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Abstract

This paper presents an argumentation-based inter-
preter for Golog programs. Traditional Golog inter-
preters are not designed to find the most preferred
executions of a program from the perspective of an
agent. Existing techniques developed to discover
these executions are limited in terms of how the
preferences of an agent can be expressed, and the
variety of preference types that can be used to guide
search for a solution. The presented work combines
the use of argumentation to compare executions rel-
ative to a set of general comparison principles, and
the theory behind best first search to reduce the cost
of the search process. To the best of our knowledge
this is the first work to integrate argumentation and
the interpretation of Golog programs, and to use ar-
gumentation as a tool for best first search.

1 Introduction

Golog [Levesque et al., 1997] is a logic programming lan-
guage for agents designed to represent complex actions and
procedures in the situation calculus. Each execution of a
Golog program represents a way of achieving a particular
goal. A traditional Golog interpreter is designed to find the
possible executions of a program, not to identify those that
are the most preferred.

Several approaches have been developed to achieve this
task, and extend Golog with preferences. DTGolog – a de-
cision theoretic extension of Golog – maximises utility in
the interpretation of Golog programs [Boutilier et al., 2000].
In [Fritz and McIlraith, 2006], DTGolog is extended with the
incorporation of qualitative preferences in the form of tem-
poral logic constraints of varying priority. In [Sohrabi et
al., 2006], best first search is applied in the interpretation of
Golog programs to discover a web service composition that is
the most preferred given temporal logic preference formulae.

The variety of preference types that can be expressed in
these existing approaches is limited. The utilities of [Boutilier
et al., 2000] and the qualitative preferences of [Fritz and
McIlraith, 2006; Sohrabi et al., 2006] do not express all
the ways in which executions of a program can be com-
pared. These approaches, for example, cannot capture com-
parative preference – derived from the relationships that exist

between one choice and another. Examples of such prefer-
ences include those based on: intangible, immeasurable fac-
tors such as taste and perception; decision heuristics encap-
sulating past decision-making experience; and lexicographic
or semi-lexicographic [Tversky, 1969] comparison rules. In
this paper, we present an argumentation-based Golog inter-
preter that aims to address this limitation, while maintaining
the advantage of reduced search cost through best first search.

Argumentation techniques have gained widespread use in
both agent and multi-agent systems as tools for the support
of more human-like decision-making processes [Ouerdane et
al., 2007]. In this paper, we first develop an argumenta-
tion framework for decision-making (ADF ) that constructs
a strict preference profile (a dominance graph) over a set of
executions A of a Golog program. This framework allows
an agent to compare executions according to whichever prin-
ciples it desires (denoted comparison principles), including
those describing comparative preference. We do not assume
that the resulting profile is transitive or acyclic, and as such
we apply choice theory techniques to define the most pre-
ferred subset of A (MPS(A)). We apply a choice rule, such
as the Schwartz [Schwartz, 1972] criterion, to a dominance
graph over A to select these most preferred alternatives.

We then characterise the interpretation of a Golog program
as best first search (using the transition semantics of [de Gia-
como et al., 2000]). At each stage in the search for a most pre-
ferred execution of a program δ, an instantiation of our ADF
provides an estimate of which available transitions will lead
to an execution in MPS(A), where A denotes the executions
of δ. The concept of speculation (a tool for predicting future
opportunities in search) and a prioritised selection algorithm
are used to select a transition to perform at each stage of the
search process. To select a transition, an agent speculates on
(estimates) the nature of the preferences that exist between
complete executions of a program, based on the preferences
that exist between partial executions at each stage in search.

Our argumentation-based best first search interpreter is
shown to always find an execution in the most preferred sub-
set of a program’s execution set A (provided A �= ∅).

The remainder of this paper is structured as follows. In
Section 2, we provide an introduction to the Golog program-
ming language. In Section 3, we describe in more detail
the existing preference-based Golog interpreters, their limita-
tions, and our motivation for using argumentation-based best
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first search to address them. Our ADF , defining MPS(A)
for a set of program executions A, is outlined in Section 4. In
Section 5, we describe argumentation-based best first search.

