Combining Breadth-First and Depth-First Strategies in Searching for Treewidth

Rong Zhou
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
rzhou@parc.com

Abstract

Breadth-first and depth-first search are basic search
strategies upon which many other search algo-
rithms are built. In this paper, we describe an ap-
proach to integrating these two strategies in a sin-
gle algorithm that combines the complementary
strengths of both. We show the benefits of this ap-
proach using the treewidth problem as an example.

1

Breadth-first and depth-first search are basic search strategies
upon which many other search algorithms are built. Given the
very different way in which they order node expansions, it is
not obvious that they can be combined in the same search al-
gorithm. In this paper, we describe an approach to integrating
these two strategies in a single algorithm that combines the
complementary strengths of both. To illustrate the benefits of
this approach, we use the treewidth problem as an example.

The treewidth of a graph (also known as the induced
treewidth) is a measure of how similar the graph is to a tree,
which has a treewidth of 1. A completely connected graph is
least similar to a tree, and has a treewidth of n — 1, where
n is the number of vertices in the graph. Most graphs have a
treewidth that is somewhere in between 1 and n — 1.

There is a close relationship between treewidth and vertex
elimination orders. Eliminating a vertex of a graph is defined
as follows: an edge is added to every pair of neighbors of
the vertex that are not adjacent, and all the edges incident to
the vertex are removed along with the vertex itself. A vertex
elimination order specifies an order in which to eliminate all
the vertices of a graph, one after another. For each elimination
order, the maximum degree (i.e., the number of neighbors) of
any vertex when it is eliminated from the graph is defined as
the width of the elimination order. The treewidth of a graph
is defined as the minimum width over all possible elimination
orders, and an optimal elimination order is any order whose
width is the same as the treewidth.

Many algorithms for exact inference in Bayesian networks
are guided by a vertex elimination order, including Bucket
Elimination [Dechter, 1999], Junction-tree elimination [Lau-
ritzen and Spiegelhalter, 1988], and Recursive Condition-
ing [Darwiche, 2001]. In fact, the complexity of all of these
algorithms is exponential in the treewidth of the graph in-

Introduction

Eric A. Hansen

Dept. of Computer Science and Engineering

640

Mississippi State University
Mississippi State, MS 39762
hansen @cse.msstate.edu

duced by the network. For these algorithms, use of a sub-
optimal elimination order leads to inefficiency, and improv-
ing an elimination order by even small amount can result in
large computational savings. Solving the treewidth problem
exactly, and finding an optimal elimination order, allows these
algorithms to run as efficiently as possible.

2 Previous work

Finding the exact treewidth of a general graph is an NP-
complete problem [Arnborg et al., 1987]. One approach to
finding the exact treewidth is depth-first branch-and-bound
search in the space of vertex elimination orders [Gogate
and Dechter, 2004]. However, Dow and Korf [2007] showed
that best-first search can significantly outperform depth-first
branch-and-bound search by avoiding repeated generation of
duplicate search nodes.

In the search space of the treewidth problem, each node
corresponds to an intermediate graph that results from elim-
inating a set of vertices from the original graph. Figure 1
shows the treewidth search space for a graph of 4 vertices.
Each oval represents a search node that is identified by the set
of vertices eliminated so far from the original graph. A path
from the start node (which has an empty set of eliminated
vertices) to the goal node (which has all vertices eliminated)
corresponds to an elimination order, and there is a one-to-one
mapping from the set of elimination orders to the set of paths
from the start to the goal node. Although there are n! different
elimination orders for a graph of n vertices, there are only 2"
distinct search nodes. This is because different ways of elimi-
nating the same set of vertices always arrive at the same inter-
mediate graph [Bodlaender er al., 2006], and there is only one
distinct intermediate graph for each combination (as opposed
to permutation) of the vertices. Depth-first branch-and-bound
search treats the search space as a tree with n! distinct states
instead of a graph with only 2™ states. The faster performance
of best-first treewidth search reflects the difference in size be-
tween a search tree and a search graph [Dow and Korf, 2007].

