
Set Branching in Constraint Optimization

Matthew Kitching and Fahiem Bacchus

Department of Computer Science,

University of Toronto, Canada.

[kitching|fbacchus]@cs.toronto.edu

Abstract

Branch and bound is an effective technique for
solving constraint optimization problems (COP’s).
However, its search space expands very rapidly as
the domain sizes of the problem variables grow. In
this paper, we present an algorithm that clusters
the values of a variable’s domain into sets. Branch
and bound can then branch on these sets of values
rather than on individual values, thereby reducing
the branching factor of its search space. The aim of
our clustering algorithm is to construct a collection
of sets such that branching on these sets will still
allow effective bounding. In conjunction with the
reduced branching factor, the size of the explored
search space is thus significantly reduced. We test
our method and show empirically that it can yield
significant performance gains over existing state-
of-the-art techniques.

1 Introduction

Branch and bound is a powerful algorithm for solving discrete
valued Constraint Optimization Problems (COP’s). At each
node of the search tree it selects an unassigned variable and
attempts, in turn, to assign the variable each unpruned value
in its domain. Each of these assignments generates a new
branch in the search tree, and bounding is used to close those
branches that cannot improve the current best solution.

One difficulty with branch and bound is that when the do-
mains of values for the variables are large, the nodes in its
search space have a high branching factor and its explored
search space grows very quickly even when efficient bound-
ing techniques are used.

A common approach for alleviating this problem is the
technique of domain splitting [Dincbas et al., 1988]. In do-
main splitting the unpruned values of the selected variable
V are first split into two sets based on the lexicographical
order of the values. Then, instead of branching on the V ’s
individual unpruned values, the search branches on these two
sets, reducing the search space’s branching factor down to
two. Branch and bound descends its search tree until either
a bound is violated or the domain of every variable has been
reduced to a single value, in which case these values form a
new best solution.

Unfortunately, by itself domain splitting does not reduce
the size of branch and bound’s search space. It simply
changes the shape of the search tree making it narrower but
potentially deeper. In particular, in the absence of pruning
due to bounding, each leaf node generated by domain split-
ting, where all variable domains have been reduced to single
values, lies in one to one correspondence with the leaf nodes
generated by branching on individual values, where all vari-
ables have been assigned a single value. Domain splitting can
only be effective when bounding is able to refute entire sets
of values without having to explicitly test each value.

In this paper we present a new approach for exploiting the
intuition underlying domain splitting. Our technique, called
set branching, operates like domain splitting. In particular, it
also partitions the unpruned values of a variable into sets and
then branches on these sets rather than on individual values.
However, instead of arbitrarily splitting the variable’s domain
based on lexicographic order, we develop a principled tech-
nique for clustering the values into sets of similar values. Our
technique aims to construct sets such that branching on these
sets will generate improvements to the current bounds that
are similar to the improvements that would be generated by
branching on the individual values in the set. Our method
thus allows set branching to work well with bounding so as
to reduce the overall size of the explored search tree.

We demonstrate the empirical effectiveness of our ap-
proach on the RLFAP and Pedigree problem sets showing
that our method can yield significantly improvements in per-
formance over other state-of-the-art COP solvers.

2 Background

A discrete Constraint Optimization Problem, P , is speci-
fied by a tuple 〈V ,Dom ,O〉, where V is a set of variables;
for each V ∈ V , Dom[V] is the domain of V ; and O is an
objective function that maps every complete assignment of
variables to a cost. We concentrate here on objective func-
tions O expressed as a set of sub-objectives. Each O ∈ O
is dependent on a subset of variables scope(O) ⊂ V , and
on any complete assignment τ to the variables, O(τ) =∑

O∈O O(τ |scope(O)) (i.e., the sum of the sub-objectives
evaluated at the assignments specified in τ). We will use the
term objectives to denote the sub-objectives O ∈ O.

The goal of solving a COP is to find an assignment of val-
ues to the variables that minimizes O. With minimization,

532

hard constraints can be modeled by including each hard con-
straint as an extra sub-objective that maps satisfying tuples to
0 and violating tuples to ∞.

Given a COP P = 〈V ,Dom,O〉 a Domain Reduced
COP, P|Dom∗ = 〈V ,Dom∗,O∗〉, is generated by reducing
the variable domains of P to the new sets specified in Dom∗,
where Dom∗[V] ⊆ Dom[V] for all V ∈ V . The variables V
of P|Dom∗ are the same as those in P , and its objectives, O∗,
are the objectives of O but now defined only over tuples of
values contained in Dom∗.