2 Golog, and The Situation Calculus

Golog programs are described using axioms of the situation
calculus, together with constructs to encode procedures, ac-
tions, iteration, and non-deterministic choice [Levesque et al.,
1997]. The situation calculus enables reasoning about ac-
tions, which change the state of the world, and situations,
which describe a sequence of actions applied to an initial
state. In the situation calculus, a collection of action precon-
dition, successor state, foundational domain independent, and
initial state axioms characterise the domain of an application.

The constructs present in the Golog programming language
are described in [de Giacomo et al., 2000; Levesque et al.,
1997] and are: a (primitive action); φ? (test that φ holds in
the current situation); δ1; δ2 (execute program δ1 then δ2);
δ1|δ2 (choose to execute program δ1 or δ2); π v.δ (choice
of arguments v in δ); δ∗ (execute δ zero or more times); if
φ then δ1 else δ2 (synchronised conditional); while φ do δ
(synchronised loop); and proc P (�v)δ end (procedure).

Given a domain theory, D, expressed in the situation cal-
culus, a legal execution of a Golog program δ is a sequence of
actions �a such that: D |= Do(δ, so, do(�a, so)), where do(�a, so)
is a legal terminating situation (execution) of δ when executed
in the situation s0

1. Each pair (δ, s), where δ is a program to
be executed in situation s, is called a configuration.

The transition semantics for the interpretation of Golog
programs [de Giacomo et al., 2000] (providing an implemen-
tation of Do) defines when an agent can transition from one
configuration (δ, s) to another (δ′, s′) by performing one step
in the program δ, resulting in the situation s′ and the pro-
gram δ′ left to perform. For each form a Golog program may
assume, δf , a Trans axiom is defined to determine which con-
figurations can be transitioned to from (δf , s) by performing
a single step of δf in situation s. A configuration (δf , s) is
final (Final(δf , s)) if no steps remain to be performed in δf .

A selection of Trans and Final axioms are shown below2.
Given a program of the form δf = a (where a is a primitive
action), the configuration (δf , s) can transition if it is possible
to perform action a in situation s (Poss(a[s], s)),

Trans(a, s, δ′, s′) ≡
Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

and is not final as the action a remains to be performed. For
the sequence δf = δ1; δ2 (where δ1 is performed first and then
δ2), the configuration (δf , s) transitions as follows,

Trans(δ1; δ2, s, δ
′, s′) ≡ ∃γ.δ′ = (γ; δ2)∧

Trans(δ1, s, γ, s′) ∨ Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′)

and is final if both δ1 and δ2 are final in s:

Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

1do({a1, a2,. . ., an−1, an}, s) is shorthand for do(an, do(an−1,
. . . do(a2, do(a1, s)))).

2A full account of the transition semantics can be found in [de
Giacomo et al., 2000].

3 Related Work

In rational choice theory, it is assumed that the preferences of
a decision maker can be expressed as a utility function that
assigns a value to each decision alternative. Utility maximi-
sation produces a complete and transitive ranking from which
a most preferred alternative can be selected.

Golog and Preferences Developed in this vein is DTGolog
– a decision theoretic extension of Golog [Boutilier et al.,
2000]. DTGolog – a prominent approach for finding the most
preferred executions of a Golog program – combines the the-
ory of Markov decision processes (MDPs) with the Golog
programming language. Solving an MDP involves finding an
optimal policy – an optimal mapping between the states an
agent might find itself in and the actions that should be per-
formed in those states. DTGolog specifies an MDP with an
action theory (expressed in the situation calculus) augmented
with stochastic actions (actions with uncertain outcomes) and
a reward function mapping numerical rewards to situations.
A policy for a program δ is optimal if it maximises the ex-
pected reward or utility achieved over a given horizon (max-
imum number of actions performable), and the probability
with which δ will be successfully executed.

The incorporation of qualitative preferences in the interpre-
tation of Golog programs [Fritz and McIlraith, 2006; Sohrabi
et al., 2006] and planning in general [Son and Pontelli, 2004;
Bienvenu et al., 2006] is an advantage when quantitative pref-
erences (such as utilities or rewards) are not available or do
not capture all of the preferences of an agent.

