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Abstract

In the context of Dung’s theory of abstract ar-
gumentation frameworks, the recently introduced
resolution-based grounded semantics features the
unique property of fully complying with a set of
general requirements, only partially satisfied by
previous literature proposals. This paper con-
tributes to the investigation of resolution-based
grounded semantics by analyzing its computational
properties with reference to a standard set of de-
cision problems for abstract argumentation seman-
tics: (a) checking the property of being an exten-
sion for a set of arguments; (b) checking agreement
with traditional grounded semantics; (c) check-
ing the existence of a non-empty extension; (d)
checking credulous acceptance of an argument; (e)
checking skeptical acceptance of an argument. It is
shown that problems (a)-(c) admit polynomial time
decision processes, while (d) is NP—complete and
(e) coNP—complete.

1 Introduction

In the context of Dung’s theory of abstract argumentation
frameworks [Dung, 1995] a large variety of semantics have
been proposed in the literature, their motivation and mu-
tual comparison often being based on informal intuitions
and/or specific examples. To overcome this limitation, re-
cently a set of general principles for semantics evaluation
and comparison have been identified [Baroni and Giacomin,
2007]. These principles are defined in term of formal prop-
erties of the extensions prescribed by a semantics and cover
a wide spectrum of notions, ranging from set-theoretical (I-
maximality) to topological ones (directionality), and from
defense-related concepts (admissibility and reinstatement) to
skepticism-related requirements (skepticism adequacy and
resolution adequacy). The analysis of a comprehensive set
of literature proposals (namely, complete, grounded, stable,
preferred, ideal, semi-stable, CF2 and prudent semantics) has
shown that none of them is able to respect all the desirable
properties altogether. Subsequently, a newly proposed se-
mantics called resolution-based grounded semantics (GR* in
the following) has been proved [Baroni and Giacomin, 2008]
to satisfy all the desiderata of [Baroni and Giacomin, 2007].
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While this might be regarded as a significant advantage of
G R* with respect to other proposals, an analysis of its com-
putational properties is necessary to assess its potential prac-
tical relevance and to complete its comparison with other se-
mantics from this important perspective. This paper provides
such an analysis: it turns out that GR* is satisfactory also
from this viewpoint, its complexity in some significant com-
putational problems being lesser or the same with respect to
other multiple-status semantics. The paper is organized as
follows: Sec. 2 introduces basic concepts, notations, and the
considered decision problems, whose complexity analysis is
provided in Sec. 3, while conclusions are given in Sec. 4.

2 Notation and Definitions
Definition 1 collects the basic notions we use in the paper.

Definition 1 An argumentation framework (AF) is a pair G =
(A, R), written also G(A, R), where A is a finite set of argu-
ments and R C A x A is the attack relationship for G. Given
S C A, the complement of S is denoted as S = A\ S. The
restriction of Gto S C Aisthe AFG|lg = (S, RN (S x 5)).

A pair (x,y) € R is referred to as ‘y is attacked by z’
or ‘x attacks y’. For S, T subsets of arguments in G(A,R),
we say that t € T is attacked by S — written attacks(S,t) —
ifds € S : (s,t) € R, and analogously that S is attacked
by t — written attacks(t,S) —if3s € S : (t,s) € R. We
define St = {t € A | attacks(S,t)} and S~ = {t € A |
attacks(t,S)}. We use a(S) to denote the set S U ST. For
xz € A, every argument y in {x}~ N {x}T is involved in a
mutual attack with z, i.e. {(x,y),{(y,2)} CR. Aset S C A
is conflict-free if Az, y € S : (x,y) € R. Given S,T C A,
S is stable in T with respect to G, denoted as stg(S,T), if
Ve e (T\S) ze(SNnT)*.

An argument x € A is acceptable with respect to a set S C
AifVy € {x)}~ attacks(S,y). The function Fg : 24 — 24
which, given a set S C A, returns the set of the acceptable
arguments with respect to S, is called the characteristic func-
tion of G. We also use the notation F}(S) £ Fg(S) and for
i> 1, Fi(S) = Fg(F&(9)).

An argumentation semantics S specifies for any AF
G(A,R) a set Es(G) C 24 of extensions, each extension
being a set of arguments which can “survive together” the
conflict represented by R. A minimal requirement shared by
all literature semantics is that any extension is conflict-free.



Figure 1: G;: an AF with two resolutions.

It is proved in [Dung, 1995] that F¢() has a least fixed
point, i.e., in the case of a finite AF G(A, R), there is a fi-
nite value i for which () = F5(0) for all k > 0. The
grounded extension of G, denoted as GE(G) is the (unique)
least fixed point of Fg(). We use Egr(G) to denote the
set whose (sole) element is GE(G). Letting S = GE(G)
we will also denote as CUT(G) the argumentation frame-
work with arguments Ag A\ a(S) and attack relation
Rs = RN (AS X As), ie. CUT(g) = QL(A\Q(S)).

