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Abstract

Many local search algorithms are based on search-
ing in the k-exchange neighborhood. This is the
set of solutions that can be obtained from the cur-
rent solution by exchanging at most k elements.
As a rule of thumb, the larger k is, the better
are the chances of finding an improved solution.
However, for inputs of size n, a naı̈ve brute-force
search of the k-exchange neighborhood requires
nO(k) time, which is not practical even for very
small values of k. We show that for several classes
of sparse graphs, like planar graphs, graphs of
bounded vertex degree and graphs excluding some
fixed graph as a minor, an improved solution in the
k-exchange neighborhood for many problems can
be found much more efficiently. Our algorithms
run in time O(τ(k) · nc), where τ is a function
depending on k only and c is a constant indepen-
dent of k. We demonstrate the applicability of this
approach on different problems like r-CENTER,
VERTEX COVER, ODD CYCLE TRANSVERSAL,
MAX-CUT, and MIN-BISECTION. In particular, on
planar graphs, all our algorithms searching for a k-
local improvement run in time O(2O(k) ·n2), which
is polynomial for k = O(log n). We also comple-
ment the algorithms with complexity results indi-
cating that—brute force search is unavoidable—in
more general classes of sparse graphs.

1 Introduction

The idea of local search is to improve a solution by search-
ing for a better solution in a neighborhood which is defined
in a problem specific way. For example, for the classical
TRAVELING SALESPERSON problem, the neighborhood of
a tour can be defined as the set of all tours that differ from
it in at most k edges, this is called the k-exchange neighbor-
hood [Lin and Kernighan, 1973; Papadimitriou and Steiglitz,
1977]. Another classical example is the MIN-BISECTION
problem [Johnson et al., 1988], where for a given graph with
2n vertices and weights on the edges, the task is to partition
the vertices into two sets of n vertices such that the sum of
the weights of the edges between the sets is minimized. A
natural k-exchange neighborhood for this problem would be

the set of partitions that can be obtained from each other by
swapping at most k pairs of vertices.

Most of the literature on local search is primarily devoted
to experimental studies of different heuristics. The theoretical
study of local search has been developing mainly in three di-
rections. The first direction is the study of performance guar-
antees of local search, i.e. the quality of the solution [Pa-
padimitriou and Steiglitz, 1982; Khanna et al., 1998]. The
second direction of the theoretical work is on the asymptotic
convergence of local search in probabilistic settings, such as
simulated annealing [Aarts and Lenstra, 1997]. The third di-
rection, which is the most relevant to our work, concerns the
time required to reach a local optimum. An illustrative ex-
ample here is the simplex method, which can be seen as a
local search algorithm with feasible solutions corresponding
to “vertices” of a polytope. The neighbors of a solution are
the solutions that can be reached from it by a single “pivot”.
There can be different rules of choosing a pivot when sev-
eral neighbors improve a solution. However, for each of
the known rules there are examples requiring an exponential
number of iterations for reaching the local optimum. Moti-
vated by the fact that many local search algorithms are based
on neighborhood structures for which locally optimal solu-
tions are not known to be computable in polynomial time,
[Johnson et al., 1988] defined a complexity class PLS which
can be seen as an analogue of the class NP for local search
problems. Many natural local search problems appear to be
PLS-complete. We refer to books [Aarts and Lenstra, 1997;
Michiels et al., 2007] for more information on different as-
pects of local search.

In this paper we take a different twist in the study of local
search and endeavor to answer the following natural question.
Is there a faster way of searching the k-exchange neighbor-
hood than brute-force? This question is important because
the typical running time of a brute-force algorithm is nO(k),
where n is the input length, which becomes a real obstacle
in using k-exchange neighborhoods in practice even for suf-
ficiently small values of k. For many years most algorithms
searching for improved solution in the k-exchange neighbor-
hood had an nO(k) running time, and thus creating an im-
pression that this cannot be done significantly faster than the
brute-force search. But is there mathematical evidence for
this common belief? Or maybe for some problems it is possi-
ble to search k-exchange neighborhoods in time O(τ(k)nc),
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where c is a small constant, which can make local search
much more powerful?