Fritz and McIlraith extend DTGolog with qualitative pref-
erences in [Fritz and McIlraith, 2006]. These preferences are
expressed in terms of basic desire formulae (temporal logic
constraints on situations) of varying priority. These formulae
are compiled into a DTGolog program to be executed syn-
chronously with the program under interpretation δ. This
synchronous execution aims to find the most quantitatively
preferred policies of δ amongst those that satisfy (if not all, at
least some of) the qualitative constraints.

Sohrabi et al develop GologPref [Sohrabi et al., 2006], a
Golog interpreter designed to discover a most preferred web
service composition using the best first search strategy of
PPLAN [Bienvenu et al., 2006]. In [Bienvenu et al., 2006],
user preferences are expressed in a language that extends
PP [Son and Pontelli, 2004]. PP describes a hierarchy of
preference constructs: basic desire formulae outlining tempo-
ral logic constraints on plan trajectories; atomic preferences
specifying an ordering on basic desires according to their im-
portance; and general preference formulae allowing the com-
bination of atomic preferences with operators analogous to ∧,
∨, and ¬. PPLAN introduces additional mechanisms of pref-
erence combination and assigns weights (denoting degrees of
importance) to basic desires in atomic preference formulae.
These weights are used to compute a value for each partial
plan on a search frontier, where preferences not already vio-
lated are assumed to be satisfied at a future point on the tra-
jectory of a partial plan. PPLAN selects the most promising
partial plan for exploration at each stage in search.

In contrast with the work of [Sohrabi et al., 2006], DT-
Golog based approaches [Boutilier et al., 2000; Fritz and
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McIlraith, 2006] consider the entire execution space in the
search for one that is most preferred. This need arises, how-
ever, from their incorporation of stochastic actions. In this
paper, we do not consider the use of stochastic actions.

Limitations of Existing Work In [Delgrande et al., 2007],
a distinction between absolute preference (describing the de-
sirability of a particular state of affairs) and comparative pref-
erence (describing the desirability of one state of affairs rela-
tive to others) is made. The approaches described above sup-
port only absolute preference, and disallow those that imply
the merit of one partial plan or execution is dependent on the
alternatives it is being compared with.

In addition to the varieties of preference that can often only
be described comparatively – such as preference over tastes
and perception – preference over alternatives involving multi-
ple attributes is often expressed in terms of comparative rules
to reduce the cognitive load on a decision maker [Bar-Hillel
and Margalit, 1988]. An example is the application of a ma-
jority rule over multiple attributes. In this scenario, one al-
ternative is preferred to another if it is better on a majority of
attributes. Approximation methods used to ascertain a pref-
erence for one alternative over another – such as the majority
rule described above, and the cancelling out of dimensions
with similar differences [Tversky, 1969] – are common in hu-
man decision-making [Tversky, 1969].

Argumentation and Best First Search Argumentation
techniques provide a general means by which preference be-
tween alternatives can be specified or ascertained. In argume-
ntation-based decision-making, preference amongst alterna-
tives is constructed as a part of the decision-making process,
and is based on the competing interests, motivations, values,
or goals, of the decision maker. Given a set of program ex-
ecutions, reasons may be formed in support of preferences
between its members based on the variety of principles an
agent may use to compare them.

In this paper, we combine the advantages of argumentation
as a tool for expressing complex preferences, and best first
search – a technique applied in existing work to reduce the
cost of search for a most preferred execution. In place of
independently evaluating partial executions with respect to a
set of absolute preferences, arguments supporting preferences
between partial executions are used to guide the search.

4 Argumentation over Executions

In this section, we define an argumentation framework for
decision-making (ADF) that constructs preference relation-
ships between decision alternatives given a general set of
principles by which they are compared. We apply this frame-
work, in conjunction with choice theory, to find the most pre-
ferred subset of an execution set A for a Golog program δ.

We first provide the following definition of a comparison
principle, and assume that an agent a = 〈C, I〉 is equipped
with a finite set of such principles C, and a (transitive, ir-
reflexive, and asymmetric) partial ordering I over the princi-
ples in C. Given c1, c2 ∈ C, I(c1, c2) denotes that principle
c1 is more important to a than principle c2.

