Duplicate Avoidance in Depth-First Search with Applications to Treewidth

P. Alex Dow and Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095
alex_dow @cs.ucla.edu, korf @cs.ucla.edu

Abstract

Depth-first search is effective at solving hard com-
binatorial problems, but if the problem space has
a graph structure the same nodes may be searched
many times. This can increase the size of the
search exponentially. We explore two techniques
that prevent this: duplicate detection and dupli-
cate avoidance. We illustrate these techniques on
the treewidth problem, a combinatorial optimiza-
tion problem with applications to a variety of re-
search areas. The bottleneck for previous treewidth
algorithms is a large memory requirement. We de-
velop a duplicate avoidance technique for treewidth
and demonstrate that it significantly outperforms
other algorithms when memory is limited. Addi-
tionally, we are able to find, for the first time, the
treewidth of several hard benchmark graphs.

1

An effective technique for solving many combinatorial op-
timization problems is heuristic search through an abstract
problem space. The problem space can be represented by
a graph, where nodes correspond to states and edges corre-
spond to operations. The search graph may include many
paths from the start to any single node. When the same node
is reached from multiple paths in the search, we refer to it as
a duplicate node. The existence of duplicates can lead to an
exponential increase in the size of the search if not properly
managed. Depth-first search is particularly prone to exploring
a large number of duplicates, because, in its simplest form, it
makes no effort at duplicate elimination.

Two methods of eliminating duplicate nodes are duplicate
detection and duplicate avoidance. Duplicate detection uses a
list to store expanded nodes. When a new node is generated,
we check against the list to see if the node is a duplicate and
whether it should be discarded. Duplicate detection is well
studied and typically simple to implement.

Another type of duplicate elimination technique is dupli-
cate avoidance. Whereas duplicate detection generates a node
and checks it against a list, the purpose of duplicate avoid-
ance is to prevent duplicates from being generated in the first
place. In this paper we describe methods for duplicate avoid-
ance. We show how duplicate avoidance techniques can be

Introduction

480

combined with other pruning techniques to reduce the size of
the search, and we show how to avoid a pitfall in implement-
ing duplicate avoidance that may make a search inadmissible.
Our discussion of duplicate elimination techniques will be
in the context of a particular problem: finding exact treewidth.
Treewidth is a fundamental property of a graph with signif-
icant implications for several areas of artificial intelligence
research. A reason for focusing on treewidth is that a natural
search space for it uses a maximum edge cost function. As
we discuss in a later section, in an iterative-deepening search
on a problem with a maximum edge cost function, every du-
plicate node can be discarded. This makes these problems
well-suited for studying duplicate elimination techniques.

2 Treewidth and Maximum Edge Cost Search
2.1 Treewidth Definition and Applications

We present a definition of treewidth in terms of optimal vertex
elimination orders. Note that the graphs discussed here are
undirected and without self-loops.

Eliminating a vertex from a graph is the process of adding
an edge between every pair of the vertex’s neighbors that are
not already adjacent, then removing the vertex and all edges
incident to it. A vertex elimination order is a total order in
which to eliminate all of the vertices in a graph. The width
of an elimination order is defined as the maximum degree
of any vertex when it is eliminated from the graph. Finally,
the treewidth of a graph is the minimum width over all pos-
sible elimination orders, and any order whose width is the
treewidth is an optimal vertex elimination order.

Finding a graph’s treewidth is central to many queries and
operations in a variety of artificial intelligence research areas,
including probabilistic reasoning, constraint satisfaction, and
knowledge representation. These research areas generally use
a graph to represent some information about the world and
conduct various queries and operations on the graph. Know-
ing the treewidth of the graph and having an optimal elim-
ination order can significantly speed up these queries. Ex-
amples include bucket elimination for inference in Bayesian
networks, and jointree clustering for constraint satisfaction
(discussed in [Bodlaender, 2005; Dow and Korf, 2007]).
While some classes of highly structured graphs have known
treewidth [Bodlaender, 2005], determining the treewidth of a
general graph is NP-complete [Arnborg ef al., 1987].

Figure 1: A graph we seek the treewidth of (left), and the
corresponding search space (right).

2.2 The Vertex Elimination Order Search Space

A natural search space for treewidth involves constructing op-
timal vertex elimination orders. Consider searching for an
optimal elimination order for the graph on the left in Figure
1; the corresponding search space is on the right. Eliminating
a set of vertices results in the same graph regardless of the
order in which the vertices are eliminated. Thus, a state in
this search space can be represented by the unordered set of
eliminated vertices. At the root node, no vertices have been
eliminated, and, at the goal node, all three vertices have been
eliminated. To transition from one node to another, a vertex is
eliminated from the graph. The cost of a transition, which la-
bels the corresponding edge in the search space, is the degree
of the vertex when it is eliminated. A solution path represents
a particular elimination order, and the width of that order is
the maximum edge cost on the solution path.

