Solving Dynamic Constraint Satisfaction Problems
by Identifying Stable Features®

Richard J. Wallace, Diarmuid Grimes and Eugene C. Freuder
Cork Constraint Computation Centre and Department of Computer Science
University College Cork, Cork, Ireland
email: {r.wallace,d.grimes,e.freuder} @4c.ucc.ie

Abstract

This paper presents a new analysis of dynamic con-
straint satisfaction problems (DCSPs) with finite
domans and a new approach to solving them. We
first show that even very small changes in a CSP,
in the form of addition of constraints or changes in
constraint relations, can have profound effects on
search performance. These effects are reflected in
the amenability of the problem to different forms
of heuristic action as well as overall quality of
search. In addition, classical DCSP methods per-
form poorly on these problems because there are
sometimes no solutions similar to the original one
found. We then show that the same changes do not
markedly affect the locations of the major sources
of contention in the problem. A technique for iter-
ated sampling that performs a careful assessment of
this property and uses the information during sub-
sequent search, performs well even when it only
uses information based on the original problem in
the DCSP sequence. The result is a new approach
to solving DCSPs that is based on a robust strategy
for ordering variables rather than on robust solu-
tions.

1

An important variant of the constraint satisfaction problem
is the “dynamic constraint satisfaction problem”, or DCSP.
In this form of the problem, an initial CSP is subject to a
sequence of alterations to its basic elements (typically, addi-
tion or deletion of values or constraints). As a result of these
changes, assignments that were solutions to a previous CSP
in the sequence may become invalid, which means that search
must be repeated to find a solution to the new problem.

Strategies that have been devised to handle this situation
fall into two main classes [Verfaillie and Jussien, 2005]:

Introduction

¢ Efficient methods for solving the new problem, using in-
formation about the affected parts of the assignment.

*This work was supported by Science Foundation Ireland under
Grant 05/IN/1886.

621

e Methods for finding “robust” solutions that are either
more likely to remain solutions after change or are guar-
anteed to produce a valid solution to the altered problem
with a fixed number of assignment changes.

To the best of our knowledge, research in this field has not
generally focussed on the nature of the change in search per-
formance after a problem has been altered. Further advances
in this field may be possible if changes in search across a
sequence of altered problems can be characterised. In partic-
ular, this kind of analysis may suggest new ways of carrying
over information learned before alteration to the problem.

In this work, we show that relatively small alterations to
the constraints of a CSP can result in dramatic changes in
the character of search. Thus, problems that are relatively
easy for a given search procedure can be transformed into
much harder problems, and vice versa. Then we show that
these changes have effects on the amenability of problems to
different forms of heuristic action (specifically, build up of
contention versus simplification of the remaining part of the
problem).

Next, we examine the performance of a standard algorithm
for solving DCSPs. This method attempts to conserve the
original assignment, while still conducting a complete search.
This turns out to be a poor strategy for hard problems, since
partial assignments for CSPs often ‘unravel’ when this proce-
dure is used, leading to tremendous amounts of thrashing.

We then show that there are problem features that are not
significantly affected by the changes we have investigated.
In particular, the major places of contention within a prob-
lem (i.e. bottlenecks that cause search to fail) are not greatly
changed. This suggests that a heuristic strategy that is based
on evaluating these sources of contention can perform effi-
ciently even after problem change. We show that such a
heuristic procedure (which identifies sources of contention
through iterated sampling) continues to perform effectively
after problem change, using information obtained before such
changes and thus avoiding the cost of further sampling.

A discussion of terminology is given in the following sec-
tion. Section 3 contains a description of experimental meth-
ods. Section 4 present results on the extent of change in
search performance after relatively small changes in the prob-
lem. Section 5 presents results based on a classical method
for solving DCSPs, called “local changes”. Section 6 then
presents an analysis of our sampling procedure applied to

DCSPs. Section 7 gives conclusions.

2 Definitions and Notation

Following [Dechter and Dechter, 1988] and [Bessiére, 19911,
we define a dynamic constraint satisfaction problem (DCSP)
as a sequence of static CSPs, where each successive CSP is
the result of changes in the preceding one. In the original def-
inition, changes could be due either to addition or deletion of
constraints. For random CSPs, we consider two cases: ad-
ditions and deletions together; and a variant of this where
additions and deletions always pertain to the same sets of
variables (same scopes). The latter case can, therefore, be
described as changes in the tuples constituting particular re-
lations. For CSPs with ordered domains and relational con-
straints, we consider changes in the maximum domain val-
ues (reductions or extensions), which also serve to tighten or
loosen adjacent constraints.