The concept of resolution-based semantics was introduced
in [Baroni and Giacomin, 2008] as a mechanism for treat-
ing mutual attacks between arguments. Given G(A, R), let
Mg C R be the set of mutual attacks in G, i.e. Mg
{{z,y) € R |z # y A (y,z) € R} (note that self-attacking
arguments are not considered to define mutual attacks). A
(partial) resolution of G is defined by any subset § C Mg for
which at most one element of each of the pairs (z,y), (y, z)
is in 3. The AF Gg arising from the partial resolution [ is
(A, R\ B). A full resolution is any partial resolution in which
exactly one element of each mutual attack occurs, hence the
AF G, arising from any full resolution «y of G contains no mu-
tually attacking arguments.

To exemplify, the AF G; shown in Fig. 1 includes only one
mutual attack and has two non-empty resolutions (both full),
namely {(c,d)} and {(d, ¢)}. The AF G5 shown in Fig. 2 in-
cludes five mutual attacks. Given that to define any resolution
there are three choices for each mutual attack (selecting one
of the attacks or neither) and excluding the empty resolution it
follows that Go admits 242 resolutions. On the other hand, to
define a full resolution there are two choices for each mutual
attack entailing that Gy has 32 full resolutions, including for
instance {({a,b), (¢, a), {¢,b), (g, f), (g, h)}. Tt is easy to see
that GE(G1) = {a} and GE(G2) = {e}, hence CUT(G; ) and
CUT(G2) are obtained by suppressing arguments and attacks
included in the dashed boxes in Figs. 1 and 2 respectively.

The definition of resolution-based grounded semantics
GR* is based on the grounded extensions of each different
full resolution of an AF and selects those ones which are min-
imal with respect to set inclusion.

Definition 2 Given an AF G(A, R) Egr+(G) = min { S C
A GE(Gy) =S for some full resolution y of G}.

Our main focus concerns computational properties of G R*
with respect to the informal questions and corresponding for-
mal decision problems listed below:

(a) Given G(A,R) and S C A decide if S is an extension
of GR*. Formally this relates to the decision problem
VERGp- with instances (G, S) accepted if and only if
S € Eqr-(G).
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Figure 2: Go: an AF with many resolutions.

(b) Given G(A, R) determine whether its resolution-based
grounded extensions are exactly the grounded extension
of G. Formally this relates to the decision problem
COINGR,gr- With instances G accepted if and only if
Ear(9) = Ear-(9).

Given G(A, R) determine whether there is at least one
non-empty resolution-based grounded extension of G.
Formally this relates to the decision problem NEgg~
with instances G accepted if and only if Egr-(G) # {0}.

Given G(A, R) and z € A determine whether z is cred-
ulously accepted with respect to Eg g+ (G). Formally this
relates to the decision problem CAgp+« with instances
(G, x) acceptedifand only if 3.5 € Egpr-(G) s.t.x € S.

Given G(A, R) and = € A determine whether x is skep-
tically accepted with respect to Eg g+ (G). Formally this
relates to the decision problem SAgg- with instances
(G, x) accepted if and only if V.S € Egr«(G) z € S.

We show that while the problems (a), (b) and (c) admit
polynomial time decision processes, in contrast (d) is NP—
complete and (e) coNP—complete.

()

(d)

(e)

3 Decision properties of £ -

3.1 Polynomial time decidable problems
We need several preliminary lemmata concerning properties
of GR. First, any argument attacked by the grounded exten-
sion receives at least one non-mutual attack from it.
Lemma 1 Given an AF G(A,R), Vo € (GE(G))" Jy €
GE(G): (y,z) e RN {(z,y) ¢ R.
Proof:  The proof is based on the property GE(G) =
Uss, F&(0) [Dung, 1995] and proceeds by induction on i,
showing that the thesis holds for any z € (Fj(0))". As
to the basis step, note that the thesis holds trivially for z €
(F&(0))" since Yy € Fi(0) {y}~ = 0. As to the in-
ductive step, consider x € (.7-"(3:"1((7]))+ with ¢ > 1. Then
Jy e F0) : (y,z) € R. If (z,y) ¢ R the the-
sis obviously holds, otherwise since y € fé“(@) it holds
that z € (F5(0))" and, by the inductive hypothesis, Iy’ €
Fe0): (v, z) € RA(z,y) & R.
The following lemma states that if GE(G) is stable in a
set T then the part of GE(G) outside T' coincides with the

grounded extension of the AF obtained from G by suppressing
the arguments in 7" and those attacked by GE(G) N T'.

