfied by some model of CircF (KB).

One of the causes of the complexity of instance checking
and subsumption for Circfix(EL⊥) is the ability of inferring
consequences from qualified existential restrictions ∃P.B.
By limiting their occurrences, it is possible to reduce signifi-
cantly the complexity of instance checking and subsumption
for Circfix(EL⊥) knowledge bases.

Definition 6.6 An EL⊥ knowledge base is left local (LL)
if its concepts inclusions are instances of the following
schemata:

A �[n] B A �[n] ∃P.B A1 � A2 � B
∃P � B ∃P1 � ∃P2.B

where A and B can be concept names or ⊥. A LL EL⊥ con-
cept is any concept that can occur in the above inclusions.

Note the similarity with the normal form of EL inclusions
[Baader et al., 2005] that, however, would allow the more
general inclusions ∃P.A � B and ∃P1.A � ∃P2.B .

Lemma 6.7 Let KB be an LL EL⊥ knowledge base. For all
models I ∈ Circvar(KB) and x ∈ ΔI there exists a model
J ∈ Circvar(KB) such that (i) ΔJ ⊆ ΔI , (ii) x ∈ ΔJ ,
(iii) |ΔJ | is polinomial in the size of KB.

Proof. The proof is analogous to the proof of Lemma 5.1.
Here we start with a slightly different set Δ. Choose a min-
imal set Δ ⊆ ΔI containing: (i) x, (ii) all aI such that
a ∈ NI∩cl(KB), (iii) for each concept ∃P in cl(KB) satisfied
in I, a node yP such that for some z ∈ ∃P I , (z, yP ) ∈ P I
and (iv) for each concept ∃P.B in cl(KB) satisfied in I, a
node yP,B such that for some z ∈ ∃P.BI , (z, yP,B) ∈ P I

and yP,B ∈ BI .
Now define J as follows: (i) ΔJ = Δ, (ii) aJ = aI (for

a ∈ NI∩cl(KB)), (iii) AJ = AI∩Δ (A ∈ NC∩cl(KB)), and
(iv) PJ = {(z, yP ) | z ∈ Δ and z ∈ ∃P I} ∪ {(z, yP,B) |
z ∈ Δ and z ∈ ∃P.BI} (P ∈ NR).

The rest of the proof is similar to the proof of Lemma 5.1
and is omitted here for space limitations. We only remark
that the restriction to LL KBs is needed to ensure that J is a
classical model of the CIs in KB.

Lemma 6.8 Let KB be a LL EL⊥ knowledge base. For all
models I ∈ Circfix(KB) and x ∈ ΔI there exists a model
J ∈ Circfix(KB) such that (i) ΔJ ⊆ ΔI , (ii) x ∈ ΔJ ,
(iii) |ΔJ | is polinomial in the size of KB.
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var F / fix

Concept sat. EL trivial up to ELHO (Thm 6.5)
EL⊥ ≥ ExpTime (Thm 6.2, Cor 6.3)

DL-liteR, LL EL⊥ ≤ Σp
2 (Thm 5.3, Thm 6.9)

Instance checking

Subsumption EL P (*) ≥ ExpTime (Thm 6.4)
EL⊥ ≥ ExpTime (Thm 6.2, Cor 6.3)

DL-liteR, LL EL⊥ ≤ Πp
2 (Thm 5.3, Thm 6.9)

(*) Classical up to ELHO (by Theorem 6.1)

Table 1: Summary of complexity results

Proof. Similar to the proof of Lemma 5.2. Use a slightly
modified, minimal set Δ ⊆ ΔI containing: (i) x, (ii) all
aI such that a ∈ NI ∩ cl(KB), (iii) for each concept ∃P in
cl(KB) satisfied in I, a node yP such that for some z ∈ ∃P I ,
(z, yP ) ∈ P I , (iv) for each concept ∃P.B in cl(KB) sat-
isfied in I, a node yP,B such that for some z ∈ ∃P.BI ,
(z, yP,B) ∈ P I and yP,B ∈ BI and finally (v) for all
inclusions C � ∃R.B or C �n ∃R.B in KB such that
(C � ∃R.B)I �= ∅, a node z ∈ (C � ∃R.B)I . The rest
of the proof is similar to the proof of Lemma 5.2 and omitted
here.

As a consequence of the above lemmata we get:
Theorem 6.9 Concept consistency over circumscribed LL
EL⊥ DKBs is in Σp

2. Subsumption and instance checking over
circumscribed LL EL⊥ DKBs are in Πp

2.

7 Conclusions and further work

The complexity of circumscribed description logics can be
significantly reduced by (i) restricting the underlying DL to
DL-liteR and to suitable members of the EL family, and (ii)
restricting nonmonotonic constructs to defeasible inclusions
A �n C. KB satisfiability is equivalent to its classical ver-
sion (by Theorem 4.2) and hence it is within P (sometimes
even trivial) for the logics we investigated. The results for all
the other reasoning tasks are summarized in Table 1. Surpris-
ingly, fixed predicates in conjunction with qualified existen-
tial restrictions are powerful enough to keep the complexity of
instance checking and subsumption ExpTime-hard even for a
language like EL, which is not able to express any inconsis-
tency. For DL-liteR and LL EL⊥, complexity drops to Σp

2
and Πp

2, instead.
We are currently sharpening our complexity bounds, and

extending them to more expressive logics, looking for alterna-
tives to left-local KBs to confine complexity within the poly-
nomial hierarchy. These theoretical results and the seman-
tic properties emerging from their proofs will be exploited to
design suitable calculi and algorithms for reasoning with cir-
cumscribed defeasible knowledge bases.
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