In addition, we consider DCSPs with specific sequence
lengths, where “length” is the number of successively altered
problems starting from the “base” problem. This allows us
to sample from the set of DCSPs whose original CSP is the
same.

We use the notation P;; (k) to indicate the kth member in
the sequence for DCSP;;, where ¢ is the (arbitrary) number
of the initial problem in a set of problems, and j denotes the
jth DCSP generated from problem ¢. Since we are consid-
ering a set of DCSPs based on the same initial problem, this
problem is sometimes referred to as the “original” or “base”
problem for these sequences.

3 Experimental Methods

DCSPs based on random CSPs were prepared using either of
the following models of generation:

1. Addition and deletion of ¢ constraints from a base CSP.
2. Replacement of r relations in a base CSP.

In these models, an initial CSP is generated (the base prob-
lem), and then a series of changes are made, in each case
starting with the same base problem. In these cases, there-
fore, each alteration produces a new DCSP of length 1, i.e.
a DCSP consisting of the base and a single altered problem.
To make DCSPs of greater length, the same procedure is used
but in each case the latest CSP in the sequence is used as the
initial problem. In all cases, care was taken to avoid deleting
and adding constraints with the same scope in a single alter-
ation. In both models, therefore, the number of constraints
remains the same after each alteration.

Experiments on random problems were generated in ac-
cordance with Model B [Gent et al., 2001]. All problems had
50 variables, domain size 10, graph density 0.184 and graph
tightness 0.369. Problems with these parameters have 225
constraints in their constraint graphs. Although they are in a
critical complexity region, these problems are small enough
that they can be readily solved with the algorithms used.

DCSP sequences were formed starting with 25 indepen-
dently generated initial problems. In most experiments, three
DCSPs of length 1 were used, starting from the same base

622

problem. Since the effects we observed are so strong, a sam-
ple of three was sufficient to show the effects of the particular
changes we were interested in.

In the initial experiments (next section), two variable or-
dering heuristics were used: maximum forward degree (fd)
and the FF2 heuristic of [Smith and Grant, 1998] (ff2).
The latter chooses a variable that maximises the formula
(1 — (1 — p§*)%)™:, where m; is the current domain size of
vj, d; the future degree of v;, m is the original domain size,
and p, is the original average tightness. These heuristics were
chosen because they are most strongly associated with differ-
ent basic heuristic actions on this kind of problem, as assessed
by factor analytic studies of heuristic performance [Wallace,
2008]: (i) buildup of contention as search progresses, and
(ii) simplification of the future part of the problem. Because
of their associations, f f2 can be referred to as a contention
heuristic, while fd is a simplification heuristic, although it
should be borne in mind that the difference is one of degree.
These heuristics were employed in connection with the main-
tained arc consistency algorithm using AC-3 (MAC-3). The
performance measure was search nodes.

Most tests involved search for one solution. To avoid ef-
fects due to vagaries of value selection that might be ex-
pected if a single value ordering was used, most experiments
involved repeated runs on individual problems, with values
chosen randomly. The number of runs per problem was al-
ways 100. In these cases, the datum for each problem is mean
search nodes over the set of 100 runs.

Experiments on problems with ordered domains in-
volved simplified scheduling problems, wused in a
recent CSP solver competition (http:/www.cril.univ-
artois.fr/ lecoutre/benchmarks/ benchmarks.html). These
were “os-taillard-4” problems, derived from the Taillard
benchmarks [Taillard, 1993], with the time window set to
the best-known value (os-taillard-4-100, solvable) or to
95% of the best-known value (os-taillard-4-95, unsolvable).
Each of these sets contained ten problems. For these
problems, constraints prevent two operations that share the
same job or require the same resource from overlapping;
specifically, they are disjunctive relations of the form,
(X + dur; < X;) V (X;+dur; < X;). These problems
had 16 variables, the domains were ranges of integers starting
from 0, with 100-200 values in a domain, and all variables
had the same degree. In this case, the original heuristics used
were minimum domain/forward degree and Brélaz.