Lemma 2 Given an AF G(A,R) and a set T C A
such that stg(GE(G),T), it holds that GE(G) N T¢

GE(Glre\(cr@)nr)+)-

m)



Proof: To shorten notation let 7' = T¢ \ (GE(G) N T)™.
We will exploit again the property GE(G) = [J;=; F5(0).
Let us first show by induction on i that for any i (F(0) N
T C GE(Gl7). As to the base case, for any argu-
ment z in (F(0) N T°) it holds that {z}~ = @ in G
and hence in any restriction of G including x. It follows
that z € T and x+ € GE(G|7). Let us now assume in-
ductively that (F(0) N 79 C GE(G|z) and show that
(FEFH0)NTC) C GE(Gl). Lettingx € (F5(0) N TC),
we will show that « is acceptable with respect to GE(G |+)
in G|z, namely Vy € ({z} NT) y € (GE(Gl7))". In
fact, since z € F5"'(0)), it holds that y € (F}(0))". Now,
FL(0) € GE(G) andsince y ¢ (GE(G)NT)* it follows that
y € (F&(0) N TC)T, which, by the inductive hypothesis, en-
tails y € (GE(Gl))". It follows that z € GE(G|) given
the well-known fact that the grounded extension is complete
[Dung, 1995], i.e. it contains all arguments acceptable with
respect to it.

We have now to prove that GE(G |7) C (GE(G)NT®), by
showing (again by induction on i) that for any i F l?((/)) C
(GE(G)NT®), which, given the definition of T, is obviously
equivalent to 75 _(0) € GE(G). Preliminarily, we show
thatVe € T,Vy € {z}~ suchthaty ¢ T,y € (GE(G))*. In
facty ¢ T impliesy € (T°)°U(TN(GE(G)NT)T) = TU
(T°N(GE(G)NT)*). We have two possible cases. If y € T
then, in particular, y € (T'\ GE(G)) since x ¢ (GE(G) N
T)*. Then, since stg(GE(G),T) it follows y € (GE(G))™.
If otherwise y € (TYN(GE(G)NT)™) it follows in particular
y € (GE(G)NT)" hence y € (GE(G))". Turning to the
inductive proof, consider for the base case any x € fé LT((/)):
we have that for any y € {z}~ in G it must be the case that
y ¢ T, which, as shown above, entails y € (GE(G))*. It
follows that z is acceptable with respect to G E(G), hence = €
GE(G). Now assume inductively that g, _(0) € GE(G)

and consider any = € Félr;((/)) Forany y € {#}~ in G we

can consider two cases: if y € T it must be the case that
y € (Fg LT(@))JF, which, by the inductive hypothesis, entails

y € (GE(G))*. Otherwise, y ¢ T which again entails y €
(GE(G))™, as shown above. Summing up, it turns out that
x is acceptable with respect to GE(G), hence x € GE(G),

which completes the proof. o

An equality involving the operations of restriction and res-
olution of an argumentation framework will also be useful.

Lemma 3 Given an AF G(A, R) and a set T C A, for any
resolution vy of G it holds that G |7 = (Gl T)~.

Proof: G, |7 = (A, R\Y)|lr = (ANT,(R\~v)N
1) =ANT,(RN(T xT)\v)=(Glr)s-

We can now show that the grounded extension of a “re-
solved” AF G, can be “decomposed” into the grounded exten-
sion of the original AF G and the grounded extension of the
AF resulting from applying the same resolution to CUT(G).

(T x

]
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Lemma 4 Given an AF G(A, R), for any resolution ~y of G it
holds that GE(G,) = GE(G) U GE(CUT(G)~).

Proof:  The fact that for any resolution v GE(G) C
GE(Gy) is proved in [Baroni and Giacomin, 2007] in re-
lation with the property of resolution adequacy of GR.
Given that GE(G, ) is conflict-free, it follows that GE(G,,) N
a(GE(9)) GE(G). Clearly GE(G) is stable in
a(GE(G)), therefore taking into account Lemma 1 we have
also stg (GE(G,),a(GE(G))). Then, letting Ag = A\
a(GE(G)), noting that As \ (GE(G,) Na(GE(G))) " = As
and using Lemmata 2 and 3, we have GE(G,) N Ag
GE(G,14:) = GE((Glas)) = GE(CUT(G),). Putting
together the two (disjoint) pieces we obtain GE(G,)
GE(G) UGE(cUT(G)).

The decomposition identified in Lemma 4 can then be ap-
plied to the extensions of GR*.

Corollary 1 Given an AF G(A,R), Eqr+(G) = {GE(G) U
T|T e Ecr-(CUT(G))}

Proof: Using definitions and exploiting Lemma 4 at the sec-
ond equality we have: Egg-(G) = min{S C A: GE(G,)

S for some full resolution v of G} min{GE(G) U
GE(cUT(G)~) for some full resolution y of G} =
min{GE(G) U GE(cuT(G),) for some full resolution -y of
cuT(G)} ={GE(G)UT : T € min{GE(cuT(G),)

for some full resolution v of cUT(G)}} = {GE(G)U T |
T € Egr-(CUT(G))}.