Unfortunately, the scalability of best-first (treewidth)
search is limited by its memory requirements, which tend to
grow exponentially with the search depth. To improve scala-
bility, Dow and Korf use a memory-efficient version of best-
first search called breadth-first heuristic search [Zhou and
Hansen, 20061, which, like frontier search [Korf et al., 2005],
only stores the search frontier in memory and uses a divide-
and-conquer approach to reconstruct the solution path after



the goal is reached. In fact, they use a variant of breadth-first
heuristic search, called SweepA* [Zhou and Hansen, 2003],
that exploits the fact that the search graph for the treewidth
problem is a partially ordered graph. A partially ordered
graph is a directed graph with a layered structure, such that a
node in one layer can only have successors in the same layer
or later layers. This allows layers to be removed from memory
after all their nodes are expanded. SweepA* expands all the
nodes in one layer before considering any nodes in the next
layer, and uses an admissible heuristic and an upper bound to
prune the search space.

Besides exploiting the layered structure of the search graph
using SweepA*, there is another important way in which the
search algorithm of Dow and Korf limits use of memory. Be-
cause the size of an intermediate graph can vary from several
hundred bytes to a few megabytes, storing an intermediate
graph at each search node is impractical for all but the small-
est problems. Instead, Dow and Korf store with each search
node only the set of vertices that have been eliminated so far.
Each time a node is expanded, its corresponding intermediate
graph is generated on-the-fly by eliminating from the original
graph those vertices stored with the node. While this approach
is space-efficient, it incurs the overhead of intermediate graph
generation every time a node is expanded. For large graphs,
this overhead is significant. In this paper, we describe a tech-
nique that eliminates much of this overhead.

3 Meta search space

To reduce the time overhead of intermediate graph genera-
tion, we describe a search algorithm that does not generate the
intermediate graph from the original graph at the root node of
the search space. Instead, it generates it from the intermediate
graph of a close neighbor of the node that is being expanded.
The advantage is that the intermediate graph of a close neigh-
bor is already very similar, and so there is much less overhead
in transforming it into a new intermediate graph. The simplest
way to find the node’s closest neighbor is by computing short-
est paths from a node to all of its neighbors and picking the
closest one. But at first, this does not seem to work for the
treewidth problem, since its state space is a partially ordered
graph in which the distance between any pair of nodes at the
same depth is infinite.

Our idea is to measure the distance between a pair of nodes
in a meta search space, instead of the original search space.
A meta search space has exactly the same set of states as the
original search space, but is augmented with a set of meta ac-
tions that can transform one node into another in ways not
allowed in the original search space. For example, a meta ac-
tion for the treewidth problem can be an action that “unelim-
inates” a vertex by reversing the changes made to a graph
when the vertex was eliminated. For the treewidth problem
augmented with the “uneliminate” meta action, its search
graph is an undirected version of the graph shown in Fig-
ure 1. In this new graph, called a meta search graph, actions
(i.e., edges) can go back and forth between a pair of adjacent
nodes, and this allows us to generate the intermediate graph
of a node from another node at the same depth. This is very
useful for breadth-first heuristic search, which expands nodes
in order of their depth in the search space.

641

Start

Goal

Figure 1: The search space of treewidth for a graph of 4 vertices.
Each oval represents a search node identified by the set of vertices
eliminated so far. The start node corresponds to the original graph
with an empty set of eliminated vertices and the goal node is the one
with all the vertices eliminated.

Since a node is uniquely identified by the set of vertices
eliminated, we use the same lower-case letter (e.g., n, u, and
v) to denote both a node and a set of eliminated vertices in
the rest of this paper. To implement the “uneliminate” meta
action, each edge of the meta search graph is labeled by a
tuple (u,v, AET AE™), where u (v) is the set of vertices
eliminated so far at the source (destination) node of the edge,
and AE™T (AE™) is the set of edges added to (deleted from)
the graph when the vertex in the singleton set v \ u is elimi-
nated. Let G,, = (V},, E},) be the intermediate graph associ-
ated with node n. The task of adding a previously-eliminated
vertex back to the graph can be expressed formally as: given
Gy, = (Vy, Ey) and e = (u,v, AET, AE™), how to compute
G, = (V,,, E,)? Since all the changes are recorded with the
edge e, one can reconstruct G,, = (V,, F,,) as follows,

V. Vo Uv\u
E. E,UAE~\ AE*

ey
)

That is, by adding (deleting) the edges that have been pre-
viously deleted (added) to the graph, the “uneliminate” meta
action can undo the effects of an elimination action in the
original search space.