Branch and Bound is a standard technique for solving
COP’s using backtracking search. A global upper bound
(GUB) is maintained which represents the cost of the best
known solution to the problem. At each node of the search
tree, branch and bound selects an unassigned variable V and
branches on each unpruned value in Dom [V]. Branching on
the individual values of a variable is called value branching.
After assigning a value to V , a lower bound on the cost of
any complete assignment extending the current assignment,
is calculated. If the bound is greater than GUB, branch and
bound backtracks, since no optimal solution can be found in
subtree below the current assignment.

3 Domain Splitting and Set Branching

When the variables of the COP have large domains the
branching factor of branch and bound’s search tree becomes
large, and even when efficient bounding techniques are used
the search space it must explore often becomes impractically
large. In this section, the set branching algorithm and its pre-
cursor, domain splitting, are described. These algorithms aim
to reduce the search space’s branching factor.

Domain Splitting is a technique for improving branch and
bound search [Dincbas et al., 1988]. At each node of the
search tree, domain splitting selects a variable V , and parti-
tions V ’s unpruned values into two sets, L and R, based on
the lexographic order of the values. That is, all values in the
set L are lexicographically less than any value in the set R.
To test whether or not L leads to an optimal solution, a do-
main reduced COP is created by pruning the values of R from
V ’s domain. If the lower bound of the domain reduced COP
is larger that GUB, then no optimal solution can exist using
any value in L. If the bound is not exceeded, search descends
down the search tree until either a bound is violated or the do-
main of every variable is reduced to a single value, in which
case a new solution is found. After testing L, R is tested in a
similar manner.

Set Branching (weak assignments) is a technique originally
developed for Constraint Satisfaction Problems (CSP) that
partitions the values of a domain into sets, and branches on
each set in a fashion similar to that employed by domain
splitting [Larrosa, 1997; Silaghi et al., 1999]. The approach
presented here differs from this previous work in two ways.
The most important difference is that previous work has uti-
lized problem specific algorithms for partitioning the values
into sets. Here we present a generic algorithm for accom-
plishing this. The second difference is that previous work has
addressed satisfaction problems not optimization problems.

Consider the COP P = 〈V ,Dom,O〉. The standard branch

and bound algorithm first selects a variable V and then
branches on each unpruned value a ∈ Dom[V]. Suppose that
instead of branching on each value, the unpruned values of
Dom[V] are partitioned into k disjoint sets, S = [S1, ..., Sk].
S is called a branching set for V . Set branching branches on
each set Si by pruning the values in all other sets Sj, i �= j
from Dom[V].

Algorithm 1 shows the set branch (SB) algorithm. SB is a
recursive function with one parameter, CurrentDom, that is
an array of variable domains indexed by the variables of the
COP. The current domain of each variable V is specified by
CurrentDom[V]. If |CurrentDom[V]| = 1, then V is con-
sidered to be assigned the single value in CurrentDom[V],
otherwise V is unassigned. The vector CurrentDom defines
the domain reduced COP P|CurrentDom.

Algorithm 1: Set Branch Algorithm

SB(CurrentDom)1

begin2

if getBound (CurrentDom) ≥ GUB then3

return4

if ∀V.|CurrentDom[V]| = 1 then5

GUB:= getBound (CurrentDom)6

return7

choose (a variable V where |CurrentDom[V]| ≥ 2)8

S = partition CurrentDom[V] into k sets, k ≥ 29

foreach Si ∈ S do10

CurrentDom[V] = Si11

SB(CurrentDom)12

end13

SB immediately backtracks if it determines that
P|CurrentDom has no solution with cost lower than GUB. The
function call getBound(CurrentDom) calculates a lower
bound for P|CurrentDom. If the domain size for every V ∈ V
is 1, then every variable has been assigned a value and the
search is at a leaf node. SB then updates the GUB and back-
tracks (getBound when called on singleton domains returns
the exact value of the corresponding complete assignment).
Otherwise, a variable is selected from the set of unassigned
variables (those variables V with more than one value in
CurrentDom[V]).