2.3 Maximum Edge Cost Iterative Deepening

A notable detail of the vertex elimination order search space
is that a solution is measured by its maximum edge cost. Most
problems in the search literature use an additive cost function,
where a path is evaluated by summing its edge costs. In fact,
a search algorithm may behave quite differently with a maxi-
mum versus an additive cost function [Dow and Korf, 2008].

Iterative deepening (ID) is a search technique where a
search is conducted as a series of iterations with an increas-
ing cutoff value [Korf, 1985]. Each iteration is a depth-first
search where solutions are only explored if their cost does not
exceed the cutoff. If an iteration is completed without finding
a solution, then all solutions must cost more than the cutoff,
thus the cutoff is increased and the search is repeated. ID
is effective for problems where the time required to search
grows significantly with each increase of the cutoff.

ID is typically applied to problems with an additive cost
function, where, in a single iteration, it may be necessary to
expand the same node more than once. This is because, with
additive costs, whether a solution is found from a node de-
pends on the cost of the path taken to the node and the search
space below that node. Thus, if a lower-cost path is found
to a node that has already been expanded, the node must be
expanded again to see if the new path leads to a solution.

In contrast to the case of additive costs, ID on a maximum
edge cost search space never needs to expand the same node

481

more than once per iteration. Notice that, with maximum
edge costs, the cost of a path to a node doesn’t matter, as
long as it does not exceed the cutoff. If we generate a node
that was previously expanded and we have not yet found a
solution, then we know there is no valid path from that node
to a goal node. Thus, even if there is a lower-cost path to
that node, it also will not lead to a solution. Therefore, in
the course of an iteration, if we ever generate a node that was
previously expanded, we can prune it.

3 Techniques for Duplicate Elimination

The search space for treewidth and many other problems is
a graph, therefore the same node can be reached from many
different paths. A simple depth-first search of a graph will
cause every node to be generated once for each path to it.
In a search for the treewidth of a graph with N vertices, the
search graph has 2"V unique nodes, while depth-first search
would generate O(N'!) nodes. After a node has been gener-
ated once, we refer to any future generations of that node as
duplicates. In this section we discuss techniques for duplicate
elimination.

Duplicate detection refers to methods for eliminating du-
plicate node expansions by caching previously expanded
nodes and checking any new nodes against the cache. In
a depth-first search, duplicate detection is typically accom-
plished with a hash table, referred to as a transposition ta-
ble, into which every expanded node is inserted. In the case
of treewidth, the key to the table is a bitstring of length |V/|
with a bit set if the corresponding vertex has been eliminated
from the graph. When a new node is generated, we check
the transposition table to see if it includes the corresponding
bitstring. If it does, then the node is pruned. On difficult prob-
lems there will not be enough memory for the transposition
table to store every node that is expanded. When memory is
exhausted, the algorithm can use a replacement scheme, such
as least-recently used (LRU), to make room for new nodes.

Another technique for eliminating duplicate nodes involves
recognizing when the search space includes multiple paths to
the same node and preventing all but one of them from being
explored. We refer to this as duplicate avoidance, because
it prevents duplicate nodes from being generated. Duplicate
avoidance techniques are based on identifying sets of dupli-
cate operator sequences. Each sequence represents a differ-
ent path between two nodes in the search space. Methods
for identifying duplicate operator sequences and using them
to avoid duplicate nodes are specific to a particular problem.
Next, we will show how this is done for treewidth. We dis-
tinguish between two types of duplicate avoidance: deductive
duplicate avoidance, the existence of which can be deduced
from a description of the problem space; and inductive dupli-
cate avoidance, which is discovered in the course of a search.

4 Deductive Duplicate Avoidance

Deductive duplicate avoidance involves examining the prob-
lem space for structure that allows us to avoid redundant paths
to a node. Gogate and Dechter [2004] present several rules
that accomplish this in the elimination order search space for
treewidth. These rules are based on the fact that eliminating

a vertex does not add or remove edges to vertices to which it
is not adjacent. Thus, a pair of non-adjacent vertices can be
eliminated in either order at the same cost. Suppose we have
two non-adjacent vertices v and w, and an ordering over the
vertices such that v < w. We will explore solutions where
v is eliminated before w, but we will prune some solutions
where w is eliminated before v. If w is eliminated, we will
not allow v to be eliminated as long none of the vertices ad-
jacent to v are eliminated in the interim. If w is eliminated,
and then some vertex adjacent to v is eliminated, the effect
of eliminating v is no longer the same as it was before we
eliminated w. Thus, in this case, we will eliminate v after w.