In general, adding meta actions can turn directed search
graphs into undirected graphs. This guarantees that any
changes made to the current state (e.g., the intermediate
graph) is reversible, creating a graph with the following ap-
pealing property: for any two states reachable from the start
state, there is always a path that maps one into the other. This
property allows a search algorithm to generate the state rep-
resentation of a node from any stored node, because if all ac-
tions are deterministic, then a state s is uniquely identified by
another state s plus a path from s to s’. If it takes less space
to represent a path between s and s’, then this approach to
state encoding can save memory, although at the cost of some
computational overhead.

For the treewidth problem, this means the intermediate
graph of a node can be generated from any node instead of
only from the node’s direct ancestors, such as the start node.
Thus, one only needs to maintain a single intermediate graph,
which can be modified to become the intermediate graph
for any node in the search space. An interesting question is
how to minimize the overhead of generating the intermediate



3/
/,
7

— 4 =/
3 37/
a 4
. / /
_ i _ _ _ _
i)\ 3 \a 3 \e Zi\a 27 \a 7 \a
Start

Figure 2: A binary decision tree in which frontier nodes are stored
as leaves of the tree. For simplicity, non-leaf nodes are not shown.

b

Goal

graph from one node to another. The answer depends on the
search strategy, because ultimately our goal is to minimize
the overhead of expanding not just a single node but a set of
nodes.

4 Frontier decision tree

The solution we propose is to use an ordered decision tree to
store the set of frontier nodes at the current depth of breadth-
first heuristic search as the leaves of the decision tree. Unlike
explicit-state search methods, this approach can be viewed as
a variant of symbolic search in which the state-representation
similarities among a set of nodes are retained in the decision
tree and exploited by the search algorithm.

A decision tree is defined as a rooted tree in which every
non-leaf node is a decision node that performs a test on a vari-
able, the value of which is then used to determine recursively
the next decision node until a leaf node is reached. A decision
tree is commonly used to represent a discrete function over a
set of variables. For the treewidth problem, these are Boolean
variables, one for each vertex. A Boolean variable has the
value of true if its corresponding vertex has been eliminated.

To make operations on decision trees more efficient, an or-
dering constraint is usually enforced that requires the order
in which variables are tested to be the same on any path from
the root to a leaf node. The resulting data structure is called an
ordered binary decision tree, and an example is shown in Fig-
ure 2. In this example, variables are tested in increasing order
of vertex number: 1, 2, 3, then 4. A solid (dashed) edge rep-
resents a truth (false) assignment to the variable being tested
at the source node of the edge. A leaf node corresponds to a
complete assignment to all the variables, and there is a one-
to-one mapping from the set of leaf nodes shown in Figure 2
to the set of search nodes shown in Figure 1. From now on, we
call a decision tree that stores the frontier nodes of a search
graph in this way a frontier decision tree.

To support meta actions, each edge of the frontier decision

tree stores “undo” information as needed by Equations (1)
and (2). Note that for an undirected search space, there is no
need to store such information.
Variable ordering We use a frontier decision tree in order
to reduce the time overhead for regenerating the intermediate
graph from the root node. But this must be weighed against
the space overhead for storing the decision tree.

An important way to save space in a frontier decision tree
is to find a good ordering of the variables, which affects the
number of decision nodes needed to represent a set of frontier

642

.

G9080E0

Goal

2

SR

Start

Figure 3: A partial binary decision tree in which the currently ex-
panding nodes are stored as full-depth leaves and non-expanding
nodes as shallow-depth leaves.

nodes. While finding an optimal ordering is a hard combi-
natorial optimization problem in itself, good orders can of-
ten be found quickly by using simple heuristics. We tried
three variable-ordering heuristics, the details of which are de-
scribed in the computational results section.