Line 9 partitions the values in CurrentDom[V] into k dis-
joint sets, where k ≥ 2. By forcing k to be greater than 2, SB
ensures that the domain of at least one variable is reduced in
each recursive call; thus, SB will eventually exceed the GUB

or reach a leaf. In Lines 10–12, SB loops through the k dis-
joint sets, and recursively calls itself on each one. The loop
is iterated k times, where k is the number of sets created in
Line 9. In standard branch and bound there is an equivalent
loop which is iterated |Dom[V]| times. Thus, SB reduces the
branching factor of the node from |Dom[V]| to k.

However, as pointed out above, to attain a net reduction
in the search space it is not sufficient to simply reduce the
branching factor. We must also be able to obtain good bound-
ing from getBound(CurrentDom) to avoid descending too
deeply in the search tree.

533

4 Obtaining Good Bounds

To obtain good bounding from set branching we must exam-
ine more closely how set branching affects the bounds that
could be computed by getBound . Consider two values a and
b in CurrentDom[V]. The assignments V ← a and V ← b
generate two different reduced COPs Pa and Pb. When stan-
dard value branching is used getBound will be applied to
compute bounds for these two reduced COPs. If Pa and Pb

are structurally similar, then getBound will compute similar
bounds for both problems irrespective of the specific bound-
ing technique used by getBound .

Intuitively, if Pa and Pb are similar and generate similar
bounds, then a and b should not be distinguished. That is,
a and b should be placed in the same set Si by SB. Then,
when SB branches on Si, the resultant reduced COP, P{a,b},
will likely be structurally similar to both Pa and Pb, and
getBound should generate bounds for P{a,b} similar to the
bounds it would have generated for either Pa or Pb. Thus, set
branching on Si can yield similar bounds without forcing a
choice between a and b. Our approach, then will be to iden-
tify values in V ’s domain that would be treated similarly by
getBound , and place these similar values into the same set
during set branching.

In order to formalize these intuitions into a specific algo-
rithm we must focus on the details of a particular technique
for implementing getBound . Here we examine the technique
of enforcing local consistency [Larrosa and Schiex, 2003],
a powerful and popular technique employed to implement
getBound when solving COPs.

Let Oij denote a binary objective between the variables Vi

and Vj where Oij(a, b) is the cost of assigning a to Vi and
b to Vj , and let Oi denote a unary objective for variable Vi

where Oi(a) is the cost of assigning a to Vi. If the COP does
not initially specify a unary objective Oi for variable Vi we
add an initially null unary objective Oi to the COP mapping
all values of Vi to zero. Finally, a zero arity lower bound ob-
jective O∅ is added to the COP with initial value zero. When
using local consistency for lower bounding a COP, getBound
simply returns the current value of O∅.

Enforcing local consistency in COP’s involves modifying
the COP into an equivalent problem by flowing value towards
O∅. The modifications ensure that O∅ always remains a lower
bound on the minimal value that the COP can achieve. In
addition to generating a lower bound, local consistency can
also prune infeasible values from the variable domains, thus
improving the efficiency of branch and bound’s search.

The method uses two atomic transformations that are both
guaranteed preserve equivalence. The first transformation is
a unary transformation. Let α be the minimum cost Oi(a)
for every a ∈ Dom [Vi]. If α > 0 then it can be added to O∅

and subtracted from every Oi(a), a ∈ Dom [Vi].
The second transformation is a binary transformation.

Consider two objectives Oij and Oi, and a value a ∈
Dom[Vi]. Let α be the minimum cost of Oij(a, b) over all
b ∈ Dom[Vj]. If α > 0 then it can be added to Oi(a) and
subtracted from Oij(a, b) for all b ∈ Dom[Vj]. This is called
a flow into Oi(a).

It is useful to divide the process of enforcing local con-

sistency into two stages. The first stage, called simplifica-
tion, occurs when the domain of a variable Vi is reduced
at a node by branching. During simplification, there is a
unary transformation from Oi to O∅, and for every objec-
tive Oij , ∀b ∈ Dom[Vj], there is a binary transformation
from Oij(a, b) into Oj(b). The second stage, called propa-
gation, repeatedly applies unary and binary transformations
to the simplified problem, with the goal of flowing value into
O∅ where it can returned to the search by getBound .

When value assignments are used, the simplification stage
is extremely powerful in finding strong bounds for the prob-
lem. When the assignment Vi ← a is made, the domain of
Vi is reduced to a single value. In this case, the entire cost of
Oi(a) is immediately added to O∅. In addition, the entire cost
of the edge Oij(a, b) is added to Oj(b) for each b ∈ Dom [Vj].
These large binary transformations often allow additional bi-
nary and unary transformations that further increase O∅ dur-
ing the propagation stage.