Scheduling problems were perturbed by changing upper
bounds of a random sample of domains. In the original prob-
lems, domains of the 4-100 problems are all ten units greater
than the corresponding 4-95 problems. Perturbed problems
were obtained by either increasing six of the domains of the
4-95 problems by ten units or decreasing four domains of the
4-100 problems by ten units. In both cases the altered prob-
lems had features intermediate between the os-taillard-4-95
and the os-taillard-4-100 problems. Perturbed problems were
selected so that those generated from the 4-95 problems re-
mained unsolvable, while those from the 4-100 problems re-
mained solvable. Fifty runs were carried out on each of the 4-
100 problems, and value ordering was randomised by choos-
ing either the highest or lowest remaining value in a domain

at random.

4 Search Performance after Problem
Alteration

Our first objective was to get some idea about the degree to
which search performance is altered after small to moderate
changes in a problem. To the best of our knowledge, data of
this kind have not been reported previously in the literature.
The changes made in these experiments are well within the
limits of previous experiments (e.g. [Verfaillie and Schiex,
1994]), and in some cases are much smaller. In particular, we
consider changes in existing relations as well as changes in
the constraint graph.

4.1 Changes in performance in altered problems

Table 1 shows results for the first five sets of DCSPs in an ex-
periment on problem alterations involving addition and dele-
tion of constraints. (Similar patterns were observed in the re-
maining 20 sets of DCSPs.) We see that pronounced changes
in performance can occur after a limited amount of alteration
(deletion of 5 constraints out of 225 and addition of 5 new
ones). In some cases where the original problem was more
amenable to one heuristic than the other, this difference was
reversed after problem alteration (e.g. f f2 was more efficient
than fd for problem P5_(0), but for P32(1), it was distinctly
worse). This indicates that relative amenability to one or the
other form of heuristic action can also change after small al-
terations in the constraints. Since the numbers in the table are
means of 100 runs per problem in which values were chosen
randomly from the remaining candidates, simple differences
due to location of the first solution in a value ordering can be
ruled out as contributing to these variations in performance.
(For purposes of comparison with results in Section 6, we
note that grand means over all 75 altered problems were 2601
nodes for fd and 3561 for ff2.)

A more adequate evaluation of variability following small
changes was obtained by comparing results for ten sets of 25
random problems generated independently with ten sets of 25
problems where each set was generated by altering a common
base problem, again by deleting and adding 5 constraints. In
other words, each set consisted of problems P;; (1) where i is
constant and j = 1...25. To control for differences in the
mean, the statistic used was the coefficient of variation, equal
to the ratio of the standard deviation to the mean [Snedecor
and Cochran, 1969]. Using fd as the heuristic, with the in-
dependently generated problems the range of values for this
statistic over the ten samples was 0.61-1.08. For perturbed
problems the range was 0.43-0.63. This is convincing evi-
dence that the variability after small alterations is an apprecia-
ble fraction of that found with independently generated prob-
lems.

Table 2 presents further evidence on the magnitude of
change following small alterations in the initial problem,
based on the first ten sets of DCSPs. (Results are for fd,;
similar differences were found when the heuristic was f f2.)
Percent change was calculated as the absolute difference be-
tween performance on the base problem and the altered prob-
lem, divided by the smaller of the two, times 100. The sign of

623

the difference indicates whether search effort increased (pos-
itive change) or decreased (negative change). For example,
if base performance was 1000 search nodes and performance
on the altered problem was 2000, the % change is 100; if per-
formance on the altered problem was 500 the % change is
-100.

Table 1. Examples of Performance Change
with Small Problem Perturbations

pI‘Obi PL; (0) Pﬂ(l) Piz(l) PL' (1)
fd
1 600 1303 705 1266
2 2136 4160 2407 1569
3 1682 1794 1697 2027
4 318 755 586 1507
5 2804 4996 1425 1270
fr2
1 670 1280 1412 1004
2 3222 3990 2521 1582
3 924 1385 2385 968
4 713 1129 1027 941
5 3359 4549 2952 1780

Notes. <50,10,0.184,0.369> problems. Each datum is mean
search nodes for 100 runs with random value ordering. Prob-
lems altered by adding and deleting 5 constraints. P;_(0) is
base problem for each of three altered problems found on
the same row. These are therefore separate DCSPs of length 1.