A decision node is useless if it does not lead to any leaf
node. To prune these useless decision nodes, we store a leaf-
node counter at each decision node. Each time a leaf node is
deleted, all of its ancestor decision nodes decrease their leaf-
node counters by one, and a decision node is deleted as soon
as its leaf-node counter reaches zero. Once useless nodes are
pruned, the (asymptotic) space complexity of a frontier de-
cision tree is the same as that of an explicit-state represen-
tation of the same nodes. In practice, however, their actual
memory requirements can differ by a constant, since a node
in an explicit-state search can be compactly represented as
a bit-vector; whereas a decision node needs more space to
store, even though the total number of decision nodes is usu-
ally much less than the total number of bits needed to encode
the same nodes, due to state aggregation in a decision tree.

Partial frontier decision tree To further reduce the space
overhead of using a frontier decision tree, we introduce a hy-
brid data structure called a partial frontier decision tree that
combines the complementary strengths of both symbolic and
explicit-state representations. The idea is to generate the deci-
sion nodes of the tree on the fly as its leaf nodes are expanded,
so that only a (small) subset of frontier nodes that are selected
for expansion need to be represented in decision tree form.
A partial decision tree has two kinds of leaves; a full-depth
leaf, which is uniquely identified by a complete path whose
length equals the number of vertices in the original graph,
and a shallow-depth leaf, which is identified by an incomplete
path. Figure 3 shows an example of a partial frontier decision
tree in which only the currently expanding nodes are repre-
sented as full-depth leaves in the tree. Because an incomplete
path can lead to a set of shallow-depth leaves, a bit-vector is
stored at each frontier node to specify its “remaining” path.

Structured duplicate detection By itself, a partial frontier
decision tree cannot significantly reduce the overhead of gen-
erating the intermediate graphs, because it still needs a search
strategy that can exploit the similarities among a set of nodes.
For this reason, we use a technique called structured dupli-
cate detection (SDD) [Zhou and Hansen, 2004b]. Nodes in
SDD are partitioned into buckets, one for each abstract state



defined by a state-space projection function. To exploit local-
ity, SDD expands nodes in the same bucket consecutively. In
the case of a partial decision tree, SDD expands full-depth
leaves first, since their decision-tree representation is com-
plete. Upon selecting a new bucket for expansion, SDD con-
verts all its shallow-depth leaves into full-depth leaves be-
fore expanding them. Since the conversion is done automati-
cally by SDD, the search algorithm has the “illusion” that it
is working with the full (instead of partial) frontier decision
tree. Thus, for clarity, we will ignore the difference between
full and partial frontier decision trees, until we come back to
it in the computational-results section.

5 Depth-first search in frontier decision tree

The purpose of using an ordered binary decision tree to store
the set of frontier nodes is twofold. First, it reveals the similar-
ities among the frontier nodes, because nodes with the same
prefix (according to the test ordering) share the same ances-
tor node in the decision tree. For example, because nodes
{1,2,3} and {1, 2, 3,4} share the same prefix {1, 2, 3}, they
have the same parent node in the decision tree. On the other
hand, because nodes {(} and {1,2,3,4} have nothing in
common, their common ancestor is only the root node. Sec-
ond, the tree topology guarantees there is a unique path from
the root to a leaf node. This facilitates the use of a tree-search
algorithm such as depth-first search to determine the order in
which frontier nodes are expanded.

It is well-known that depth-first search has excellent
memory-reference locality. This is particularly well suited for
decision trees, since a depth-first search of a decision tree al-
ways visits nodes with the same prefix before visiting nodes
with different prefixes, and the longer the prefix shared by
two nodes, the closer they will be visited in depth-first search.
For the treewidth problem, this means that if two nodes have
similar intermediate graphs, they will be expanded close to
each other, and the more similar their intermediate graphs,
the closer together they will be expanded. To minimize the
intermediate-graph generation overhead for the entire set of
frontier nodes at the current search depth, we use depth-first
traversal of the decision tree, which visits all leaf nodes of the
decision tree. Thus, our treewidth algorithm adopts a hybrid
search strategy that uses depth-first traversal in a symbolic
(e.g., decision-tree) representation of the (meta) search graph
to determine the order of node expansions for the current
depth of breadth-first heuristic search (or nodes with the same
minimum f-cost in the case of A*). The depth-first search as-
pect essentially serves as a tie-breaking strategy in breadth-
first (or best-first) search to improve its memory-reference lo-
cality; in the case of treewidth computation, it also reduces
the overhead of generating the intermediate graphs.