However, suppose that instead of reducing a variable do-
main to a single value, as when value branching is employed,
the domain of a variable is simply reduced, as when set
branching is employed. In this case, the simplification stage
can be far less effective. For example, consider the case
where the domain of Vi is reduced to two values, a and b,
with unary costs Oi(a) = 10 and Oi(b) = 0. In this case, no
unary transformation can occur during simplification, since
α, the minimum cost in Oi, is not greater than zero. In this
case we see that getBound would compute two very different
values under these two assignments.

Since analyzing the effects of propagation on different val-
ues is complex, and likely to be computationally expensive,
we focus instead on analyzing the effects of simplification on
different values. This will give us partial information about
how different values would be treated by getBound .

Figure 1: Objectives Oi, Oj , and Oij .

Simplification and Set Branching. Suppose variable Vi is
selected for set branching, Dom[Vi] = {a, b, c, d}, and the
COP P has the objective functions represented in Figure 1.
In the diagram edges between two values indicate the cost of
Oij on that pair of values, while omitted edges indicate that
Oij has zero cost on that pair. The unary objectives are rep-
resented as the costs listed with each value.

Figure 2 shows the COP’s that are created after making
value assignments with the individual values of Vi and ap-
plying simplification to the problem. The lower bound ob-
jective O∅ is increased by 10, 11, 0, and 1 respectively from
the unary transformation made during simplification. In ad-
dition, a binary transformation is made during simplification
which increases Oj(a) by 0, 0, 5, and 6 respectively. The fig-

534

Figure 2: Objectives after value branching on a, b, c and d

ure shows that the COPs that arise after branching on a and
b and then performing simplification are quite similar, as are
the COPs that arise after branching on c and d.

The intuition described above would indicate that set
branching on {a, b} should generate similar bounds as the two
problems created by branching on these values individually.
Similarly for set branching on {c, d}. The result of simpli-
fication after branching on these two sets, Si1 = {a, b} and
Si2 = {c, d} is shown in Figure 3. The figure shows that in
this example our intuition is correct.

Figure 3: Objectives after set branching on Si1 and Si2

Because the propagation phase operates on the simplified
problem, we would expect that it also will generate similar
increases to the lower bound O∅ on similar simplified prob-
lems. However, it can be that small changes in the simplified
problem can be exaggerated into profound differences during
propagation. Nevertheless, similarity under simplification is
a reasonable heuristic as is borne out by our experiments.

We say that a set of values are similar if the transforma-
tions allowed during the simplification stage are similar re-
gardless of whether set branching or value branching is used
on the values in a set. The set branching ratio is the ratio
of the size of the branching set to the number of values in the
domain of the variables. Set branching is most effective when
the set branching ratio is low while the similarity is high.

4.1 Calculating Effective Branching Sets

Effective set branching hence requires finding branching sets
that partition the variable’s domain into a relatively small
number of sets (yielding a low set branching ratio) where
each set contains similar values (yielding high similarity). In
this section we propose a heuristic algorithm for constructing
such branching sets.

For each variable Vi, the clustering algorithm builds a dis-
similarity matrix Dis where Dis(a, b) represents the dissimi-

larity between value a and value b after simplification on the
respective reduced problems takes place. SB uses this ma-
trix to cluster the values of the variable into sets by trying to
place highly dissimilar values into different sets. Each cell
Dis(a, b) of the dissimilarity matrix is initialized to zero and
is then updated with the following two rules:

Rule 1.

difference := abs(Oi(a) − Oi(b))
if (difference > 0)

Dis(a, b) := Dis(a, b) + difference

Dis(b, a) := Dis(b, a) + difference

Rule 1 updates Dis(a, b) if Oi(a) �= Oi(b). Consider the
following example: let Oi(a) > Oi(b), let α = Oi(a) −
Oi(b), and suppose our clustering algorithm places a in Sq

and b in Sr. Suppose also that SB branches on Sq . If q = r
(i.e., a and b are placed in the same set) then the maximum
unary transformation from Oi into O∅ is Oi(b). If q �= r,
then the maximum unary transformation from Oi into O∅ is
Oi(a). Thus, the unary transformation allowed if q �= r may
be up to α greater than if q = r. This unary transformation is
not assured however. It is possible that even if q �= r and a
and b are placed in different sets, a third value c ∈ Sq may
stop any unary transformation from Oi.