Corollary 2 For any AF G(A,R), Ear(G) = Ear-(G) if
and only if there is a full resolution vy of CUT(G) such that in
CUT(G)~ every argument has at least one attacker.

]

]

Proof: From Corollary 1 we have Egr(G) = Eqr+(G) &
Ear-(CUT(G)) = {0}, i.e. if and only if there is a full resolu-
tion v of CUT(G) such that GE(CUT(G).) = (. This entails
the conclusion by recalling that GE(G) =  if and only if
Fi(0) =0ie. ifandonlyif Vo € A{z}~ #0.

Corollary 2 provides a condition for COINgr gr* involv-
ing the existence of unattacked arguments in all resolutions
of cUT(G). While checking the existence of unattacked ar-
guments is easy, using this condition would impose consid-
ering all the full resolutions of CUT(G), whose enumeration
would give rise to a combinatorial explosion. Next, we will
first derive a simpler to check condition, concerning the case
of argumentation frameworks consisting of a single strongly-
connected component and then exploit this result in the gen-
eral case. We recall that the strongly-connected component
(scc) decomposition of G(A, R) partitions A according to
the equivalence classes induced by the relation p(z,y) de-
fined over A x A so that p(x,y) holds if and only if z = y
or there are directed paths from z to y and from y to x in
G(A,R). We will denote the set of strongly connected com-
ponents of G as SCCS(G). It is well-known that the graph
obtained by considering strongly connected components as
single nodes is acyclic. As a consequence, a partial order
< over the SCC decomposition { A1, ..., Ay} is defined as
(A < Aj) & (i#j)andIx € A;, y € A such that
there is a directed path from z to y.

]



Exemplifying SCCs in Figs. 1 and 2, we have SCCS(G1)
{A1, A2, As, Ay} = {{a},{b,c,d},{e}, {f}}, with Ay
.AQ =< Ag =< A4 and SCCS(QQ) = {A1, AQ,Ag,A4}
{{a,b,c}, {e}, {d}, {f,g,h}} with A; < A3 < A4 and
As < Az < Ay. Considering the restricted AFs obtained
by suppressing the elements in the dashed boxes we have
SCCS(CUT(Gr)) = {An, Ay, As} = {{c,d}, {e}, {}},
with A; < Ay < As, and SCCS(CUT(QQ)) = {A1,A2} =
{{a,b,c},{f,g,h}}, with no precedence relation between
./41 and Ag.

The following lemma states that given a SCC 7" and any
argument z € 7' it is possible to find a full resolution «y of
G which resolves all mutual attacks involving elements of T'
such that in G, all elements of 7", with the only possible ex-
ception of x, receive an attack from an element of 7" itself.

Lemma 5 Given an AF G(A,R) and a scc T € SCCS(G),
for any x € T there is a full resolution v of G| such that in
G, Yy € (T \ {z}) attacks(T, y).

=<

Proof: For a generic x € T, define inductively the following
sequence of sets: Lo = {z}, Lit1 = L\ (U;ZO L;) for
i > 0. Observe that forany y € T 3i : y € L;. In fact,
x € Lo and for any y # « there is a path from x to y, 7" being
a SCC. Letting d be the minimal path length from x to y it is
evident thaty € L;. We can now build the full resolution -y as
follows: for any mutual attack involving consecutive sets in
the sequence insert in v the attack coming from the set with
higher index, namely for any {{(y’,y"), (¢",y')} C R such
thaty’ € L;, y”’ € L;41 for some i, let (y”,y’) € v. Then,
resolve arbitrarily any other mutual attack. It is evident that
for any y # x the path with minimal length from z to y within
T is preserved in G, hence attacks(T,y).

o

We can now obtain the important result concerning an AF
consisting of a single SCC anticipated above.

Lemma 6 Given an AF G(A, R) such that |[SCCS(G)| = 1,
the condition (i) for any full resolution v of G 3x such that
in Gy {x}~ = 0 is equivalent to the conjunction (ii) of the
following three conditions:

a. Yx € A, (x,z) ¢ R;
b. R issymmetric, i.e. (z,y) ER < (y,z) €R;
c. the undirected graph G formed by replacing each (di-

rected) pair {(x,y),(y,x)} with a single undirected
edge {x,y} is acyclic.