Although, as expected, differences tend to be less pro-
nounced when value ordering is randomised, they are, as
noted, still substantial. They are also substantial in the all-
solutions case (although here there is a greater effect of the
number of solutions, especially since the present code was
not designed to detect clusters of solutions).

Similar results were found for a corresponding set of prob-
lems without solutions. (Parameter values were identical ex-
cept for density which was 0.19.) Differences of 2-3:1 in
search effort were common, although very large differences
were not as frequent as in solvable problems. In an analysis
like that presented in Table 2, the largest percent change in
the group of DCSPs based on the same initial problem ranged
from -177 to 284.

Table 2. Largest Performance Change for All Alterations

under Different Conditions of Search
((5 constraints added and deleted; fd heuristic)

single run rptd single all sol
prob orig lg(%) orig 1g(%) orig 1g(%)
1 509 -261 600 117 79,567 651
2 2538 97 | 2136 95 192,528 117
3 1152 390 | 1682 21 356,687 -562
4 630 209 318 374 194,877 -147
5 5303 421 | 2804 -121 102,801 254
6 2975 220 | 4954 -109 23,272 82
7 1148 -244 | 1065 63 | 1,417,139 -986
8 11,443 290 | 5085 -221 38,045 132
9 757 64 | 1859 289 202,777 -236
10 2465 265 | 1597 247 216,080 -111

Notes. <50,10,0.184,0.369> problems. Numbers under “orig”
are search nodes. Single run is with lexical value order. Re-
peated single condition is 100 runs per problem with random
value selection. (Here, nodes are means.) 1g% is for largest
change observed over the three DCSPs.

0 2000 4000 6000 8000 10000 12000

Original

Figure 1: Scatter plot of search effort (mean nodes over 100
runs) with fd on original versus P;3(1) problems with five
constraints added and deleted. (Overall correlation in perfor-
mance between original and altered problems is 0.24.)

To give a more concrete idea of the extent of variation
between the original and altered problems, a scatter plot is
shown in Figure 1. This is for the P;5(1) problem set and
includes all 25 problems.

The number of solutions for each problem tested in Table 1
is shown in Table 3. In general, there is little correspondance
between differences in number of solutions and differences
in performance. (Note, for example, the change in solution
count between P;_(0) and Pj2(1), which is more than an
order of magnitude, and the small change in performance,
which is not in the expected direction.) Across all 100 prob-
lems (including both original and perturbed), the correlation
between search effort and number of solutions was -0.2 for
each heuristic, for either single or repeated runs per problem.
Although this is in the expected direction, the small magni-
tude shows that very little of the variation in performance is
related to this factor.

Table 3. Solution Counts for Problems

in Table 1
prob P,_(0) Pi(1) P (1) Pis (1)
1 7,846 43,267 109,480 12,065
2 18,573 29,722 47,392 79,147
3 65,735 3,550 8,843 28,427
4 26,505 37,253 17,751 7,282
5 20,156 16,434 12,033 79,384

Table 4 presents summary data for the entire set of 25 orig-
inal problems and the CSPs derived from those problems
for a number of conditions. This takes the form of Pear-
son product-moment correlations between the set of original
problems and each independent set of altered CSPs (P1, P2
and P3 in the table). It should be emphasized that this is a
relatively crude measure of problem change, since large de-
viations from +1.0 will only occur if the relative values of
an original problem (P;;(0) and the altered problem (P;;(1))
with respect to other problems in the corresponding set of
original or altered problems are markedly different for a suffi-
cient number of DCSPs. That correlations appreciably lower
than 1.0 are found in these experiments, indicates the fre-

624

quency with which large changes in performance occur af-
ter even small changes in the original problems. Here, the
lower correlations for a given type of change (i.e. within one
row) are of greatest interest, since they give us an idea of how
marked these effects can be.
Table 4. Correlations with Performance on Original
Problems after Different Forms of Alteration

fd ff2
condit P1 P2 P3 P1 P2 P3
1lc 81 .83 .70 81 .84 .67
Sc 49 83 24 34 54 31
25¢ .64 34 55 46 45 23
Ir 92 86 .92 a7 1 .83
Sr 6 .84 .67 S171 .56
251 g1 .80 .85 .82 .13 .55

Notes. <50,10,0.184,0.369> problems. Single solu-
tion search with repeated runs on each problem.
Condition “kc” is k deletions and additions; “kr” is
k altered relations. “Pj” = P_;(1).