Definition 1 Given decision alternatives d1, d2 ∈ D, a com-
parison principle is a relation C(d1, d2, φ) where φ is a con-

ditional expression involving d1 and d2. If φ(d1, d2) holds,
we say that d1 is preferred to d2 (P(d1, d2)).

We now introduce a running example that will used thro-
ughout the remainder of this paper.

Example 1 (The Travelling Agent) An agent a has the fol-
lowing program (denoted δ) outlining what to do to travel
from point A to B to C. Agent a can drive or walk from A to
B, and then take the train (preceded by eating cake) or skip
(followed by eating fruit) from B to C.

proc travel(A, B,C)
[drive(A, B)|walk(A, B)] ;
[[eat(cake); train(B, C)] | [skip(B, C); eat(fruit)]]

end

We make the assumption that all actions are possible in any
situation, with the exception of taking the train which is not
possible in a situation that has involved driving. Given an
initial situation s0, A = home (h), B = university (u), C =
cinema (c), the program δ has three executions:

s1 = do({drive(h, u), skip(u, c), eat(fruit)}, s0),
s2 = do({walk(h, u), eat(cake), train(u, c)}, s0),
s3 = do({walk(h, u), skip(u, c), eat(fruit)}, s0).

Agent a has three principles Ci(sj , sk, φi) by which it
compares these executions. By the first comparison princi-
ple, agent a prefers one execution over another if it involves
eating tastier food.

φ1(do( �a1, s0), do( �a2, s0)) ≡
eat(x) ∈ �a1 ∧ eat(y) ∈ �a2 ∧ x >taste y

where x >taste y denotes that x tastes better than y. The sec-
ond principle expresses that walking and skipping together is
preferred to driving.

φ2(do( �a1, s0), do( �a2, s0)) ≡ walk(xi, yi) ∈ �a1∧
skip(xj , yj) ∈ �a1 ∧ drive(xk, yk) ∈ �a2

By the third principle, agent a prefers executions involving
less tiring activities.

φ3(do( �a1, s0), do( �a2, s0)) ≡ x ∈ �a1 ∧ y ∈ �a2 ∧ x <tiring y

where x <tiring y denotes that x is less tiring than y.

There are several existing frameworks that have been de-
veloped to argumentatively determine the ‘best’ decisions
in an alternative set based on the preferences of an agent
(see [Ouerdane et al., 2007] for a review). Each of these
approaches is designed to induce a preference ordering over
a set of available decisions, from which the best (most pre-
ferred) decisions can be inferred. This preference ordering is
formed by analysing and comparing a set of arguments (pro
and con each decision, for example) constructed in light of
the positive and negative aspects of each decision.

Our aim is to provide an agent with the flexibility to com-
pare executions with whichever principles it desires. Rather
than construct arguments in support of and against individual
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decisions (pros and cons), comparison principles are instanti-
ated in our ADF to form arguments in support of preference
relationships between decisions (executions).

Each argument in our ADF represents a reason why one
execution si ∈ A is preferred to another sj ∈ A (P(si,
sj)). Each argument takes the form 〈J, P(si, sj)〉 where si,
sj ∈ A and J is a justification for the truth of the conclusion
P(si, sj). Each justification J represents the instantiation of
a comparison principle c ∈ C used by an agent to determine
if one execution is preferred to another. An argument a1 =
〈J1,P(si, sj)〉 ∈ AR is attacked (rebutted) by all arguments
with an opposing conclusion a2 = 〈J2, P(sj , si)〉 ∈ AR (de-
noted attacks(a2, a1)). An argument a1 defeats an argument
a2 iff attacks(a1, a2) holds and the principle that derives a2

is not more important to the decision maker (agent) than the
principle that derives a1.

The structure of our ADF is based on the structure of
an audience-specific value-based argumentation framewo-
rk [Bench-Capon, 2003]. The conclusions of undefeated ar-
guments (arguments not defeated by another argument) in an
ADF represent a strict preference profile (a dominance graph)
P over the available decisions (executions).