Proof: We first prove that (i) implies (ii) by showing that
if any of the conditions (a-c) is violated then (i) is violated
too. If a) does not hold we can apply Lemma 5 to = such
that (x,x) € R and derive the existence of a full resolution
v where Vy # x {y}~ # 0 while {}~ D {z}, thus denying
(). If either b) or c) is violated there is a cycle consisting
of at least three distinct elements in G. In fact, if R is not
symmetric, for any (x,y) € R such that (y,x) ¢ R there
must be a path from y to = involving at least another distinct
argument z, while if the undirected graph contains a cycle it
involves necessarily at least three elements. Now it is easy
to build a (possibly empty) resolution v’ resolving only the
mutual attacks, if any, involving elements of the cycle and
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preserving the existence of such a cycle in G.,». Therefore G/
still consists of exactly one SCC. Consider now any argument
x in the cycle: clearly {z}~ # () in G and this condition will
still hold in any full resolution of G,-. But we can apply now
Lemma 5 to x and derive the existence of a full resolution
7" of G, where Vy # z {y}~ # (. Summing up we have
obtained a full resolution v = ~' U ~" of G such that Vz
{z}~ #0in G,.

Turning to the other direction of the proof, we will now
show that the conjunction of a), b) and c¢) implies (i), by try-
ing to build a full resolution ~y such that Vo € A {z}~ # 0
in G, and showing that this is impossible. Since c) holds, the
undirected graph G obtained from G is a tree. Let 7 be the
tree root and for any y # r denote as d(y) the length of the
unique (simple) path from r to y. Let m = max, ¢ 4\ {} d(y):
for any y such that d(y) = m it is clearly the case that y is
directly connected in G with exactly one element z such that
d(z) = m — 1. This entails that y can only attack or be at-
tacked by z in G, and, by b), actually both cases hold, i.e.
{{y,2),(z,y)} € R. Then necessarily (y,z) € =, other-
wise y, not being self-defeating by c), would be unattacked
in G,. This entails that for any z such that d(z) = m — 1,
z does not receive attacks in G, from any argument y such
that d(y) m. But now we can iterate the same rea-
soning on any argument z such that d(z) = m — 1 show-
ing that there is exactly one w such that d(w) m — 2,
{{z,w), (w,z)} € R and necessarily (z,w) € ~. Iterat-
ing the same reasoning we reach the arguments = such that
d(xz) = 1 and {(z,r), (r,2)} C R. For any such argument
x it must be the case that (z,r) € 7 (otherwise z would be
unattacked in G.,) but then r is unattacked in G, showing that
the construction of the desired +y is impossible.

]

Lemma 6 has provided three simple topological conditions
which, on the basis of Corollary 2, allow to check the condi-
tionEgr(G) = Egr+(G) (while avoiding the enumeration of
full resolutions) when |[SCCS(G)| = 1. To extend this result
to a generic G we need to focus our attention on the strongly
connected components which are minimal with respect to <
(i.e. do not receive attacks from other strongly connected
components) and satisfy conditions (a-c) of Lemma 6.

Definition 3 Given an AF G(A,R), S € SCCS(G) is mini-
mal relevant if S is a minimal element of < and G| 5 satisfies
conditions (a-c) stated in Lemma 6. The set of the minimal
relevant SCCs of G will be denoted as MR(G).

To exemplify, referring to Figs. 1 and 2, it is easy to see
that MR(G1) = {{a}}, MR(Gs) = {{e}}, MR(cUT(G1)) =
{{c,d}}, and MR(CUT(G2)) = {{/, 9, 1} }.

The following theorem achieves the desired generalization
by showing that verifying the coincidence between G R and
GR* for an AF G is equivalent to checking whether CUT(G)
has some minimal relevant component.

Theorem 1 Given an AF G(A,R), Ear(G) = Ecr-(G) &
MR(cuT(G)) = 0.

Proof: Suppose first Egr(G) = Egr-(G). By Corollary 2,
there is a full resolution y of CUT(G) such that in cUT(G),,
every argument has at least one attacker. Let .S be any SCC



of cUT(G) minimal with respect to <. Clearly there is a
full resolution s of CUT(G)|s such that every element of
S has at least one attacker in (CUT(G)|g)+s and therefore
CUT(G)| s does not satisfy conditions (a-c) of Lemma 6. It
follows MR(cuT(G)) = 0.

Turning to the other direction of the proof, by Corollary
2 it is sufficient to show that there is a full resolution ~ of
CUT(G) such that in CUT(G)., every argument has at least
one attacker. To build such a +, consider first any scC of
CUT(G) minimal with respect to <. Given the hypothesis
MR(cuUT(G)) = (), by Lemma 6 there is a full resolution
~vs of CUT(G)|s such that every element of S has at least
one attacker in (CUT(G)|g)~s. Turning now to the sccCs of
CUT(G) which are not minimal with respect to <, we can
proceed following the (partial) order induced by <. In fact,
for any such scc S’ we can assume inductively that there
is a full resolution ~ such that for every scc S < S’ every
element of S has at least one attacker in CUT(G), and we
need to show that the same holds also for S’. Note first that
there must be an element x of S” which receives at least an
attack from an element y of a SCC S such that S < S’ and
that any such attack must be non mutual (otherwise S and
S’ would not be distinct SCCs), hence for any resolution ~
(y,z) ¢ ~. Now, by Lemma 5 we can define a resolution
v C (8" x S’) such that any argument z # x in S has at least
an attacker, while, as shown above, x has at least an attacker
in any resolution. Summing up, we have shown a procedure
to incrementally build a full resolution y of CUT(G) such that
any element of CUT(G) has at least an attacker in CUT(G),

as desired. o

Polynomial complexity results for COINgr.gr+ and

NEgR~ follow directly from Theorem 1.
Corollary 3 COINGR,gGr+ € P.