Example Figure 4 shows an example how depth-first search
can reduce the intermediate-graph generation overhead in
breadth-first heuristic search for treewidth. Suppose the three
leaves shown in the figure are the frontier nodes of breadth-
first heuristic search, and the intermediate graph has already
been generated for node {1, 3, 4}. Depth-first search will visit
node {1,2,4} next, and then node {1,2,3}. A sequence of
dark (solid and dashed) arrows represents the order in which

643

Figure 4: Depth-first search in a binary decision tree can be used to
order node expansions in breadth-first treewidth computation.

actions are taken to “migrate” the intermediate graph from
node {1,3,4} to node {1,2,4} and then to node {1,2,3}.
A solid dark arrow moving towards the leaf (root) represents
an action that eliminates (uneliminates) a vertex. Dashed ar-
rows represent no-op actions that simply move an interme-
diate graph around in the decision tree without changing its
content. The action sequence shown in Figure 4 starts with
a meta action (shown as a dark, upward arrow from node
{1,3,4}) that “uneliminates” vertex 4 from the intermedi-
ate graph G(y 3 4y in order to generate Giy; 3). Then vertex
3 is “uneliminated” to generate G{l}. Next, vertex 2 is elim-
inated from the intermediate graph to generate G'(; 2y, and
then vertex 4 is eliminated to arrive at G'(1 2 43. To migrate
from node {1,2,4} to node {1,2,3}, vertex 4 is “unelimi-
nated” and then vertex 3 is eliminated to generate the interme-
diate graph G'(; 2 3}. Because an “uneliminate” meta action
does not need to check for connectivity between all possible
pairs of a vertex’s neighbors, it is usually much cheaper than
eliminating a vertex. Thus, we only count the number of times
an elimination action is performed as overhead. In this exam-
ple, there are altogether 3 elimination actions. For compar-
ison, generating the intermediate graphs for nodes {1,2,3}
and {1, 2,4} from the root node would require 6 elimination
actions (3 for node {1, 2,3} and 3 for node {1, 2, 4}), which
is (almost) twice as expensive.

Note that the benefit of our approach increases as the
search frontier moves further away from the root node. For
example, if the three leaf nodes in Figure 4 are a hundred
elimination steps away from the root node, then it will take
about 200 elimination actions to regenerate the intermedi-
ate graphs for nodes {1,2,4} and {1, 2, 3}; whereas it still
takes the same number of elimination actions (3) with our ap-
proach, no matter how deep these nodes are, as long as the in-
termediate graph has just been generated for a node ({1, 3,4}
in this example) that is close by. Moreover, the overhead of
elimination actions can differ significantly depending on the
size and topology of the intermediate graph. Because inter-
mediate graphs have fewer vertices as the search goes deeper,
elimination actions tend to become cheaper as frontier nodes
move further away from the root. In other words, the over-
head of the 3 elimination actions needed in our approach is
probably cheaper than 1.5% (i.e., 3/200) of the overhead in-
curred by generating the intermediate graphs from the root, if
the overhead differences in elimination actions are accounted
for.



6 Computational results

Both random graphs and benchmark graphs were used in our
experiments. Given the number of vertices V', a random graph
is generated by selecting a fixed number of edges £ uni-
formly from the set of V(V' — 1)/2 possible edges. All ex-
periments were run on a machine with two Intel 2.66 GHz
Xeon dual-core processors and 8 GB of RAM, although the
search algorithm never used more than 4 GB of RAM; no
multi-threading parallelization was used. As in previous stud-
ies [Gogate and Dechter, 2004; Dow and Korf, 2007], the
same admissible heuristic called MMD+(least-c) [Bodlaen-
der et al., 2004] was used in all our experiments.