Definition 2 An ADF is a 5-tuple: ADF = 〈AR, attacks,
C, pri, I〉 where AR is a finite set of arguments, attacks is
an irreflexive binary attack relation on AR, C is a finite set
of comparison principles, pri maps each argument in AR to
the principle in C it is derived from, and I ⊆ C × C is a
(transitive, irreflexive, and asymmetric) partial ordering of
the principles in C. An argument a ∈ AR defeats an argument
b ∈ AR iff attacks(a, b) and ¬I(pri(b), pri(a)) holds.

We assume that an agent has its own choice rule (Ch) for
selecting a most preferred subset of A (MPS(A)) based on
the preferences that have been found to exist between its ele-
ments (Ch(A,P) = MPS(A)). As preference is based on a
set of general comparison principles, we do not assume that P
is transitive or acyclic. An agent may, for example, represent
Ch(A,P) with the Schwartz set [Schwartz, 1972].

Definition 3 Given a set of alternatives D, and a dominance
graph over D, P: (i) an alternative γ ∈ D dominates an
alternative β ∈ D iff (γ, β) ∈ P; (ii) a Schwartz set com-
ponent of D is a subset S ⊆ D such that: (a) no alternative
γ ∈ D where γ /∈ S dominates an alternative β ∈ S; and
(b) no non-empty subset S′ ⊂ S satisfies property (a); and
(iii) the Schwartz set Sc of D is the union of all Schwartz set
components of D.

If a preference cycle exists between decision alternatives,
the Schwartz set infers that they are each ‘at least as good as
each other’ [Schwartz, 1972].

Example 2 (The Travelling Agent cont.) For agent a: fruit
>taste cake, drive <tiring walk, and I = {(C1, C2), (C1, C3),
(C2, C3)}. In an ADF defined over A = {s1, s2, s3}, a is
able to instantiate its comparison principles to produce five
arguments in support of preference relationships between el-
ements of A (AR = {Ai}i=1,...,5).

Argument 1, A1 = 〈C1,P(s1, s2)〉, denotes that s1 is pre-
ferred to s2 as it involves eating tastier food. Similarly, A2 =
〈C1, P(s3, s2)〉. Argument 3, A3 = 〈C2, P(s3, s1)〉, denotes

that s3 is preferred to s1 as s3 involves walking and skipping
while s1 involves driving. Argument 4, A4 = 〈C3, P(s1, s2)〉,
denotes that s1 is preferred to s2 as it is less tiring. Similarly,
A5 = 〈C3, P(s1, s3)〉.

By Definition 2, A3 and A5 attack each other with A3 de-
feating A5 (as ¬I(C3, C2)), and P = {(s1, s2), (s3, s2), (s3,
s1)}. Given the Schwartz set (Definition 3) as Ch, the most
preferred subset of A, MPS(A), is Ch(A,P) = {s3}.

5 Argumentation-Based Best First Search

In this section, we use the transition semantics defined in [de
Giacomo et al., 2000] to characterise the interpretation of a
Golog program as best first search. Given a program δ to
interpret (and an initial situation s0), the state-space of the
problem is the set of configurations (δi, si) that can be tran-
sitioned to from (δ, s0) by performing a sequence of actions
in δ. Given a configuration (δi, si), a legal moves function
MOVES(δi, si) returns the set of configurations that may be
transitioned to from (δi, si) by performing the first step of δi

in the situation si. Search proceeds by building a tree (with
root node (δ, s0)), whose paths represent partial or complete
executions of δ. For each fringe (set of leaf configurations) of
this tree, Fringe, an evaluation function EVAL(Fringe,P) se-
lects which configuration in Fringe to transition to next given
a dominance graph P over Fringe. If a final configuration
(δr, sr) is selected by EVAL, the execution represented by
this configuration sr forms the result of search.

Our aim is to allow an agent a = 〈C, I〉 to discover a final
configuration representing an execution in MPS(A) where
A are the executions of δ given s0. Algorithm 1 outlines the
program interpretation process, where: EXPAND(Fringe, γ)
removes the configuration γ = (δi, si) from the search fringe
and replaces it with MOVES(δi, si); ARGUE-ADF(Fringe, C,
I) determines the undefeated conclusions P of an ADF de-
fined over the configurations in Fringe; and EVAL(Fringe, P)
selects a configuration in Fringe to transition to next based on
the dominance graph P .