Rule 2.

foreach Vj ∈V such that Oij is a binary objective

foreach k∈Dom[Vj]
difference := abs(Oij(a, k) − Oij(b, k))
if (difference > 0)

Dis(a, b) = Dis(a, b) + difference/|Dom [Vj]|
Dis(b, a) = Dis(b, a) + difference/|Dom [Vj]|

Rule 2 updates the dissimilarity matrix of Vi for each vari-
able Vj it appears in a binary objective Oij with. For each
value k ∈ Dom[Vj], it may be possible to perform a binary
transformation into Oj(k) and the rule evaluates the differ-
ence between this transformation for two values a and b in
Dom[Vi]. Consider the following example: let Oij(a, k) >
Oij(b, k), let α = Oij(a, k)−Oij(b, k), and suppose that the
clustering algorithm places a in Sq and b in Sr. Suppose also
that SB branches on Sq. Consider the binary transformations
made by simplification. If q = r (a and b are placed in the
same set), then the maximum binary transformation from Oij

into Oj(k) is Oij(b, k). If q �= r, then the maximum binary
transformation from Oij into Oj(k) is Oij(a, k). Thus, the
binary transformation allowed when q �= r may be up to α
greater than the transformation allowed when q = r. As with
rule 1, this binary transformation is not assured even if a and
b are placed in different sets.

The total value of Dis(a, b) is computed by applying rule 1
to every pair of values in Dom[Vi], and rule 2 to every pair of
values in Dom [Vi] and every value of Vj for all Vj that appear
in a binary objective with Vj . For example, consider the COP
represented by Figure 1. The value of Dis(a,c) is 12.5 (rule 1
increments Dis(a,c) by 10 and rule 2 increments Dis(a,c) by
2.5). The complete dissimilarity matrix generated is shown in
Figure 4.

535

Figure 4: Dissimilarity matrix for COP of Figure 1

Algorithm 2, MakeCluster uses the computed dissimilar-
ity matrix to cluster the values into disjoint sets. MakeCluster
uses a global parameter λ which is a threshold parameter. The
input to the MakeCluster is the set ValueSet, initially includ-
ing all values in CurrentDom[Vi].

Algorithm 2: Make Cluster Algorithm

MakeCluster (ValueSet)1

begin2

if |ValueSet| = 1 then3

addSetToFinalList(ValueSet) return4

(Set1, Set2, score) := valuecluster(ValueSet)5

if score > λ then6

addSetToFinalList(ValueSet)7

return8

MakeCluster (Set1)9

MakeCluster (Set2)10

end11

Alg. 2 calls the valuecluster function, which splits
ValueSet into two sets, Set1 and Set2 and returns a score.
If the score is above λ, then the algorithm assumes the values
in ValueSet are similar to one another and adds ValueSet
to the final list of sets that SB will use to set branch. If the
score is below λ, MakeCluster is called recursively on Set1
and Set2 in order to further subdivide the values until they
become singleton sets or are added to the final list of sets.

Each row and each column in the dissimilarity matrix rep-
resents a single value in Dom [Vi]. The valuecluster function
first eliminates all rows and columns from the dissimilarity
matrix that do not represent a value in ValueSet.

Valuecluster then calculates a rowscore for each row s as
follows. The cells of the row are partitioned into two clusters
(high and low) based their cellscore. The clustering is done
using a bimodal thresholding technique [Otsu, 1979]. The
mean of the high cluster is the average cellscore of cells in
the high cluster and the mean of the low cluster is the average
cellscore of cells in the low cluster. The rowscore for row s
is equal to the mean of the low cluster divided by the mean of
the high cluster. As the ratio approaches one, the values are
presumed to be more similar.

After calculating the rowscore for every row, valuecluster
selects the row with the lowest rowscore. It then returns two
sets; the first set contains the values represented by the cells
in the high cluster of the selected row, while the second set
contains the values represented by the cells in the low cluster
of the selected row. Valuecluster also returns the rowscore of
the selected row. If the rowscore is less than some threshold
percentage λ, then the partition is accepted and the algorithm
is called recursively. Otherwise, the partition is not accepted
(meaning that the values in the set are deemed to be similar
to one another), ValueSet is added to the completed set, and
Alg. 2 returns.