Recall that the order in which decision variables are tested
can affect the size of an ordered decision tree. We tested three
variable-ordering heuristics: (a) a random ordering heuristic,
(b) a minimum-degree-vertex-first heuristic, which orders the
variables in increasing degrees of their corresponding ver-
tices, and (c) a maximum-degree-vertex-first heuristic, which
does the opposite. Results indicate that the random order-
ing and minimum-degree-vertex-first heuristics store on aver-
age 40% and 135% more decision nodes than the maximum-
degree-vertex-first heuristic in solving random graphs, re-
spectively. Thus, the maximum-degree-vertex-first heuristic
was used for all the experimental results reported here.

Next we studied two different strategies for caching the
“undo” information at the edges of the frontier decision tree.
The cache-until-removal strategy stores “undo” information
for every edge of the decision tree until the edge is removed
due to the pruning of some decision node. The cache-until-
backtrack strategy stores “undo” information until the depth-
first traversal of the decision tree backtracks from the edge to
the source decision node of that edge. In other words, it only
stores “undo” information along the current “stack” of the
depth-first traversal. Thus, the maximum number of edges for
which “undo” information is stored cannot exceed the depth
of the decision tree, which is bounded by the number of ver-
tices in the original graph. Because the memory requirements
depend on the complexity of the “undo” information mea-
sured in terms of the size of AET and AE~, our imple-
mentation keeps track of the maximum number of edges in-
cluded in all such AFE sets, which reflects accurately the to-
tal amount of memory used for storing “undo” information
over the entire decision tree. With the cache-until-removal
strategy, the average peak number of AFE edges cached is
7,253,520 edges. This number decreased to about 405 edges
when the cache-until-backtrack strategy was used, reducing
the number of AFE edges by a factor of over 17,900 times!
Surprisingly, this has little effect on the average running time
of the algorithm; using the cache-until-backtrack strategy in-
creased the average running time by less than 1.7%, which is
hardly noticeable. We also compared the treewidth solution
and the number of node expansions of the two caching strate-
gies for all random graphs we tested to make sure the results
are correct. Results in the rest of this section were obtained
by using the cache-until-backtrack strategy only.

We used breadth-first heuristic search as the underlying
search algorithm, which needs an upper bound to prune
nodes with an f-cost greater than or equal to the upper
bound. While an upper bound for treewidth can be quickly
computed by using the minimum fill-in (min-fill) heuris-

644

Full decision tree Partial decision tree
Tw Dnode Exp Sec || Dnode Exp Secs
14 799K 160K 9.0 117K 160K 12.2
14 998K 322K 15.7 123K 322K 18.3
15 710K 327K 13.3 97K 326K 16.2
15 875K 334K 14.2 111K 333K 17.2
15 || 1,442K 517K 25.0 148K 515K 28.9
16 || 5,701K | 3,629K | 193.9 270K | 3,630K | 202.2
16 || 7,055K | 3,826K | 211.8 415K | 3,819K | 223.7
16 || 6,181K | 4,431K | 215.8 397K | 4,424K | 227.0
16 || 6,900K | 4,677K | 230.8 389K | 4,672K | 243.1
17 || 9,619K | 6,232K | 342.5 367K | 6,231K | 350.8

Table 1: Comparison of full and partial frontier decision trees.
Columns show the treewidth (Tw), peak number of decision
nodes stored in thousands (Dnode), number of nodes ex-
panded in thousands (Exp), and running time in CPU seconds
(Sec). The horizontal line separates 5 easiest instances from
the 5 hardest in a set of 100 random graphs.