Algorithm 1 PROGRAM INTERPRETATION PROCESS

Input: (δ, s0), C, I, Output: Best
Best ← (δ, s0), Fringe ← {(δ, s0)}
while ¬Final(Best) do

Fringe ← EXPAND(Fringe, Best)
P ← ARGUE-ADF(Fringe, C, I)
Best ← EVAL(Fringe, P)

end while

ARGUE-ADF(Fringe, C, I) Each fringe in the search tree
constructed by EXPAND consists of a set of configurations
(δi, si) where each (δi, si) is reachable from (δ, s0) by per-
forming a sequence of actions in δ. ARGUE-ADF constructs
a dominance graph over the configurations in a fringe, with
the objective of providing advice to EVAL in its selection of
the next configuration to transition to (expand).

An agent a = 〈C, I〉 determines P by forming an ADF
(Definition 2) over the configurations in Fringe. Each argu-
ment in the ADF expresses a preference for one configura-
tion γ1 ∈ Fringe over another γ2 ∈ Fringe (based on the ex-
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ecutions or partial executions they represent), and describes a
reason why γ1 is more likely to lie on a path to a most pre-
ferred final configuration (execution) than γ2.

If arguments in the ADF over Fringe are based solely on
actions that have been performed on a path from (δ, s0) to a
configuration in Fringe, the search for a most preferred execu-
tion of δ becomes greedy. To achieve admissibility, we must
ensure that an agent can construct an argument preferring one
configuration γ1 ∈ Fringe to another γ2 ∈ Fringe if, accord-
ing to C, γ1 leads to a configuration that is preferred to γ2. We
do not want an agent to search ahead in a program to deter-
mine which actions are actually possible, as this would defeat
the purpose of best first search. Instead, we allow an agent to
speculate on (estimate) which actions could be performed af-
ter making a transition, and construct arguments accordingly.

To formally define a speculation, we introduce a relaxation
of the transition semantics of [de Giacomo et al., 2000]. In
this relaxed semantics, a TransR axiom is defined for each of
the constructs in Section 2. This semantics is defined such
that: if a configuration γ can transition to a configuration γ′
by Trans, γ can transition to γ′ by TransR; and if a config-
uration γ cannot transition to a configuration γ′ by Trans, it
may transition to γ′ by TransR. The relaxed semantics over-
estimates what is possible in a program.

For each construct defined in Section 2, with the exception
of primitive actions, TransR and Trans are equivalent. Given
a primitive action δ = a, (δ, s) transitions as follows,

TransR(a, s, δ′, s′) ≡ δ′ = nil ∧ s′ = do(a[s], s)

and differs from its Trans counterpart in that it does not check
if an action is possible.

Definition 4 (Speculation) For a configuration γ = (δ′, s′),
γs = (δs, ss) is a speculation of γ if it is final (Final(δs, ss))
and a member of the reflexive, transitive closure of TransR
(TransR∗) where TransR∗(δ′, s′, δs, ss) holds if (δs, ss) is
reachable from (δ′, s′) by repeated application of TransR3.

With the introduction of speculations the set of arguments
AR in the ADF defined over a fringe is formed as follows:
for each pair of configurations on a fringe (γ1, γ2) (where
both γ1 and γ2 are final or non-final, or γ1 is non-final and γ2

final), an argument 〈c,P(γ1, γ2)〉 (as described in Section 4)
is constructed in support of P(γ1, γ2) if a speculation of γ1 is
preferred to γ2 according to a comparison principle c ∈ C.