Proof: By Theorem 1, to check Eqr(G) = Eqr+(G) do
the following steps: i) compute GE(G); ii) compute CUT(G);
iii) compute the SCC decomposition of CUT(G); iv) identify
those scCs of CUT(G) which are minimal with respect to <;
v) on each of them check conditions (a-c) of Lemma 6. Each

of these steps is known (or easily seen) to belong to P. o

Corollary 4 NEgR- € P.

Proof: By Corollary 1, Egr-(G) = {0} & GE(G) =
O A Eqr(G) = Ecr+(G), thus NEgg: reduces to checking
first NEg g, which is known to belong to P, and then (possibly)
COINGR,G R+, Which belongs to P by Corollary 3.

(]

We now turn to the problem VERGgR~. Preliminarily, we
have to identify some quite technical but useful properties of
GR and GR* in relation with minimal relevant components.

Lemma 7 Given an AF G(A,R) and S € MR(G), it holds
that (i) for any full resolution v of Gls GE(Gyls) is a
stable extension of G|g and (ii) Egr+(Gls) {T |
T is a stable extension of G| s}

Proof: Recall first that a stable extension of an AF G(A,
is a conflict-free set T C A such that Vo € (A \
attacks(T,x). As for (ii), we show for any S € MR

R)
T)
(9)
that {GE(Gy|s) | yisafullresolutionof G| s} = {T |

687

T is a stable extension of G| s}, and, since no stable exten-
sion can be a proper subset of another one, this set turns out
to be equal to Egr+(G|ls). Condition (i) will arise as an in-
termediate result.

To show {GE(Gy|s) | isafull resolutionof G| g} C
{T | T is a stable extension of G| ¢} we observe first that, by
the definition of MR(G), G,|s is acyclic. In fact, it does
not contain self-defeating arguments, any cycle of length 2
in G| g is resolved by ~ and no cycles of length > 2 can be
present. It is well-known [Dung, 1995] that in an acyclic ar-
gumentation framework the grounded extension is also a sta-
ble extension, thus GE(G, | 5) is a stable extension of G | g
(we have thus proved (i)) and we can observe further that
GE(G,]s) is also a stable extension of G|g since in G|g
it clearly preserves both the properties of being conflict-free
and of attacking all other arguments.

To show that {T' | T isastable extensionof G|s} C
{GE(G,ls) | ~isafull resolution of G| 5}, for any stable
extension 7" of G|g we have to build a full resolution ~ of
Gls suchthat T = GE(Gy]s). To obtain such a v, note that,
by the symmetry of G| g, for any x in T either x is unattacked
or is involved in mutual attacks with some other elements y
of S and we can include in + all the pairs of the form (y, ). It
turns out that any element of 7 is unattacked in G, | 5, and, T
being a stable extension, that any element y ¢ T is attacked
by T. If follows that 7' = 75 | (0) = F§ | (0) for any

i >=1and hence T'= GE(Gy|s).

To proceed we have now to recall the property of direction-
ality of argumentation semantics, which is known to be satis-
fied by both G R [Baroni and Giacomin, 2007] and G R*[Ba-
roni and Giacomin, 2008]. It corresponds to the intuitive re-
quirement that an argument y may affect another argument
x only if there is a directed path from y to . This can be
formalized by referring to sets of arguments not receiving at-
tacks from outside.

m]

Definition 4 Given an AF QéA, R), a non-empty set S C A
is unattacked if and only if Bz € (A\ S) : attacks(z, S).
The set of unattacked sets of G is denoted as US(G).

Definition 5 A semantics S satisfies the directionality cri-
terion if and only if for any AF G(A,R), VT €
US(G), AEs(G. T) = Es(Glr), where AEs (G, T) = {(EN
T)|Eeé&s(G)}c2m.

In words, the intersection of any extension prescribed by &
for G with an unattacked set T is equal to one of the exten-
sions prescribed by S for the restriction of G to 7', and vice
versa. The following theorem provides a characterization of
the extensions of GR* in terms of three (still quite technical)
conditions. We omit its lengthy proof (which uses Lemma 7
and directionality of GR and G R*) for space reasons.