Graph Ub | Lb | Tw Stored Exp Sec
queen5.5 | 18 | 12 | 18 961 1,294 0.1
david 13 ] 10 | 13 483 2,009 0.4
queen6.6 | 25 | 15| 25 11,995 13,353 1.6
miles500 | 22 | 21 | 22 2 2 23
inithx.i.1 | 56 | 55 | 56 209 370 30.8
queen7.7 | 35 | 18 | 35 | 597,237 935,392 | 149.6
myciel5 19 | 14 | 19 | 678,540 | 3,418,309 | 192.3

Table 3: Performance of breadth-first heuristic search on
benchmark graphs. Columns show the upper bound found by
divide-and-conquer beam search (Ub), the heuristic value for
the start node (Lb), the treewidth (Tw), the peak number of
frontier nodes stored (Stored), the number of node expansions
(Exp), and running time in CPU seconds (Sec).

tic, in our experiments we used divide-and-conquer beam
search [Zhou and Hansen, 2004a] which can usually find
tighter upper bounds. A beam-search variant of breadth-first
heuristic search, divide-and-conquer beam search (DCBS)
limits the maximum size of a layer in the breadth-first
search graph. When memory is full (or reaches a predeter-
mined bound), DCBS recovers memory by pruning the least-
promising nodes (i.e, the nodes with the highest f-cost) from
the Open list before it continues the search.

Using a memory bound of 64 nodes, DCBS finds the exact
treewidth for 97 out of the 100 random graphs. For the re-
maining three graphs, its solutions are very close to the exact
treewidth. When averaged over all 100 graphs, the solution
found by DCBS is within 0.2% of optimality.

Table 1 shows the reduction in peak number of decision
nodes stored in a partial decision tree against a full tree. For
this experiment, we used a set of 100 random graphs, gener-
ated by using V' = 35 and E = 140, which correspond to the
most difficult set of random graphs used in [Dow and Korf,
2007]. As can be seen, there is more reduction in the peak
number of decision nodes as problem difficulty increases.
Further reductions are possible if a finer-grained state-space
projection function is used to partition the search frontier
nodes into smaller buckets in structured duplicate detection.

In our next experiment, we used V' = 40 and £ = 120



Start node Neighbor
Tw Node Exp Sec Node Dnode Exp Sec
13 430,184 1,494,554 84.9 485,174 354,235 1,444,525 74.9
13 608,958 1,915,962 123.5 602,720 436,021 1,842,721 105.9
13 2,191,918 7,449,878 631.2 2,129,098 789,137 7,306,455 422.0
12 1,947,561 7,625,206 486.7 1,700,106 | 1,132,437 7,479,034 353.8
13 2,138,996 9,866,471 553.7 2,228,288 | 1,599,155 9,705,659 441.2
14 || 33,603,321 | 124,616,891 26,943.7 || 27,195,887 | 4,205,060 | 123,068,347 | 10,144.5
14 || 44,158,361 | 150,735,512 67,360.6 || 42,147,733 | 6,562,130 | 145,508,098 | 19,917.0
14 || 47,553,089 | 169,672,080 69,420.6 || 40,197,720 | 5,243,087 | 166,965,285 | 20,800.5
14 || 44,831,166 | 176,838,188 32,372.6 || 34,552,465 | 6,077,206 | 175,624,948 | 12,779.3
15 || 73,850,566 | 248,633,008 | 114,623.7 || 57,612,526 | 4,748,778 | 243,467,972 | 30,687.2

Table 2: Comparison of different approaches to generating the intermediate graphs.

The column labeled ’Start node” cor-

responds to the approach of generating the intermediate graph by eliminating vertices from the original graph; the column
labeled “"Neighbor” corresponds to the approach of modifying the intermediate graph of a neighboring node. The horizontal
line separates the 5 easiest instances from the 5 hardest in a set of 30 random graphs solvable by both approaches.

to generate a set of more difficult random graphs than pre-
viously used. The results are shown in Table 2, which com-
pares two different approaches to generating the intermediate
graphs, one by eliminating vertices from the original graph,
as in [Dow and Korf, 2007], and the other by modifying the
intermediate graph of a neighboring node. Both approaches
use BFHS as their underlying search algorithm. Note that the
ratio by which the second approach improves on the first one
increases with the hardness of the instance. For example, the
average speedup ratio for the 5 easiest instances (shown above
the horizontal line) is 1.3; for the 5 hardest instances (shown
below the horizontal line), it is 3.1. The reason our hybrid
algorithm performs even better on hard instances is that the
more nodes are expanded, the easier it is to find a neigh-
bor whose intermediate graph closely resembles the one to
be generated next.