EVAL(Fringe, P) EVAL computes a set EMPS represent-
ing the configurations in Fringe an agent estimates to lie on
a path from (δ, s0) to a final configuration (δ′, s′) where s′
∈ MPS(A) and A are the executions of δ. EMPS is the re-
sult of applying a choice rule Ch to the dominance graph P
induced by an ADF over Fringe in ARGUE-ADF:

EMPS
def= Ch(Fringe,P) ⊆ Fringe

EVAL selects a configuration in Fringe to transition to next,
using the advice in EMPS . As P is based on speculations
that may not represent legally reachable configurations, some

3We consider only Golog programs that admit a finite number of
executions, and for which there is no situation in which iteration and
loop constructs admit an infinite number of iterations.

of the preferences in P are transient. A transient preference
between configurations γ1 and γ2 does not exist between all
configurations reachable from γ1 and all those reachable from
γ2, limiting an agent’s ability to predict the nature of a P over
all final program configurations from P over a search fringe.

To address problems arising from transient preferences,
EVAL is implemented using prioritised configuration selec-
tion. This prioritisation is based on the following assumption
regarding the nature of all choice rules an agent may adopt.
Assumption 1 Given a non-empty set of alternatives D, and
a dominance graph over those alternatives P , any choice rule
Ch adopted by an agent: (i) finds a non-empty subset of D
where Ch(D,P) contains (at least) all alternatives γ ∈ D
for which there is no alternative γ′ ∈ D such that P(γ′, γ);
and (ii) satisfies the property that an alternative γ ∈ D being
in Ch(D,P) is independent of any alternative γ′ ∈ D not
connected to γ by an undirected path in P .

Assumption 1 provides an agent with a stopping condition
– an indication of when a final configuration in the EMPS of
a fringe represents a most preferred execution.

The Prioritisation Algorithm Given a search fringe Fri-
nge, a dominance graph P over Fringe, and the set EMPS =
Ch(Fringe, P), EVAL(Fringe, P) is defined to:

(i) Select a final configuration γ ∈ EMPS for which ¬∃γ′
∈ Fringe . P(γ′, γ), if one exists;

(ii) If (i) is not satisfied, select a final configuration γ ∈
EMPS which is not connected by an undirected path
of preferences in P to a non-final configuration γ′ ∈
Fringe, if one exists;

(iii) If (i)-(ii) are not satisfied, select a non-final configuration
γ ∈ EMPS , if one exists; and

(iv) If (i)-(iii) are not satisfied, select any non-final configu-
ration γ′ ∈ Fringe.

Steps (i) and (ii) specify the conditions that must be satisfied
by a final configuration to demonstrate that it represents an
execution in MPS(A). Transient preferences can only exist
between configuration pairs in which at least one member is
non-final. If a final configuration γ ∈ Fringe is not indepen-
dent of all members of such pairs (according to Assumption
1), an agent cannot predict the status of the execution it rep-
resents when a P is constructed over all executions in A. In
this case, steps (iii)-(iv) tell the agent to continue its search.

Theorem 1 Given an agent a = 〈C, I〉, using a choice rule
satisfying Assumption 1, any execution sr ∈ A of a pro-
gram δ, given an initial situation s0, found as a result of
argumentation-based best first search is in MPS(A).

Proof : We demonstrate that a final configuration γ = (δr, sr)
of δ cannot be selected from any search fringe Fringe, given
a dominance graph over its members P , if sr /∈ MPS(A).
EVAL, using the prioritisation algorithm, will only select
γ ∈ Ch(Fringe,P) as a result of search if: (i) there is no
configuration γ′ ∈ Fringe such that P(γ′, γ); or (ii) there is
no non-final configuration γ′ ∈ Fringe where γ and γ′ are
connected by an undirected path in P .

If (i) holds, then there is no undefeated argument (based on
a speculation or not) that can be formed in support of P(γ′, γ)
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for γ′ ∈ Fringe. As speculation over-estimates what is pos-
sible after expanding a configuration, there is no final config-
uration of δ given s0 that is preferred to γ. According to part
(i) of Assumption 1, sr must be a member of MPS(A).