Theorem 2 Given an argumentation framework G(A,R)
and letting Ilg = Uy enmr(cutg)y V> U € Ear+(G) if and
only if the following conditions hold:

a. UNna(GE(G)) =GE(G)
b. YM € MR(cuT(G)) stcur(g)(U, M)

C. (U N Hg) € gGR* (CUT(g)ng\(UmHg)+).



Algorithm 1 Verifying that U € Egr-(G(A, R))

1: procedure GR*~VER(G(A, R),
S = GE(G)
if (UNa(S) # S) then
return false
end if
W = Hg
T:=U\S
if W =0and T = () then
9: return true
10: end if
11: if W =0 and T # () then
12:  return false
13: end if
14: if —stcut(g) (T, W) then
15:  return false
16: else
17:  return GR*~VER(CUT(G) | we\ (raw)+, (TN W)
18: end if
19: end

U) returns boolean

e A A ol

Theorem 3 VERGR+ € P.

Proof: The proof refers to the recursive Algorithm 1 which
is easily seen to correspond to checking whether conditions
(a-c) of Theorem 2 hold, while the correctness in the case
W = () comes from Theorem 1. First note that every step
of Algorithm 1 is in P. In particular, it is well-known that
computing GE(G) is in P, as it clearly is also computing
a(S). Computing ITg basically amounts to compute the min-
imal relevant components of G, a task we have already com-
mented to be in P in Corollary 3. Verifying whether a set is
stable in another one and identifying the arguments attacked
by a set is linear in the number of attack relations, while all
other operations (e.g. those involved in computing CUT(G),
CUT(G) Lwey(raw)+ and (TN W) only require basic set
manipulations. It remains to be seen that the recursion is well-
founded and terminates after a polynomial number of calls.
To this purpose it is sufficient to observe that at each recursive
call an argumentation framework with a strictly lesser num-
ber of arguments is considered, since at least the elements of
W (which is not empty, otherwise the procedure would termi-
nate) are suppressed. Moreover the procedure clearly termi-
nates without further recursive calls if invoked on G(0, ). It
follows that the procedure terminates after a number of calls
which is linear in the number of arguments. o

Let us exemplify an execution of Algorithm 1 with argu-
ments G = Gy (Fig. 1) and U = {a,d, f}. We get S = {a},
at line 2 and it follows U N «(S) = {a,d, f} N {a,b} =
{a} = S. Then the condition of the if statement of line 3 is
false and we obtain W = {{¢,d}} atline 6 and T = {d, f}
at line 7. Since W # () we skip the following if statements
and since 7' is stable in W the condition at line 14 is false
and we enter the else branch at line 17. Here we note that
WC = {e, f} and (T N W)T = {c, e} yielding arguments
G({f},0) and {f} for the recursive invocation of the pro-
cedure. Then we have S = {f} at line 3, W = () at line
6, T = () at line 7, and the procedure returns true at line 9.

In fact, {a,d, f} € Egr+(G1). Consider instead an execu-
tion of Algorithm 1 with arguments G = G- (Fig. 2) and
U = {a,e,g}. We get S = {e} at line 2, and, skipping easy
observations, we obtain W = {{f, g, h}} at line 6 and we
are led to a recursive invocation with arguments Ga | 14,5,c}
and {a}. Now we obtain S = () at line 3, W = () at line 6
and T' = {a} at line 7. Then the condition of the if statement
of line 11 is satisfied and the procedure returns false. In fact,
{a7 ¢, g} ¢ £GR* (92)

By the way, it is not difficult to see that Eqr+(G1) =

{{av ¢, f}v {CL, d, f}} and &g g (92) = {{eag}a {8, fv h}}

3.2 Intractable decision problems

Turning to the credulous and skeptical acceptance problems,
in contrast to the polynomial time methods identified in sub-
section 3.1 we have:

Theorem 4
a. CAgRr+ is NP—complete.

b. SAgR~ is coNP—complete.

Proof: For part (a), that CAgr- € NP follows by observing
that any instance (G(A,R),z) can be decided by checking
3T CA : (z €T)AVERgg-(G,T). By virtue of Theo-
rem 3 this yields an NP algorithm.

For NP-hardness we use a reduction from 3-SAT. Given an
instance p(Z,) = C1 ACa A --- A Cp, of 3-SAT form the
instance (G(A,, Ry), ¢) of CAgg- in which,

s = (PP U{C 1< j<m} ULz, 5 s 1<i<n}
Ry = {{Cihy):1<j<mbu
{{z,C;) : zjoccursin C; } U
{{(—2;,C}) : =z occursmC U

{{zi,0zi), (mziy2i) @ 1< < n}

We claim that there is some T € Egr~(G) for which p € T
if and only if there is a satisfying instantiation of ¢(Z,,).

It is easily seen that Egr(G) = {0}.  Further-
more, noting that Mg contains exactly the set of pairs
{{zi,zi), (—zi, 2) 1 < i < n} every full resolution
of these yields a distinct set in Egp«(G).