Table 3 shows the performance of our algorithm on bench-
mark graphs for DIMACS graph coloring instances. Com-
pared to published results [Dow and Korf, 2007; Gogate and
Dechter, 2004], Table 3 shows improvement over the state of
the art. The running time shown in Table 3 includes the CPU
seconds for computing the upper bound using DCBS.

7 Conclusion

We have presented a novel combination of breadth-first and
depth-first search that allows a single search algorithm to pos-
sess the complementary strengths of both. While our paper
focuses on the treewidth problem, many of the ideas have the
potential to be applied to other search problems, especially
graph-search problems with large encoding sizes, for which
memory-reference locality is the key to achieving good per-
formance. Possibilities include model checking [Clarke et al.,
20001, where a large data structure that represents the current
state is typically stored with each search node. As long as
the similarities among different search nodes can be captured
in a form that allows depth-first search to exploit the state-
representation locality in node expansions, the approach we
have described could be effective.

Finally, since our approach to reducing the memory re-
quirements of frontier decision tree uses structured duplicate
detection, it can be easily combined with an external-memory
graph-search algorithm, for which time rather than memory is

645

likely to be the main bottleneck.

References

[Arnborg et al., 1987] S. Arnborg, D. Corneil, and
A. Proskurowski. Complexity of finding embeddings in a
k-tree. SIAM Journal on Algebraic and Discrete Methods,
8(2):277-284, 1987.

[Bodlaender et al., 2004] H. Bodlaender, A. Koster, and T. Wolle.
Contraction and treewidth lower bounds. In Proc. of the 12th
European Symposium on Algorithms, pages 628-639, 2004.

[Bodlaender et al., 2006] H. Bodlaender, F. Fromin, A. Koster,
D. Kratsch, and D. Thilikos. On exact algortithms for treewidth.
In Proc. of the 14th European Symposium on Algorithms, pages
672-683, 2006.

[Clarke et al., 2000] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. The MIT Press, 2000.

[Darwiche, 2001] A. Darwiche. Recursive conditioning. Artificial
Intelligence, 126(1-2):5-41, 2001.

[Dechter, 1999] R. Dechter. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence, 113(1-2):41-85, 1999.

[Dow and Korf, 2007] P. Alex Dow and R. Korf. Best-first search
for treewidth. In Proceedings of the 22nd National Conference
on Artificial Intelligence, pages 1146-1151, 2007.

[Gogate and Dechter, 2004] V. Gogate and R. Dechter. A complete
anytime algorithm for treewidth. In Proc. of the 20th Conference
on Uncertainty in Artificial Intelligence, pages 201-208, 2004.

[Korf er al., 2005] R. Korf, W. Zhang, 1. Thayer, and H. Hohwald.
Frontier search. Journal of the ACM, 52(5):715-748, 2005.

[Lauritzen and Spiegelhalter, 1988] S. Lauritzen and D. Spiegelhal-
ter. Local computations with probabilities on graphical structures
and their application to expert systems. Journal of Royal Statis-
tics Society, Series B, 50(2):157-224, 1988.

[Zhou and Hansen, 2003] R. Zhou and E. Hansen. Sweep A*:
Space-efficient heuristic search in partially ordered graphs. In
Proc. of 15th IEEE International Conf. on Tools with Artificial
Intelligence, pages 427—434, 2003.

[Zhou and Hansen, 2004al R. Zhou and E. Hansen. Breadth-first
heuristic search. In Proc. of the 14th International Conference
on Automated Planning and Scheduling, pages 92—-100, 2004.

[Zhou and Hansen, 2004b] R. Zhou and E. Hansen. Structured du-
plicate detection in external-memory graph search. In Proc. of the
19th National Conference on Artificial Intelligence, pages 683—
688, 2004.

[Zhou and Hansen, 2006] R. Zhou and E. Hansen. Breadth-first
heuristic search. Artificial Intelligence, 170(4-5):385-408, 2006.