These results show that even after the addition of one con-
straint - or even a change in one relation - there are noticeable
changes in search performance. In these cases, it was not
uncommon to find correlations of .70; while this may seem
high, it is associated with only a 30% reduction in the stan-
dard deviation of performance when the value of one variable
is known [McNemar, 1969]. Correlations of this size were
found with the max forward degree heuristic when 5 or 25 re-
lations were altered; in this case not only does the constraint
graph remain the same, but the variable ordering is also un-
changed.

Table 5. Examples of Performance after Perturbations
(Scheduling Problems; dom/fd heuristic)

pI‘Ob 7 PL; (0) Pﬂ(l) PL' (1) PL' (1)
os — taillard — 4 — 95
0 51 578 76 557
1 390,845 10,172 1,255,215 1,865,802
2 397 22,140 58,181 66,174
3 1755 22,745 38,060 41,111
4 167,719 51,148 320,280 569,975
os — taillard — 4 — 100
0 17 18 31 41
1 4,745,944 2,635,513 463,465 6,934,799
2 52,377 81,762 53,060 4,812
3 507,254 233,397 103,630 169,570
4 558,176 4,569,500 9,429 3,481

Notes. Table shows first 5 base problems. Data for 4-100 series
is mean search nodes for 50 runs with random value ordering.
Note there are three separate DCSPs per row, cf. Sect. 2.

A even more impressive pattern of changes in search was
found for perturbed scheduling problems. In this case, order-
of-magnitude differences were sometimes observed (Table 5;
Note that here altered problems should be more difficult on
average than the base problems).

S Performance of an Algorithm Based on
Solution Reuse

Local changes is a complete algorithm designed to find solu-
tions to an altered problem while conserving as much of the

original assignment as possible [Verfaillie and Schiex, 1994].
It works by determining a minimal set of variables that must
be reassigned, and undoing old assignments only when they
are inconsistent with the new ones.

Our version of local changes updates the classical descrip-
tion by using MAC; it also makes use of the data structures
and style of control used in our basic MAC implementation.
The algorithm was run with either lexical or min-conflicts
value ordering. (In the latter case, values are chosen to min-
imize the number of conflicts with previous instantiations;
this was used in the original paper of [Verfaillie and Schiex,
1994], possibly inspired by [Minton et al., 1992]). For com-
parison with other data in this paper, the original solution was
always found using lexical ordering.

With these random problems, local changes performs quite
poorly, in spite of the fact that 5 additions and deletions forces
only 1-3 variables to be unassigned initially. Basically, as
the algorithm attempts to find new assignments, it progres-
sively undoes the old assignment, and since this is done re-
peatedly, there is tremendous thrashing. As a result, the
number of nodes in the search tree is sometimes orders of
magnitude greater than when search with MAC is done from
scratch. Thus, with lexical value ordering, the mean for the
75 perturbed problems was 854,544 with ff2 and 11,579,654
with fd. With min-conflicts value ordering the corresponding
means were 235,321 and 6,602,715. (These latter means in-
clude 19 and 22 cases, respectively, in which the number of
search nodes was < 10.)

These results can be explained by nearest-solution analy-
ses, in which the perturbed problem is examined to find the
minimum Hamming distance of any solution in comparison
with the solution found for the the original problem (equal to
n (here 50) - maximum number of matching values). This
was done with a branch-and-bound search where number of
mismatches was the quantity minimised. For solutions found
by fd and ff2 using lexical ordering, the average minimum
Hamming distance was 20 across all (75) problems; for 30%
of the problems, this distance was 35 or greater. Similar re-
sults were found in more extensive tests with repeated runs,
using domain/wdeg with random value ordering. Thus, part
of the reason for the poor performance of local changes on
these problems is that the minimum Hamming distance is
sometimes much greater than the number of assignments dis-
carded before search. (For cases noted above with < 10
nodes, minimum Hamming distances were in the range 0-7.)