We will refer to this duplicate avoidance process as the In-
dependent Vertex Pruning Rule (IVPR). It is described more
formally as Theorems 6.1 and 6.2 of Gogate and Dechter
[2004], where more details can be found. In related work,
Bosnacki et al. [2007] present a more general method for
avoiding redundant paths to a node given an independence
relation on operators or actions.

Our experiments (Section 8) show that IVPR eliminates a
large number of duplicates, though many remain. The next
section attempts to prune some of these remaining duplicates.

5 Inductive Duplicate Avoidance

As we saw in the previous section, IVPR avoids duplicates
due to eliminating non-adjacent vertices because all permu-
tations of those eliminations will have the same cost. Unfor-
tunately, when considering vertices that are adjacent to each
other, we no longer know, a priori, how the costs of the differ-
ent permutations relate. At some point in an iteration of ID
search, if the cost of one of these permutations exceeds the
cutoff then that operator sequence isn’t valid. If more than
one don’t exceed the cutoff, then they represent duplicates. In
this section, we discuss a technique for recognizing valid du-
plicate operator sequences and avoiding all but one of them.
We refer to this as inductive duplicate avoidance, because in-
stead of relying on a priori knowledge about the search space,
it avoids duplicates with information gathered during search.

5.1 A General Procedure

Suppose that, at some point in an ID search, we recognize that
we have applied some sequence of operators from a set of du-
plicate operator sequences. Since this sequence has been suc-
cessfully executed, its cost must not have exceeded the cutoff
value. Although there may be other duplicate sequences in
the set with a lesser cost, our search is ID and we only care
that the cost does not exceed the cutoff. Therefore, we declare
the current sequence “good enough,” and, for the rest of the
search, avoid all other duplicate sequences in the set. We ac-
complish this by storing “good enough” sequences as they are
discovered. As the search progresses, we can check whether
any child of the current node would represent a duplicate of
some “good enough” sequence. If it does we can prune that
child, and avoid generating the corresponding duplicate.
Storing every “good enough” sequence may amount to ex-
plicitly storing the entire search space, which is infeasible on
any interesting problem. This can be dealt with by limiting
the scope of the duplicate avoidance. For example, we could

482

@

/

® ©

Figure 2: A graph we seek the treewidth of.

limit the size of the sequences that are saved, or we could
limit the number of sequences. In the case of treewidth, as we
will see next, we limit it to only certain types of sequences.

5.2 Inductive Duplicate Avoidance for Treewidth

Consider searching for the treewidth of the graph in Fig-
ure 2, with the following arbitrary ordering of the vertices:
A < B < C < D < E. There are six possible duplicate
sequences for eliminating vertices A, C, and E; and IVPR
avoids four of them, leaving: (A, C, F) and (C, E, A). The
duplicates that IVPR does not avoid are due to adjacent ver-
tices, in this case A and E. Thus, the two remaining duplicate
sequences represent the two permutations of the adjacent ver-
tices. The cost of the first sequence is max(3,2,2) = 3, and
the cost of the second is max(2,2,2) = 2. In an iteration
of ID search, if cutoff = 2 then only the second sequence is
explored and there is no duplicate. On the other hand, if the
cutoff > 3 then both sequences are valid and redundant.

We will attempt to avoid the duplicate sequences left by
IVPR. These sequences include permutations of adjacent ver-
tices, therefore we will refer to this duplicate avoidance tech-
nique as the Dependent Vertex Pruning Rule (DVPR). The
key aspects of implementing this technique are (1) identifying
and storing “good enough” sequences, (2) determining when
eliminating a vertex will lead to a duplicate and should thus
be pruned, and (3) determining when stored “good enough”
sequences are valid.

The first task is to identify and store “good enough” se-
quences. Once a node n is generated by eliminating a ver-
tex v, we examine the vertex eliminations that make up the
path taken to node n. We identify the sequence of dependent
vertices, i.e., v, the vertices adjacent to v, and the vertices
adjacent to other dependent vertices. For example, say we
just generated the node that follows from the elimination se-
quence (A, C, E) in Figure 2. We then identify (A, E) as the
sequence of dependent vertices. We ignore the elimination of
C because it had no impact on A or E. Once a dependent
vertex sequence is identified, we consider it a “good enough”
sequence for eliminating the included vertices, and we store it
in a hash table. The key to the hash table is the set of vertices
in the sequence, thus duplicate sequences have the same key.