An appropriate tool to answer all these questions is param-
eterized complexity. In the parameterized framework, for de-
cision problems with input size n, and a parameter k, the goal
is to design an algorithm with runtime τ(k) · nO(1), where τ
is a function of k alone. Problems having such an algorithm
are said to be fixed parameter tractable (FPT). There is also a
theory of hardness that allows to identify parameterized prob-
lems that are not amenable to such algorithms. The hardness
hierarchy is represented by W [i] for i ≥ 1. For an introduc-
tion see [Downey and Fellows, 1999].

Relevant results. The parameterized complexity of local
search remains unexplored with exceptions that are few and
far between. As it was explicitly mentioned by Marx in a re-
cent survey on local search problems [Marx, 2008a]: “So far,
there are only a handful of parameterized complexity results
in the literature, but they show that this is a fruitful research
direction. The fixed-parameter tractability results are some-
what unexpected and this suggests that there are many other
such results waiting to be discovered.”

The first breakthrough in the area was done by [Marx,
2008b] who proved that finding a local improvement in k-
exchange neighborhood for TSP is W [1]-hard. Finding k-
local optimum is not W [1]-hard for every NP-hard problem.
An example of this can be found in the work of [Khuller et
al., 2003] who investigated the NP-hard problem of finding a
feedback edge set that is incident to the minimum number of
vertices. One of the results obtained in [Khuller et al., 2003]
is that checking whether it is possible to improve a solution by
replacing at most k edges can be done in time O(n2+nτ(k)),
i.e., it is FPT parameterized by k. Very recently, [Krokhin and
Marx, 2008] investigated the local search problem for finding
a minimum weight assignment for a Boolean constraint satis-
faction instance.

Our results. In this paper, we initiate the systematic study of
parameterized complexity of local search for different graph
problems. We investigate local search for problems on graphs
of bounded local treewidth, a wide class of graphs containing
planar graphs, graphs embeddable on a surface of bounded
genus and graphs of bounded vertex degree. We show that
many local search problems become FPT when the input
graph is of bounded local treewidth. In particular, we show
that finding k-local improvement on graphs of bounded lo-
cal treewidth is FPT for many natural problems including
VERTEX COVER, ODD CYCLE TRANSVERSAL, DOMINAT-
ING SET, and r-CENTER. We also show that finding k-local
improvement for MAX-CUT, and MIN-BISECTION is FPT
for apex-minor-free graphs. All these results are based on
the idea of reducing the search in k-exchange neighborhood
to searching for an improvement in a ball of small diameter
around some vertex in the metric of the input graph. For ex-
ample, on planar graphs, this approach leads to algorithms
with running time O(2O(k) · n2) for many of the problems
mentioned above. We also extend these results to more gen-
eral classes of graphs, namely, graphs excluding a fixed graph
as a minor. Finally, we show that existence of FPT algo-
rithms is highly unlikely for larger classes of sparse graphs.

We prove that most of the problems remain W [1]-hard on 3-
degenerated graphs.

2 Preliminaries

Let G = (V,E) be an undirected graph where V (or V (G))
is the set of vertices and E (or E(G)) is the set of edges.
We denote the number of vertices by n and the number of
edges by m. For a subset V ′ ⊆ V , by G[V ′] we mean the
subgraph of G induced by V ′. By N(u) we denote (open)
neighborhood of u that is set of all vertices adjacent to u and
by N [u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we
define N [D] = ∪v∈DN [v]. The distance dG(u, v) between
two vertices u and v of G is the length of the shortest path
in G from u to v. The diameter of a graph G, denoted by
diam(G), is defined to be the maximum length of a shortest
path between any pair of vertices of V (G). By an abuse of
notation, we define diameter of a graph as the maximum of
the diameters of its connected components. For r ≥ 0, the
r-neighborhood of a vertex v ∈ V is defined as Nr

G[v] =
{u | dG(v, u) ≤ r}. We also let B(r, v) = Nr

G[v] and call it
a ball of radius r around v. Similarly B(r, A) = ∪v∈ANr

G[v]
for A ⊆ V (G). Given a weight function w : V → R

+ ∪ {0}
and A ⊆ V (G), w(A) =

∑
u∈A w(u).