6 Results with an Algorithm that Samples
Contention

The results described thus far all suggest that problems un-
dergo marked changes after small alterations in their con-
straint graph topology or even in the patterns of support.
However, it is still possible that certain fundamental features
of problems do not change after such alterations. A possible
feature of this type is the pattern of contention in a problem,
especially the variables that are major sources of contention.
Earlier work has shown that this feature can be assessed by
tallying domain wipeouts during search [Boussemart er al.,
2004] [Grimes and Wallace, 2007]. In this section, we show

625

that this feature exhibits much less variability than do direct
measures of performance. We also show that information re-
lated to this feature can be used to solve altered problems in
a DCSP with considerable efficiency.

6.1 The random probing procedure

The present work employed a recently developed method for
assessing sources of contention prior to search, known as
“random probing” [Grimes and Wallace, 2007]. It is based
on the weighted degree heuristic (wdeg) of Boussemart et al.
[Boussemart et al., 2004]. In the weighted degree approach,
each constraint is given an initial weight of 1. During search,
a constraint’s weight is incremented by 1 each time it causes
a domain wipeout (i.e. removes all values from a variable’s
domain) during consistency checking. The weighted degree
of a variable is the sum of the weights on constraints between
the variable and its uninstantiated neighbors. The heuristic
wdeg chooses the variable with largest weighted degree; the
variant dom /wdeg chooses the variable with minimum ratio
of current domain size to weighted degree.

Random probing attempts to boost the power of the
weighted degree heuristic by gathering information prior to
search. The method involves a number of short ‘probes’ of
the search space where search is run to a fixed cutoff and
variable selection is random. Constraint weights are updated
in the normal way during probing, but the information is not
used to guide search. After the probing phase, search runs
to completion using the weights from probing to guide selec-
tions by a weighted degree heuristic beginning with the first
variable in the search order.

Weights learned during the probing phase are expected to
boost the fail-firstness of the heuristic by enabling it to choose
the most contentious variables from the beginning of search.
Since each probe is an independent sample of the search
space, the weight profile generated by the probes gives an
overview of the spread of contention among variables in the
problem.

6.2 Stability of points of contention

We first wished to determine the degree of correlation in
weights produced by random probing before and after alter-
ation. To investigate this, we obtained weight profiles (i.e. the
weighted degree of each variable after random probing) for a
random sample of the 25 DCSP problem sets. The probing
regimen was 100 restarts with a 30-weight (30-failure) cut-
off. Variables were then ranked by their weighted-degree. We
compared variable ranks in the original problem with ranks in
the altered problems using the Spearman rank correlation co-
efficient [Hays, 1973] (Table 6).

Table 6. Correlations for Weight Profiles
(5 constraints added and deleted)

problem P1 P2 P3
1 957 .957 947
2 .959 .950 932
5 921 915 924
18 .885 .867 914
23 .963 919 .924

Five DCSP sets chosen at random from original
25. “Pj” = P_;(1).

The correlation coefficient ranges between -1 (where vari-
ables are ranked in the opposite order in the two cases) and
1 (where variables are ranked identically). Here, the corre-
lations range from .867 to .963, which shows that the rank-
ings for the altered problems were very similar to those for
the original problems. We also generated weight profiles for
the insoluble perturbed scheduling problem set; the average
correlation was 0.875. This shows that sources of contention
remain more or less the same in spite of alterations.

6.3 DCSP search with weighted degree heuristics

In these experiments, search was for single solutions. For
random problems, there were 100 (experimental) runs with
random value ordering. In each such test, weights were up-
dated during the final (post-probing) run, which lasted until a
solution had been found.

Problems were solved using three different forms of
weighted degree: (i) dom/ wdeg with no restarting, (ii) inde-
pendent random probing for each problem (rndi), (iii) a sin-
gle phase of random probing on the original problems (rndi-
orig), after which these weights were used with the original
and each of its altered problems (i.e. on each of the 100 runs
performed with random value ordering). In the third case, all
new constraints in an altered problem were given an initial
weight of 1.

Table 7 presents results for each approach in terms of av-
erage nodes over the perturbed problems (75 for random, 50
for scheduling). Nodes explored during the probing phase
are not included, since we were interested in examining qual-
ity of performance using the information gained by probing.
These amounted to about 3100-3700 nodes per problem for
the entire phase, depending on problem type. (With regard to
overall efficiency, it should be noted that the work required
for probing increases much more slowly than the improve-
ment in performance as problem size increases [Grimes and
Wallace, 2007] [Grimes, 2008].)