The second task is to use the stored “good enough” se-
quences to avoid duplicates. If we have determined that some
sequence is “good enough,” then any other permutation of the
included vertices will result in a duplicate. When expanding
a node, before generating each of the children we check to
see if they correspond to a duplicate sequence. For a child
node that results from eliminating a vertex v, we append v
to the end of the sequence of eliminations that make up the
path to the current node. Then we find the sequence of depen-

dent vertices that include v, just as we discussed above. We
then look up that sequence in the hash table. If a sequence
with the same key is found, then it is either the same as the
current sequence or a duplicate of the current sequence. If
it is a duplicate, then we can prune the corresponding child
node. Continuing the example above, say we have stored
“good enough” sequence (A, E') and the current node in the
search corresponds to the graph in Figure 2 with no vertices
eliminated. If we eliminate vertex I, then we will notice that
eliminating A next is redundant with the “good enough” se-
quence. On the other hand, if A is eliminated first, we will no-
tice that eliminating F next is the same as the “good enough”
sequence, thus we can go ahead and eliminate it.

The final task necessary for our description of DVPR is
to determine when a stored “good enough” sequence is valid.
We consider a sequence valid when we know that it can be ex-
ecuted without being pruned by the cutoff. Thus, a sequence
is valid as long as the relevant parts of the graph are the same
as they were when the sequence was discovered. Those parts
include any vertex adjacent to a vertex in the sequence. If one
of those vertices has been eliminated, excluding those in the
sequence themselves, then the cost and effect of executing the
sequence will have changed. When this occurs we no longer
know if the sequence is “good enough,” therefore we purge
it from the hash table. If some vertex that is not adjacent to
any in the “good enough” sequence is eliminated, then the se-
quence remains valid. Returning to the example above, say
(A, E) is a stored “good enough” sequence, and we eliminate
E and then C from the graph in Figure 2. Since C is adja-
cent to neither A nor E when eliminated, the “good enough”
sequence remains valid and will be used to avoid eliminating
A next. On the other hand, given the graph in Figure 2, if we
eliminate B, then the neighborhood of A has changed and the
“good enough” sequence is no longer valid.

5.3 Related Work

Taylor and Korf [1993] describe a technique that uses a
breadth-first search to discover duplicate operator sequences.
They then construct a finite state machine that recognizes
those sequences, such that, during a depth-first search, they
can avoid executing them. They apply this technique to the
sliding tile puzzle. This technique makes assumptions about
the problem space that do not hold for treewidth, such as that
operators have the same cost throughout the search. Thus,
this technique does not directly apply to treewidth.

6 Duplicate Avoidance & Dominance Criteria

In a simple ID search, any technique that eliminates all du-
plicates, whether duplicate detection or duplicate avoidance,
will expand the same set of nodes, though they may be
reached by different paths. If the ID search is enhanced
with other pruning rules, then duplicate avoidance may ac-
tually expand fewer nodes than duplicate detection. One such
type of pruning rule is a dominance criterion, which says that
some node leads to a solution that is no worse than any solu-
tion following some other node, i.e., the first node dominates
the second node. The dominated node can then be pruned.
When combined with a dominance criterion, duplicate avoid-
ance can lead to expanding fewer nodes than would duplicate

483

detection with the same dominance criterion. This is a result
of the fact that duplicate avoidance prevents duplicates from
being generated, while duplicate detection does not. Consider
some node n that can be generated by two potential parents,
p1 and po, and assume that both parents are generated and
expanded. Suppose that the dominance criterion causes n to
be pruned when generated by p;, but not when generated by
p2. Duplicate detection will certainly still generate n via po.
Since duplicate avoidance only generates n from a single par-
ent, if that parent is p; then it will not generate n at all.

If not implemented correctly this combination may lead to
overzealous pruning, thus making the search inadmissible. A
dominance criterion states that a node can be pruned because
there is another node that is at least as good. Duplicate avoid-
ance states that a node can be pruned because there is another
path to it that either was or will be explored. These pruning
rules can conflict if a node is not generated because the dom-
inance criterion pruned the parents that duplicate avoidance
would allow to generate it. This can be fixed by ensuring that
duplicate avoidance never prevents a node from generating a
child if the parent that it would allow to generate that child
was pruned by the dominance criterion. In our experiments,
discussed in Section 8, we adapt IVPR and DVPR to incor-
porate this correction.