Given an edge e = (u, v) of a graph G, the graph G/e is
obtained by contracting the edge (u, v); that is, we get G/e
by identifying the vertices u and v and removing all the loops
and duplicate edges. A minor of a graph G is a graph H that
can be obtained from a subgraph of G by contracting edges.
A graph class C is minor closed if any minor of any graph in
C is also an element of C. A minor closed graph class C is H-
minor-free or simply H-free if H /∈ C. A graph H is called
an apex graph if the removal of one vertex makes it a planar
graph.

A tree decomposition of a (undirected) graph G is a pair
(X, T ) where T is a tree whose vertices we will call nodes
and X = ({Xi | i ∈ V (T )}) is a collection of subsets of
V (G) such that (a)

⋃
i∈V (T ) Xi = V (G), (b) for each edge

(v, w) ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi,
and (c) for each v ∈ V (G) the set of nodes {i | v ∈ Xi}
forms a subtree of T . The width of a tree decomposition
({Xi | i ∈ V (T )}, T ) equals maxi∈V (T ){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all tree
decompositions of G. We use notation tw(G) to denote the
treewidth of a graph G. The definition of treewidth can be
generalized to take into account the local properties of G and
is called local treewidth [Eppstein, 2000].

Definition 1 (Local tree-width). The local tree-width of
a graph G is a function ltwG : N → N which asso-
ciates to every integer r ∈ N the maximum tree-width
of an r-neighborhood of vertices of G, i.e. ltwG(r) =
maxv∈V (G){tw(G[Nr

G(v)])}.

For a function h : N → N we define the graph class Gh

such that for each graph G ∈ G , and for each integer r ∈ N,
we have ltwG(r) ≤ h(r). We say that a class of graphs G is
of bounded local treewidth if G ⊆ Gh for some h : N → N.
Well known graph classes of bounded local treewidth are pla-
nar graphs, graphs of bounded genus, and graphs of bounded
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maximum vertex degree. By the result of [Robertson and
Seymour, 1986] (see also [Bodlaender, 1998]), h(r) can be
chosen as 3r for planar graphs. Similarly [Eppstein, 2000]
showed that h(r) can be chosen as cgg(Σ)r for graphs em-
beddable in a surface Σ, where g(Σ) is the genus of the sur-
face Σ and cg is a constant depending only on g(Σ). [De-
maine and Hajiaghayi, 2004] extended this result and showed
that for minor closed families of graphs which do not contain
some fixed apex graph as a minor, h(r) = O(r).

3 Framework of Study

For many optimization problems defined on graphs, the solu-
tion is a subset of vertices or edges of the graph. This is the
case for the problems VERTEX COVER, INDEPENDENT SET,
and DOMINATING SET to name a few. A problem P is a ver-
tex subset problem (or an edge subset problem) if a feasible
solution to P is V ′ ⊆ V (E′ ⊆ E). We use S to denote the
set of feasible solutions to a problem P .

For vertex subset (or edge subset) problems, a natural
neighborhood function is obtained by exchanging k elements
of the current solution. The neighborhood function in which
we are interested is called k-exchange neighborhoods (k-
ExN). We elaborate this further for minimization vertex-
subset problems. Let w : V → R

+ be a weight function.
Then the cost function c : S → R

+ is defined as
∑

v∈s w(v)
for all s ∈ S . For a pair of elements s1, s2 ∈ S , let
H(s1, s2) denote the Hamming distance that is the size of the
set |s1 \ s2|. We say that s′ is neighbor of s with respect to
k-ExN if H(s, s′) ≤ k. Let N en

k (s) denote the set of neigh-
bors of s with respect to k-ExN. Then the generic problem of
local search for a vertex subset graph optimization problem
P with respect to k-ExN is defined as follows.
k-LOCAL SEARCH P (k-LS-P )
Input: A graph G = (V,E), a weight function w : V → R

+,
a solution S and an integer k ≥ 0.
Parameter: A positive integer k.
Question: Does there exist a solution T ∈ N en

k (S) such that
c(T ) < c(S) if P is minimization problem (and c(S) > c(T )
if P is maximization problem)?