Suppose first that « = (o, g, ..., a,) describes a sat-
isfying assignment for ¢ (Z,,) and consider the full resolution

7(a) given by
(zi,72zi) €7(q) & a; =1

The grounded extension of the AF G o) = (Ay, Ry, \ 7(a))
contains exactly the arguments { z; a = THU
{—z : a; = L}U{p}: each of the literal arguments (i.e. the
y; € {zi,z;} selected) has {y;}~ = 0. Furthermore, since
a satisfies ¢, each clause argument C; attacking ¢ must be
attacked by at least one of these literal arguments It remains
only to note that the resulting subset is minimal among the
grounded extensions resulting from full resolutions of G.

On the other hand suppose that v C Mg defines a full
resolution for which ¢ is in the grounded extension, 7', of
Gy = (Ap, Ry \ 7). From ¢ € T, it follows that C; & T for
any 1 < j < m, and thus (at least) one literal y; € {27, -z}
among the literals defining C; must belong to 7T". It follows



that for each clause, C; = y;,1Vy;.2Vy;,3, 7 must contain at
least one of the attacks (—y; x, y;,k) in order for y; , € T to
hold. Now defining the instantiation (o], a3, ..., a}) of Z,
viaa] = T & (—z;,2;) € v yields a satisfying assignment
of p(Z,) as required.

For part (b), to decide SAgr+(G(A,R),z) by a coNP
method, simply involves verifying for every full resolution
v of G, with T’, the grounded extension of G, that

T,e€lar-(G) = €T,

Again, by virtue of Theorem 3 the required test (for T’y €
Ecr+(G)) can be performed in polynomial time.

For coNP-hardness, we use a similar construction applied
to deciding unsatisfiability: this involves the AF of (a) aug-
mented by a single new argument ) whose sole attacker is
. We omit the straightforward proof that v is skeptically

accepted if and only if ¢ is unsatisfiable. o

4 Conclusions and Further Work

We have investigated the computational properties of GR*
with reference to a set of decision problems for abstract
argumentation semantics: it turns out that some of them
(VERGgR+, COINGR,GR+, NEgR~) are tractable while others
(CAgR~*,SAgR~) are in general not.

Let us discuss this result with respect to complexity proper-
ties of other abstract argumentation semantics, focusing first
on Dung’s traditional grounded (GR), stable (ST') and pre-
ferred (PR) semantics. The (unique) grounded extension
is known to be computable with a polynomial algorithm,
hence all the decision problems considered in this paper are
known to be tractable for GR (we have exploited this prop-
erty in Section 3). On the other hand, the same decision
problems are known to be generally intractable for both ST’
and PR (see in particular [Dimopoulos and Torres, 1996;
Dunne and Bench-Capon, 2002; Dunne and Wooldridge,
2009]) with the only exception of VERgy € P (also this
property has been exploited in Section 3). In particular
CApRr, NEpg, and CAgr are NP—complete, VER pg iS CONP—
complete, SApp is Hg—complete, and SA g7 is DP—complete.
We can state therefore that GR* has better complexity prop-
erties than the traditional multiple-status semantics ST and
PR. Complexity properties of recently proposed semantics,
e.g. ideal, semi-stable or prudent, have not been fully ana-
lyzed yet but preliminary non-tractability results exist [Dunne
and Wooldridge, 2009]. Actually, as to our knowledge, no
other non-trivial multiple-status semantics in the literature
has been shown, up to now, to admit polynomial time decision
processes (in the general case) for any of the standard deci-
sion problems considered here. In this wider perspective one
of the main contributions of this paper consists in showing
that, differently from what previous literature results could
have suggested, argumentation-based reasoning with multi-
ple extensions is not bound to be computationally intractable.

This result has been obtained combining a variety of tech-
niques into an articulated analysis some of whose steps may
be interesting on their own. In particular Lemmata 1 and 2
reveal properties of the traditional grounded semantics, while

689

the role played by scc decomposition confirms the impor-
tance of this topological notion in abstract argumentation [Ba-
roni et al., 2005].

Focusing on the specific scope of the paper, GR* has been
shown to combine its (already known) merits related to prin-
cipled conceptual requirements with computational advan-
tages which may turn out to be significant for practical ap-
plications. This aspect deserves further investigation: defin-
ing criteria for matching an abstract argumentation seman-
tics with the requirements of a specific application context
is a largely unexplored issue. It is however worth remark-
ing that the results provided in the paper (in particular the
procedure summarized in Corollary 3 and Algorithm 1) lend
themselves to a straightforward implementation. As the avail-
ability of implemented argumentation systems is growing in
recent years, integrating G R* into one of them, applying it in
practical test cases and comparing results with other seman-
tics appear to be feasible and very interesting future activities.

On the theoretical side, among further research directions
we mention the identification of families of argumentation
frameworks where also CAgpr+ and SAgp+ are tractable. A
preliminary investigation suggests that this is the case for the
family of bipartite argumentation frameworks.
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