As expected, probing resulted in a final performance that
was better than that produced by the ordinary weighted de-
gree heuristic. However, these results were only marginally
better than with rndi-orig for both random and schedul-
ing problems. Differences in means were evaluated using
paired comparison two-tailed ¢-tests [Hays, 1973]. For ran-
dom problems, the difference for rndi and rndi-orig was
not statistically significant (£(74) = 1.46, p > 0.1), while that
for dom/wdeg and rndi-orig was significant (£(74) = 6.58,
p << 0.001). Similar results were found for the taillard-4-
95 scheduling problems; however there were no significant
differences for the taillard-4-100 problems (due to variability
across problems). These results show that weights learned by
probing on the original problem are still viable on the altered
problems.

626

Table 7. Search Results with Weighted Degree

problems dom/wdeg rndi rndi-orig
random 1617 1170 1216
taill-4-95 16,745 4139 5198
taill-4-100 11,340 7972 5999

Notes. Mean search nodes across all altered problems.
Random are <50,10,0.184,0.369> with 5 constraints
added and deleted. Scheduling problems altered as
described in text.

6.4 Probing with successive changes

A further important question regarding weights obtained on a
base problem is, if there are repeated changes resulting in a
sequence of CSPs, (DCSP >> length 1), over how many suc-
cessive problems will these weights be effective in improving
search performance?

Evidence on this question was obtained using DCSPs of
length 20, based on random problems with the same parame-
ters as before and perturbing problems by adding and deleting
5 constraints. Correlations between base problems and P;; (1)
were .86, .61, and .66 for search effort, using fd, {ff2, and
dom/wdeg respectively. The correlations declined over the
next few problems (e.g. they were .21, .36, .32 for the same
heuristics on P;; (4)), and were variable with low to moderate
correlations thereafter.

Comparisons of search performance for rndi-orig and the
other two strategies are shown in Table 8 and Figure 2, in each
case averaged over 25 problems. Table 8 shows a comparison
of probing with the original weights and ordinary dom/wdeg
for the first eight CSPs (including the base problem). For
this type of alteration, random probing remains effective over
four problems after which the effect diminishes progressively.
Figure 2 compares improvements due to probing across the
entire sequence, for probing on each problem and probing
only on the base problem

Table 8. Comparisons between Probing with Original Weights and
Ordinary dom/wdeg after Successive Alterations

PO P1 P2 P3 P4 P5 P6 P7
dom/wdeg 1535 1523 1538 1338 1207 1187 1157 951
rndi-orig 1202 1175 1220 1102 927 1057 1034 935
df 334 348 318 235 280 130 124 16

Notes. <50,10,0.184,0.369> problems. Single solution search with 100 runs

on each problem. Means of 25 problems. 5 deletions and additions at each step

in sequence. “Pk” = P_1 (k).

While, as expected, probing on each problem serves to
improve performance in relation to dom/wdeg, using origi-
nal weights also leads to improved performance over several
perturbations. Differences in means were evaluated using a
paired comparison one-tailed ¢-test [Hays, 1973]. The differ-
ence for dom/wdeg and rndi-orig was significant (£(24) >
3, p < 0.005, for the base and the first four perturbed prob-
lems in the sequence). For the next two problems p < 0.1;
for 13 of the remaining 14 problems in the sequence, p >
0.1. (Differences between dom/wdeg and rndi were always
statistically significant.) The fact that rndi-orig never be-
came appreciably worse than dom/wdeg is probably due to
the ability of weighted degree heuristics to adapt quickly to a
given problem.

0.4

0.3

0.2

e s rndi
=== rndiorig

0

PO P2 P4 P& P8 P10 P20

i

vy

-0.1

Pct Improvement Over Dom/Wdeg

-0.2

-03

Figure 2: Percent improvement with rndi and rndi-orig in
comparison with dom/wdeg on successive sets of perturbed
problems. Problem set k+1 in sequence derived by adding
and deleting 5 constraints in each problem in set k& (Pk in fig-
ure).

7 Conclusions

The present results show that for successive problems in a
DCSP, not only must each new problem be re-solved, but
if one uses ordinary solving methods, performance with a
given algorithm and heuristic is highly unpredictable even af-
ter small changes in the previous problem. Problems, there-
fore, appear to change their intrinsic character in ways that
alter a heuristic’s effectiveness.