In general, an input to parameterized local search problem
for a graph optimization problem P consists of five parts:
(G = (V,E), w,M, S, k), where S is an initial solution,
w : V → R

+, M is a distance function defined on the so-
lution space S and k ∈ N is a positive integer. If w is a
unit weight function then we ignore w and only have four
parts (G = (V,E),M, S, k). Unless otherwise mentioned,
we only consider the Hamming distance H in this paper, and
hence this term is deleted from the input.

4 FPT Algorithms for k-LS in Graphs of

Bounded Local Treewidth

In this section we show that, many local search problems be-
come fixed parameter tractable in graphs of bounded local
treewidth.

4.1 Domination Problems

In this section we give an algorithm for the local search
variant of a generalization of DOMINATING SET, called the

WEIGHTED r-CENTER problem. A subset S ⊆ V is called
an r-center if V ⊆ B(r, S). In k-LS-r-CENTER, we are
given an undirected graph G = (V,E), with weight function
w : V → R

+, a r-center S ⊆ V and integers k, r. The
problems asks whether there exists a S′ ∈ Nen

k (S) such that
c(S′) < c(S). Here k and r are the parameters.

When r = 1 this is the k-LS-DOMINATING SET prob-
lem. Our result is based on a combinatorial characterization
of changed solutions. We prove that if there is an improved
solution that is close to the current solution in the solution
space, then there is another improved solution close to the
current one in the solution space with the additional property
that all changes are concentrated locally in the input graph.

Lemma 1. Let S1 and S2 be r-centers of a weighted graph
G = (V,E) with weight function w : V → R

+, such that
the cardinality of the symmetric difference S1 �S2 is at most
p, and c(S1) > c(S2). Then there are sets F1, F2 ⊆ V such
that (a) the set S = (S1 \ F1) ∪ F2 is an r-center of G and
c(S) < c(S1); (b) |F1 ∪ F2| ≤ p; and (c) there is a vertex
z ∈ V such that F1 ∪ F2 is in B(z, 2pr).

Proof. Let X = S1 \ S2 and Y = S2 \ S1. Furthermore,
(a) X ∩ Y = ∅ and (b) S1 \ X = S2 \ Y = S1 ∩ S2.
This implies that c(S1) = w(S1 \ X) + w(X) > c(S2) =
w(S2 \ Y ) + w(Y ), and hence w(X) > w(Y ). Consider the
auxiliary graph G∗ = (X∪Y = S1�S2, E

′), where we give
an edge between two vertices u, v ∈ (X∪Y ) if d(u, v) ≤ 2r,
that is, the shortest path distance between u and v is at most
2r in G. Let C1, . . . , Cp be the connected components of
G∗. For every connected component Ci we assign a tuple
μ(Ci) = (x, y) where x = w(X ∩ Ci) and y = w(Y ∩ Ci).
Since w(X) > w(Y ), there exists a connected component
Cj such that x > y in μ(Cj). We claim that we can take
S1 \ (X ∩Cj)∪ (Y ∩Cj) as the desired S, F1 = X ∩Cj and
F2 = Y ∩ Cj .

First, c(S) = w(S1)−w(X ∩Cj) + w(Y ∩Cj) < c(S1),
since x > y. Now we show that S is a r-center of G. We
know that S1 is a r-center of G and hence only vertices which
could be at distance more than r from the vertices of S are
those which were distance at most r from the vertices in (X∩
Cj). Let u be a vertex which is at distance more than r from
any vertex in S. Then there exists a vertex, say u1 ∈ (X ∩
Cj), such that d(u, u1) ≤ r. Furthermore, S2 is an r-center
not containing any of the vertices of (X ∩ Cj). Hence, there
exists v ∈ Y such that d(u, v) ≤ r. But this implies that
d(u1, v) ≤ 2r and hence v ∈ (Y ∩ Cj). This proves that S
is an r-center of G. We can select any vertex in X ∩ Cj for
z. The size of Cj is at most p and any vertex adjacent in this
component are at distance at most 2r in G. Hence, the ball
around z of radius 2pr contains all the vertices of F1 ∪ F2;
that is, (F1 ∪ F2) ⊆ B(z, 2pr).