This clustering algorithm takes time O(|V|Dom3) at every
node, making it disadvantageous to run Alg. 2 at every node.
In our SB implementation, the algorithm is run as a prepro-
cessing step for every variable of the problem, and the result-
ing sets are stored. After a variable is selected in Line 8 of
Alg. 1, if the variable’s domain is greater than some threshold
size, the stored set is used to partition the remaining domain.

4.2 Extensions
The Dissimilarity matrix presented is developed for COP’s
with binary constraints. However, the same concept on which
the dissmiliarity matrix was based can be employed for other
constraint problems. For example, a dissimilarity matrix for
ternary COPs can be made by comparing the way in which
values of a variable change the unary objectives of remain-
ing variables in each ternary objective. Although the de-
tails of this algorithm are not discussed in this paper, we im-
plemented a ternary version of the clustering technique and
tested it on the Pedigree problems in the following section.

Our method has also been presented in the context of the
particular bounding technique of enforcing local consistency,
a powerful bounding method that is commonly applied. To
adapt our approach to another bounding technique we would
need to develop new method for computing the dissimilarity
matrix—the rest of our method would still operate as before.
In particular, the bounding technique would have to be ex-
amined so as to develop a way of estimating the dissimilarity
between alternate values in terms of their effect on the bounds
generated.

5 Experimental Results
Our set branch approach was tested on two benchmarks. All
tests were performed on 2.66 GHz machines with 8GB of
RAM and limited to a timeout of 1200 seconds.

Our first experiments were with the Radio Link Fre-
quency Assignment Problem (RLFAP) shown in Table 1.
These problems involve assigning frequencies to a set of radio
links in such a way that the links can operate together with-
out noticeable interference. The RLFAP instances were cast
as binary weighted CSP’s [Cabon et al., 1999]. The bench-
mark family includes 23 problems. Problems that could not
be solved by any the solvers (within 1200 sec.) are not listed.

Table 1 shows the results of three different algorithms on
the RLFAP problems. All of the algorithms were imple-
mented on top of the state-of-the art Toolbar system [Bou-
veret et al., 2008], and all employ the EDAC local consistency
bounding technique. BB is a branch and bound algorithm; DS
is the domain splitting algorithm which splits the variable do-
mains in half based on the value’s lexicographical order in
the original encoding; and SB is our set branch technique that
utilizes Alg. 2 to cluster the variable values into sets.

The algorithms were tested with a Dom/WDeg heuristic
where the next variable chosen is the uninstantiated variable
with highest current domain size divided by the variable’s
weighted degree. The weighted degree is the sum of the ex-
pected values of the objectives the variable appears in. The
values of the chosen variable V are attempted in the order
lowest unary cost first (i.e., lowest O(V) value). In the case
of DS and SB, the sets were ordered by the minimum unary

536

Instance BB DS SB

CELAR6-SUB0 0.17 0.22 0.22

CELAR6-SUB1-24 2.68 2.02 3.18

CELAR6-SUB1 42.6 35.9 16.5

CELAR6-SUB2 16.0 36.4 13.4

CELAR6-SUB3 224.9 203.8 63.7

CELAR6-SUB4-20 10.3 3.3 2.7

CELAR6-SUB4 > 1200 > 1200 519.4

CELAR7-SUB0 0.05 0.13 0.13

CELAR7-SUB1-20 0.14 0.6 0.14

CELAR7-SUB1 4.9 3.9 3.7

CELAR7-SUB2 42.1 36.0 33.7

CELAR7-SUB3 425.4 283.9 393.6

CELAR7-SUB4-22 6.67 7.72 5.17

graph07 24.2 > 1200 13.9

graph12 9.6 29.0 9.3

scen-9 8.1 96.6 5.1

scen-10 0.71 > 1200 1.3

Table 1: RLFAP Problems: solving times in CPU seconds

cost of the values in the set and ties were broken by select-
ing the smallest set first. DS and SB defaulted to ordinary
value branching when the variable’s current domain size was
smaller than 1

6 the original domain size. The times shown in-
clude the preprocessing time required by SB to compute its
branching.

The results show that SB is the best performing of the three
algorithms, beating the other algorithms on 12 out of 17 prob-
lems. It also never does much worse than BB or DS, except on
CELAR7-SUB3 where it takes >100 seconds more than DS.
Finally, it is able to solve CELAR6-SUB4 on which the other
algorithms failed. In sum, on these problems, BB solved 16
problems in 2018 seconds, DS solved 14 problems in 4340
seconds, and our approach SB solved 17 problems in 1085
seconds.