Let U be the set of configurations in Fringe connected to
γ by an undirected path in P . If (ii) holds, each configura-
tion in U is final, and no configuration in U is connected to
a non-final configuration by an undirected path in P . Thus,
there is no argument (based on a speculation) in support of a
preference between a configuration γ′ ∈ Fringe and a config-
uration in U . As speculation over-estimates what is possible,
there are no final configurations of δ outside of U that could
be connected to γ (or any configuration in U ) by an undi-
rected path in P . By part (ii) of Assumption 1, the question
of whether sr is in MPS(A) is independent of any execution
in A represented by a configuration outside of U . Let U ′ be
the set of executions represented by configurations in U . As
U ′ ⊆ A, and sr is in MPS(U ′), sr must be in MPS(A).

Moreover, the assumption that Ch(Fringe,P) is non-
empty for a non-empty Fringe (Assumption 1) ensures that if
a program δ has at least one legal execution, argumentation-
based best first search is guaranteed to find a result. �
Example 3 (The Travelling Agent cont.) In the first step of
the interpretation of δ in Example 1:

Fringe = {γ1 = (δ′, s′1), γ2 = (δ′, s′2)}
where s′1 = do(drive(h, u), s0), s′2 = do(walk(h, u), s0), and
δ′ = [eat(cake) ; train(u, c)] | [skip(u, c) ; eat(fruit)]. The
speculations that can be formed of (δ′, s′1) and (δ′, s′2) are
{sp1, sp2} and {sp3, sp4}, respectively:

sp1 = (nil, do(train(u, c), do(eat(cake), s′1)))

sp2 = (nil, do(eat(fruit), do(skip(u, c), s′1)))

sp3 = (nil, do(train(u, c), do(eat(cake), s′2)))

sp4 = (nil, do(eat(fruit), do(skip(u, c), s′2)))

In an ADF defined over Fringe (given C and I as de-
scribed in Examples 1 and 2), AR = {Ai}i=1,2, where A1

= 〈C3,P(γ1, γ2)〉 and A2 = 〈C2, P(γ2, γ1)〉. A1 is based on
principle C3 (driving is less tiring than walking). A2 is based
on sp4 and principle C2 (walking and skipping together is
preferred over driving). A2 defeats A1 (by Definition 2 and
¬I(C3, C2)), and P = {(γ2, γ1)}.

Given the Schwartz set [Schwartz, 1972] as Ch, EVAL se-
lects walk as the first step (EMPS = Ch(Fringe, P) = {γ2}
and ¬∃γ ∈ Fringe.P(γ, γ2)), resulting in the fringe:

Fringe = {γ1 = (δ′, s′1),

γ3 = (train(u, c), do(eat(cake), s′2)),

γ4 = (eat(fruit), do(skip(u, c), s′2))}
Performing the ARGUE-ADF step on the new fringe re-
sults in a new set of arguments AR = {Ai}i=1,...,5 where:
A1 = 〈C1,P(γ4, γ3)〉 (based on sp4), A2 = 〈C2,P(γ4, γ1)〉
(based on sp4), A3 = 〈C3,P(γ1, γ3)〉 (based on sp1 and
sp2), A4 = 〈C3,P(γ1, γ4)〉 (based on sp1 and sp2), and A5

= 〈C1,P(γ1, γ3)〉 (based on sp2). The conclusions of un-
defeated arguments in AR form the dominance graph P =
{(γ4, γ3), (γ4, γ1), (γ1, γ3)}. EVAL selects the configuration
γ4 to transition to, replacing γ4 on the fringe with sp4.

Repeating the ARGUE-ADF and EVAL steps given this
new fringe results in the execution represented by sp4 being
chosen as the final result. In Example 2, MPS(A = {s1, s2,
s3}) = {s3}. In this example, sp4 = (nil, s3).

6 Conclusions

This paper has presented an argumentation-based best first
search algorithm for the interpretation of Golog programs.
Argumentation allows the flexible specification (and elic-
itation) of preferences (including comparative preference),
while the incorporation of best first search reduces the ex-
ecution space traversed in finding a most preferred result.
Our approach uses the concept of speculation (a tool for pre-
dicting future opportunities at each stage of search), and ar-
guments in support of preference between configurations, to
guide search toward a most preferred program execution. The
proposed argumentation-based interpretation of Golog pro-
grams is shown to be admissible. As future work, we intend
to consider the implicit speculation of programs, in place of
the explicit generation of speculations by a TransR relation.
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