We define a generalized form of k-LS-r-CENTER which
we call k-LS-GENERALIZED-r-CENTER where apart from
S, we are also given a subset T ⊆ S, and we need to find
a solution S′ ∈ N en

k (S) such that c(S′) < c(S) and T ⊆
S′. So an instance of k-LS-GENERALIZED-r-CENTER looks
like (G, w, S, T, k).
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Lemma 2. Let G be the class of graphs which is closed under
taking induced subgraphs and for which we can solve k-LS-
GENERALIZED-r-CENTER in time f(�) · |G|O(1) whenever
G ∈ G and of diameter at most �. Then k-LS-r-CENTER is
FPT for G.

Proof. Let (G, w, S, k) be an instance of k-LS-r-
CENTER where G ∈ G. Lemma 1 implies that if the
given instance is an YES instance then there exists a solution
S′ ∈ N en

k (S) with c(S′) < c(S) and z ∈ S \ S′ such that
S � S′ ⊆ B(z, 4rk).

We go through every vertex v in S as the desired z and do
as follows. We do BFS starting at v. Let the layers created
by doing BFS on v be Lv

0, L
v
1, . . . , L

v
t . We have two cases:

either (a) t ≤ 4rk + r or (b) t > 4rk + r. In case (a) we
set Tv = ∅ and get (G, w, S, Tv, k) as an instance for k-LS-
GENERALIZED-r-CENTER. In the other case, we first take
4rk + r layers; that is,

B(v, 4rk + r) = ∪4rk+r
j=0 Lv

j .

We know that all the changed vertices, those that go out and
those that will come in (that is, vertices in the set S � S′) are
in B(v, 4rk). Let Tv := (S ∩ (∪4rk+r

j=4rk+1L
v
j )). Furthermore,

for v ∈ S, let Sv = S ∩ B(v, 4rk + r). For every v ∈ S, we
get the following instance (B(v, 4rk + r), w, Sv, Tv, k) for
k-LS-GENERALIZED-r-CENTER. An instance (G, w, S, k)
is an YES instance for k-LS-r-CENTER if and only if there
exists a v ∈ S for which (B(v, 4rk + r), w, Sv, Tv, k) is an
YES instance for k-LS-GENERALIZED-r-CENTER. Since k-
LS-GENERALIZED-r-CENTER is solvable in time f(4rk +
r) · |B(v, 4rk + r)|O(1) for G[B(v, 4rk + r)] for v ∈ S, we
have that k-LS-r-CENTER for G is solvable in time f(4rk +
r) · |G|O(1). This concludes the proof of the lemma.

The proof of the following lemma is similar to the proof for
k-LS-r-CENTER from [Demaine et al., 2005a] and we omit
it here.

Lemma 3. Let G be the class of graphs of treewidth at most t,
then k-LS-GENERALIZED-r-CENTER can be solved in time
O((2r + 1)t · |G|O(1)) for graphs G ∈ G.

Theorem 1. Let h : N → N be a given function. Then k-LS-
r-CENTER can be solved in time O((2r + 1)h(2k) · |G|O(1))
for graphs G ∈ Gh.

Proof. Let (G, w, S, k) be an instance of k-LS-r-CENTER.
Since G ∈ Gh, the treewidth tw(G[B(v, 4rk + r)]) ≤
h(4rk + r) for all v ∈ S. Using Lemma 3 we solve
k-LS-GENERALIZED-r-CENTER for instances (B(v, 4rk +
r), Sv, Tv, k) for every v ∈ S in time O((2r + 1)h(4rk+r) ·
|B(v, 4rk + r)|O(1)). This in combination with Lemma 2
completes the proof.

Let us remark that by Theorem 1, k-LS-r-CENTER is FPT
for planar graphs, graphs of bounded genus and graphs of
bounded maximum degree.

In the VERTEX COVER problem one seeks for a vertex sub-
set of minimum weight such that every edge has at least one
endpoint in this set.