We also examined the number of nodes expanded by the
three different algorithms. SB generally explored a smaller
search tree to solve the problem indicating that our heuristic
for constructing branching sets was effective.

To test the robustness of our clustering algorithm we ran
the RLFAP benchmarks an second time with the values for
each variable randomly permuted before search began. The
results for DS were significantly worse, since the initial or-
dering of the values probably embedded some structural in-
formation that was lost after permutation. However, BB and
SB both displayed only minor changes in their performance
(due to some differences in tie breaking).

We also experimented with Pedigree problems which try
to decide if Mendelian errors exist in various pedigrees. The
Pedigree instances were cast as weighted CSP’s [Sanchez
et al., 2008]. The benchmark family includes 23 problems.
Again we only list those problems solvable within the time-
out by at least one of our tested algorithms.

Table 2 shows the results. DS performs very poorly on
these problems. BB on the other hand performs quite well,
but still SB is able to solve two problems not solvable by BB.

Instance BB DS SB

eye 0.01 6.52 0.13

pedck-60-L1 0.01 0.11 0.03

pedck-60-L2 1.0 13.64 1.3

pedck-60-L12 0.01 120.72 0.04

pedck-350 > 1200 > 1200 1.22

pedck-350-L2 > 1200 > 1200 0.84

pedck-350-L3 671.63 > 1200 0.88

saudiarabia 1.69 3.1 160.73

wijsmanguo 11.3 > 1200 1.43

Table 2: Pedigree problems

6 Conclusions and Future Work

This paper demonstrated that variable values can be effec-
tively clustered into sets so that branching on these sets can
yield useful speedups over branching on individual values in
branch and bound search. The key contribution of the paper
is a domain independent algorithm for clustering values into
sets in a way that preserves effective bounding. Although our
technique was developed with a particular bounding method
in mind, it should be possible to use the same intuitions to
develop clustering algorithms more tailored to other more re-
cent bounding methods, e.g., [Cooper et al., 2008]. We also
believe that the same intuitions could lead to effective domain
independent set branching algorithms for satisfaction prob-
lems (CSPs).

References
[Bouveret et al., 2008] S. Bouveret, S. de Givry, F. Heras, J. Lar-

rosa, E. Rollon, M. Sanchez, T. Schiex, G. Verfaillie, and
M. M.Zytnicki. Max-csp competition 2007. In Proceedings of
the Second International CSP Solver Competition, pages 19–21,
2008.

[Cabon et al., 1999] B. Cabon, S. de Givry, L. Lobjois, T. Schiex,
and J. Warners. Radio link frequency assignment. Constraints,
4(1):79–89, 1999.

[Cooper et al., 2008] Martin C. Cooper, Simon de Givry, Martı́
Sánchez, Thomas Schiex, and Matthias Zytnicki. Virtual arc con-
sistency for weighted csp. In Proceedings of the AAAI National
Conference (AAAI), pages 253–258, 2008.

[Dincbas et al., 1988] M. Dincbas, P. Van Hentenryck, H. Simonis,
A. Aggoun, T. Graf, and F. Berthier. The constraint logic pro-
gramming language chip. In FGCS, pages 693–702, 1988.

[Larrosa and Schiex, 2003] Javier Larrosa and Thomas Schiex. In
the quest of the best form of local consistency for weighted csp.
IJCAI, pages 239–244, 2003.

[Larrosa, 1997] Javier Larrosa. Merging constraint satisfaction sub-
problems to avoid redundant search. In IJCAI, pages 424–433,
1997.

[Otsu, 1979] N. Otsu. A threshold selection method from gray level
histograms. IEEE Transactions on Systems, Man and Cybernet-
ics, 9:62–66, 1979.

[Sanchez et al., 2008] M. Sanchez, S. de Givry, and T. Schiex.
Mendelian error detection in complex pedigrees using weighted
constraint satisfaction techniques. Constraints, 13(1), 2008.

[Silaghi et al., 1999] M. Silaghi, D. Sam-haroud, and B. Faltings.
Intelligent domain splitting for csps with ordered domains. In In-
ternational Conference on Principles and Practice of Constraint
Programming, pages 488–489, 1999.

537