We have shown experimentally that problems can change
with respect to their relative amenability to different forms of
heuristic action (contention and simplification). This makes
it particularly difficult for ordinary heuristics, which gener-
ally favor one or the other action [Wallace, 2008], to perform
effectively across a DCSP sequence.

At the same time, we find that despite these manifold ef-
fects on the characteristics of search, points of maximum con-
tention remain relatively constant when a small number of
constraints are added or relations changed. Given this re-
sult, one would predict that a heuristic procedure that assesses
these points of contention will perform effectively in this do-
main. Weighted degree heuristics have this characteristic. By
using this general strategy together with a technique for sam-
pling contention, it is possible to obtain information from the
original problem in a DCSP sequence that can be used with
subsequent problems. This means that the frequency of prob-
ing can be restricted, at least with alterations of the magnitude
that we have studied here.

Used in this way, random probing constitutes a new ap-
proach to solving DCSPs, in which a robust strategy for order-
ing variables is derived from assessments of the major sources
of contention in an original CSP. (Note that the variable or-
dering itself is not fixed.) It is then used together with adjust-
ments following immediate failure in the course of search. In
this way, it can be used to solve a sequence of altered prob-
lems effectively without repeating the initial sampling phase.

627

References

[Bessiére, 1991] C. Bessiére. Arc-consistency in dynamic
constraint satisfaction problems. In Proc. Ninth National
Conference on Artificial Intelligence-AAAI’'91, pages 221—
226. AAAI Press, 1991.

[Boussemart er al., 2004] F. Boussemart, F. Hemery,
C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proc. Sixteenth European
Conference on Artificial Intelligence-ECAI’04, pages
146-150. 108, 2004.

[Dechter and Dechter, 1988] R. Dechter and A. Dechter. Be-
lief maintenance in dynamic constraint networks. In Proc.
Seventh National Conference on Artificial Intelligence-
AAAI’SS, pages 37-42. AAAI Press, 1988.

[Gent er al., 2001] 1. P. Gent, E. Maclntyre, P. Prosser, B. M.
Smith, and T. Walsh. Random constraint satisfaction:
Flaws and structure. Constraints, 6:345-372,2001.

[Grimes and Wallace, 2007] D. Grimes and R. J. Wallace.
Learning to identify global bottlenecks in constraint sat-
isfaction search. In Twentieth International FLAIRS Con-
ference, pages 592-598. AAAI Press, 2007.

[Grimes, 2008] D. Grimes. A study of adaptive restarting
strategies for solving constraint satisfaction problems. In
Proc. 19th Irish Conference on Artificial Intelligence and
Cognitive Science-AICS’08., pages 33—42, 2008.

[Hays, 1973] W. L. Hays. Statistics for the Social Sciences.
Holt, Rinehart, Winston, 2nd edition, 1973.

[McNemar, 1969] Q. McNemar. Psychological Statistics.
John Wiley, New York, 4th edition, 1969.

[Minton et al., 1992] S. Minton, M. D. Johnston, A. B.
Philips, and P. Laird. Minimizing conflicts: a heuristic
repair method for constraint satisfaction and scheduling
problems. Artificial Intelligence, 58:161-205, 1992.

[Smith and Grant, 1998] B. M. Smith and S. A. Grant. Try-
ing harder to fail first. In Proc. Thirteenth European
Conference on Artificial Intelligence-ECAI’98, pages 249—
253. Wiley, 1998.

[Snedecor and Cochran, 1969] G. W. Snedecor and W. G.
Cochran. Statistical Methods. Towa State, Ames, 7th edi-
tion, 1969.

[Taillard, 1993] E. Taillard. Benchmarks for basic schedul-
ing problems. European Journal of Operational Research,
64:278-285,1993.

[Verfaillie and Jussien, 2005] G. Verfaillie and N. Jussien.
Constraint solving in uncertain and dynamic environ-
ments: A survey. Constraints, 10(3):253-281, 2005.

[Verfaillie and Schiex, 1994] G. Verfaillie and T. Schiex. So-
lution reuse in dynamic constraint satisfaction problems.
In Tivelth National Conference on Artificial Intelligence-
AAAI'94, pages 307-312. AAAI Press, 1994.

[Wallace, 2008] R. J. Wallace. Determining the princi-
ples underlying performance variation in CSP heuris-

tics. International Journal on Artificial Intelligence Tools,
17(5):857-880, 2008.