Our algorithm for k-LS-VERTEX COVER is based on the
FPT algorithm for k-LS-r-CENTER. In fact, it is possible to
give a local search preserving parameterized reduction from
k-LS-VERTEX COVER to k-LS-DOMINATING SET that pre-
serves the property of local treewidth. We omit the details
here.
Theorem 2. Let h : N → N be a given function such that
h(i) ≥ 2 for every i. Then k-LS-VERTEX COVER can be
solved in time O(3h(2k) · |G|O(1)) for graphs G ∈ Gh.

4.2 Odd Cycle Transversal

In the ODD CYCLE TRANSVERSAL problem one seeks for a
vertex subset S of minimum weight in a graph, such that ev-
ery cycle of odd length in the graph contains at lest one ver-
tex from S. In other words, after removal of S, the remaining
vertices induce a bipartite graph. This problem is interest-
ing to look at because of the following. All the problems we
considered so far have a certain “locality” involved. At first
glance ODD CYCLE TRANSVERSAL look like a “non-local”
problem . For ease of presentation we only deal with the un-
weighted case, but weighted cases can be handled in a similar
manner. Our algorithm is based on a combinatorial obser-
vation, which allows us to construct local search preserving
parameterized reduction to k-LS-INDEPENDENT SET. (The
MAXIMUM INDEPENDENT SET problem is to find a maxi-
mum set of pairwise non-adjacent vertices in a graph.)

Given a graph G = (V,E), we define a new graph G̃ =
(V ′, E′) as follows. Let Vi = {ui | u ∈ V }, i ∈ {1, 2}. Take
V ′ = V1 ∪ V2 and E′ = {u1u2 | u ∈ V } ∪ {uivi | uv ∈
E, i ∈ {1, 2}}. Given a set T ⊆ V such that G[T ] is a
bipartite graph with bipartition T1 and T2 then by T̃ denote
the set T̃1 = {u1 | u ∈ T1} ∪ T̃2 = {u2 | u ∈ T2} in V ′.
The graph G̃ has some interesting properties which we make
use of when designing the local search algorithm for ODD
CYCLE TRANSVERSAL.

The proofs of the following two lemmas is omitted due to
space restrictions. The proof of Lemma 4 is based on a result
from [Saurabh, Thesis 2008].
Lemma 4. (G, S, k) is an YES instance of k-LS-INDUCED

BIPARTITE SUBGRAPH if and only if (G̃, S̃, k) is an YES
instance of k-LS-INDEPENDENT SET.
Lemma 5. Let h : N → N and g = 2h + 1 be two given
functions. If G ∈ Gh, then G̃ ∈ Gg .

By Theorem 2, we have that k-LS-VERTEX COVER is FPT
on graphs of bounded local treewidth. Since a set S is a vertex
cover of a graph G = (V,E) if and only if V \ S is an inde-
pendent set, we get that the same result also holds for k-LS-
INDEPENDENT SET. Combining Theorem 2 with Lemmas 4
and 5, we arrive at the following.
Theorem 3. Let h : N → N be a given function. Then k-LS-
ODD CYCLE TRANSVERSAL and k-LS-INDUCED BIPAR-
TITE SUBGRAPH can be solved in time O(3g(2k) · |G|O(1))
for graphs G ∈ Gh where g = 2h + 1.

Planar graphs, and more generally, graphs of bounded
genus and apex-minor-free graphs, are in Gh for some linear
function h, and Theorems 1, 2, and 3 yield the following.
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Corollary 1. On apex-minor-free graphs k-LS-r-CENTER is
solvable in time rO(k) · |G|O(1) and k-LS-VERTEX COVER,
and k-LS-ODD CYCLE TRANSVERSAL are solvable in time
2O(k) · |G|O(1).

4.3 Graph Partitioning Problems

In this section we look at local search algorithms for graph
partitioning problems such as MAX-CUT and MIN- (MAX-)
BISECTION. Let G = (V,E) be a given graph and w : E →
R

+ be a weight function. Then MAX-CUT asks for a partition
of V into V1 and V2 such that the total weight of edges (u, v)
with u ∈ V1 and v ∈ V2 is maximized whereas in MAX-
(MIN-) BISECTION the objective is to find a partition of V
into V1 and V2 such that (a) |V1| = |V2| = |V |/2 and (b)
the total weight of edges (u, v) with u ∈ V1 and v ∈ V2 is
maximized (minimized).

We give an algorithm for a local search variant of MIN-
BISECTION. Others follow along similar lines. Given a parti-
tion (V1, V2) let E(V1, V2) be the edges with one endpoint in
V1 and other in V2, and let c((V1, V2)) =

∑
e∈E(V1,V2)

w(e).
We now define the notion of N en

k (V1, V2) for this problem. A
partition (V ′

1 , V ′
2) ∈ Nk(V1, V2) if there exist subsets X ⊆ V1

and Y ⊆ V2 such that (a) |X| = |Y | = r, r ≤ k and (b)
V ′

1 = (V1 \ X) ∪ Y and V ′
2 = (V2 \ Y ) ∪ X .

Theorem 4. Let h : N → N be a given function. Then k-LS-
MINIMUM-BISECTION, k-LS-MAXIMUM-BISECTION and
k-LS-MAXIMUM-CUT can be solved in time O(2h(ck) ·
|G|O(1)) for graphs G ∈ Gh such that for every minor H of
G, H ∈ Gh. In particular k-LS-MINIMUM-BISECTION is
FPT for planar graphs and graphs of bounded genus.

Proof. We give the proof for k-LS-MINIMUM-BISECTION,
and the proofs for other problems follow the same arguments.
Let (G, w, (V1, V2), k) be the input to k-LS-MINIMUM-
BISECTION. In the first part of the proof we show that we
can solve k-LS-MINIMUM-BISECTION by solving an equiv-
alent problem on graphs of bounded diameter (or bounded
treewidth).

Reducing to graphs of bounded treewidth: We start with
a BFS starting at a vertex v ∈ V . Let the layers created by
doing BFS on v be Lv

0, L
v
1, . . . , L

v
t . If t ≤ 6k + 10, we move

to the second phase of the algorithm. From now onwards
we assume that t > 6k + 3. We create thick layers from
the above layers: W v

i =
⋃3i+2

j=3i Lv
j , where i ∈ {0, . . . , s =

� t+1
3 �}. The last thick layer may contain less than 3 lay-

ers. Now we make following partition of the vertex set Tq,
q ∈ {0, . . . , 2k + 1}. We define Tq =

⋃
Wq+i(2k+2), i ∈{

0, . . . ,
⌊

s+1
2k+2

⌋}
. It is clear from the definition of Tq that

it partitions the vertex set. If the input is an YES instance
then there exists a partition (V ′

1 , V ′
2) ∈ Nk(V1, V2) such that

the total number of vertices which will flip its side (or ver-
tices which will participate in change) is upper bounded by
2k. Using the pigeon hole principle, we conclude that there
exist Ta such that it does not contain any of these changed
vertices and does not contain Ws. We can find the desired Ta

by trying all Tq ’s.

Now for every W v
i =

⋃3i+2
j=3i Lv

j contained in Ta, we re-
move the vertices of Lv

3i+1 (that is, the central layer). Let
this set of vertices be called V ′ and the resultant graph be G′
with connected components C1, . . . , Cr. We show that each
connected component Ci of G′ has bounded treewidth. More
precisely, every connected component Ci of G′ is a subset
of at most 6k + 10 layers of the BFS. If we start with G,
delete all BFS layers outside of these layers and contract all
BFS layers inside of these layers into v we obtain a minor
H of G. H has diameter at most 6k + 11, and also H con-
tains Ci as an induced subgraph. Since every minor of G has
bounded local treewidth, Ci has bounded treewidth, that is
tw(Ci) ≤ h(6k + 10) for every i. The reason for removing
central layers from each W v

i is that this retains all the edges
which could participate in improved cuts, as well as reduces
the treewidth of the graph. In certain sense, the first and third
layers of vertices in W v

i shields the vertices of the middle
layer by not participating in change. Notice that since every
connected component of G′ has bounded treewidth, G′ itself
has also bounded treewidth.
Finding appropriate solutions using Dynamic Program-

ming: Let Ṽ1 = V1 \ V ′ and Ṽ2 = V2 \ V ′. Furthermore
T ′ = Ta \ V ′. Then there exists (V ′

1 , V ′
2) ∈ N en

k (V1, V2)
such that c(V1, V2) > c(V ′

1 , V ′
2) if and only if there exists

(Ṽ ′
1 , Ṽ ′

2) ∈ N en
k (Ṽ1, Ṽ2) such that c(Ṽ1, Ṽ2) > c(Ṽ ′

1 , Ṽ ′
2)

and T ′ ∩ (Ṽ ′
1 � Ṽ1) = ∅ (that is, changed vertices should

not include any vertex from T ′). Searching for (Ṽ ′
1 , Ṽ ′

2) re-
duces to a problem in G′, a graph of bounded treewidth. We
can solve this problem using standard dynamic programming
over graphs of bounded treewidth in time 2h(6k+11) · nO(1).
We can also keep appropriate information during dynamic
programming to find the desired cut explicitly. This con-
cludes the proof of the theorem.

5 Limits for FPT Algorithms

The results for k-LS variant for various problems consid-
ered in the previous sections can be extended for graphs ex-
cluding a fixed graph H as a minor in a non-trivial man-
ner. This extension is based on the structural theorem of
[Robertson and Seymour, 2003], which provides a descrip-
tion of an H-minor free graph in terms of clique-sum de-
composition over almost embeddible graphs. By making use
of this decomposition it is possible to replace dynamic pro-
gramming algorithms from previous section over graphs of
bounded treewidth by dynamic programming over “clique-
sum decomposition of H-minor graphs”. For all our algo-
rithms for k-LS problems for H-minor free graphs, we will
eventually reach a stage where we need to solve an “appro-
priate” problem in graphs of bounded diameter (previously
at this step we applied a dynamic programming algorithm
over graphs of bounded treewidth). We first obtain a clique-
sum decomposition for the input graph G and then do two
layer dynamic programming over clique-sum decomposition
as done in [Demaine et al., 2005b].Here we use a non trivial
modification of the problem to cope with its local search vari-
ant. This proof is long and technical, we postpone it for the
full version of the paper.
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Theorem 5. k-LS-VERTEX COVER, k-LS-r-CENTER, and
k-LS-ODD CYCLE TRANSVERSAL are FPT on the class of
H-minor free graphs.

Finally, we observe that, in some sense, H-minor free
graphs are the most general classes of graphs for which pos-
itive results for these local search problems can be expected.
We show that for more general classes of sparse graphs many
local search problems become W [1]-hard. Thus the existence
of k-exchange FPT algorithms for these problems would con-
tradict the widely believed assumption from parameterized
complexity, namely FPT 
= W [1].

A graph G is d-degenerated if every induced subgraph of
G has a vertex of degree at most d.

Theorem 6. k-LS-ODD CYCLE TRANSVERSAL is W [1]-
hard even when restricted to 2-degenerate graphs. Further-
more, k-LS-INDEPENDENT SET and k-LS-DOMINATING
SET are W [1]-hard when restricted to 3-degenerate graphs.

6 Conclusions and Future Directions

In this paper we studied parameterized complexity of local
search for different graph problems. We have shown that,
one can search k-exchange neighborhood of a solution sig-
nificantly better than the brute force for many natural prob-
lems for general classes of sparse graphs. We also provided
hardness proofs that indicate that most of our results can not
be further generalized. There are several open questions that
need to be resolved. For instance, all our algorithmic re-
sults either depend on an observation that allows us to con-
sider small diameter graphs, or are reducible to problems
where such an approach is feasible. An important problem
for which these techniques do not seem to be applicable is the
TRAVELLING SALESMAN PROBLEM. Thus, the main prob-
lem we leave open in this paper is to resolve the complexity
of the k-LS-TRAVELLING SALESMAN PROBLEM in planar
graphs. Finally, one wonders whether running times of the
form O(2O(k)n) are the best one can hope for local search
problems in planar graphs, or whether algorithms running in
time O(2o(k)nc) could be feasible.
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