7 Existing Tools for Treewidth Search

A useful pruning rule, the Adjacent Vertex Dominance Cri-
terion (AVDC), is based on a result attributed to Dirac (see
Gogate and Dechter [2004]). It states that every graph has an
optimal vertex elimination order with no adjacent vertices ap-
pearing consecutively until the graph becomes a clique. Thus,
if the current node was reached by eliminating a vertex v, we
can prune all children that result from eliminating any vertex
w that is adjacent to v, unless the graph is a clique.

Another useful pruning rule is the Graph Reduction Dom-
inance Criteria (GRDC). Bodlaender et al. [2001] developed
several criteria for identifying when a graph can be reduced
by immediately eliminating some set of vertices without rais-
ing its treewidth. When these criteria, known as the simplicial
and almost simplicial rules, identify a vertex for elimination,
we can prune all other children of the current node.

The existing state-of-the-art algorithm for treewidth is
Breadth-First Heuristic Treewidth (BFHT), developed by
Dow and Korf [2007], and enhanced with a faster method of
deriving the graph associated with a node, developed by Zhou
and Hansen [2008]. A computational bottleneck in BFHT is
that each time a node is expanded it must derive the corre-
sponding graph. The original algorithm always derived the
node’s graph from the original graph. Zhou and Hansen ob-
served that it could be derived from the graph associated with
the last expanded node. They use a large data structure to
ensure that nodes with similar graphs are expanded consecu-
tively. Unfortunately, this increases the algorithm’s memory
requirement “up to ten times.” We discard this data struc-
ture and instead sort the nodes by their state representation: a
bitstring where a bit is set if the corresponding vertex is elim-
inated. This method is as fast as the memory-based method
and without the large memory requirement. Note that BFHT

40
35
30
25
20
15
10

DI —+—
1ID2 —X—
D3 —%—

Nodes Expanded (millions)

0 $ 1 1
36 38 40

Number of Vertices

3000
2500
2000
1500
1000

500

0 1
36 38 40

Number of Vertices

D1

4’7

Runtime (seconds)

42

Figure 3: Average nodes expanded (top) and running time
(bottom) by ID algorithms on random graphs.

uses GRDC, but it is not obvious how to incorporate AVDC.

The final piece of existing treewidth research that we will
employ is a heuristic lower bound. We use the MMD+(least-
¢) heuristic of Bodlaender et al. [2004], and we refer readers
to the original publication for more details.

8 Empirical Results

Here we evaluate the effectiveness of the techniques dis-
cussed in this paper on the treewidth problem. Experiments
are conducted on random graphs and benchmark graphs. The
random graphs are generated with the following parametric
model: given V, the number of vertices, and E, the number
of edges, generate a graph by choosing E edges uniformly at
random from the set of all possible edges. All of the random
graphs used in these experiments have an edge density of 0.2,
ie., 0.1%V x(V —1) edges. Testing suggested that this den-
sity produced the most difficult graphs for various numbers of
vertices. The benchmark graphs include Bayesian networks
and graph coloring instances. Many of these have been used
to evaluate previous treewidth algorithms in the literature.

All algorithms were implemented in C++ and data was
gathered on a Macbook with a 2 GHz Intel Core 2 Duo
processor running Ubuntu Linux. Although the processor
has two cores, the algorithm implementations are single-
threaded. The system has 2 GB of memory, but to prevent
paging we limited all algorithms to at most 1800 MB.

Our experiments include several variations on the ID
search algorithm discussed in this paper. These algorithms
employ AVDC, GRDC, and the MMD+(least-c) lower bound.

ID1 ID with a transposition table and LRU replacement.

484

7000 | "D <]
é 6000 + ID3 —XK— |
§ 5000 | -
= 4000 | -
£ 3000 | .
S 2000 | -

100 300 600 1200 1800

Memory Limit (MB)

Figure 4: Average running time of ID2 and ID3 with various
memory limitations on 42-vertex random graphs.

ID2 Same as ID1 with the addition of IVPR. This is an iter-
ative deepening version of the branch-and-bound algo-
rithm of Gogate and Dechter [2004] with the addition of
the transposition table, the correction to IVPR discussed
in Section 6, and the MMD+(least-c) lower bound.

ID3 Same as ID2 with the addition of DVPR.

Since all algorithms used in our experiments (including
BFHT) employ iterative deepening, performance data is only
presented for the final iteration before the optimal solution is
found. This iteration proves that there is no elimination order
with width less than the treewidth. The vast majority of the
search effort is expended on this iteration.

The first experiments show the effect described in Section 6
where dominance criteria combined with duplicate avoidance
result in fewer expanded nodes. Figure 3 shows the average
performance of our ID algorithms on ten random graphs with
each of 36, 38, 40, and 42 vertices. Because of exceedingly
long runtimes, ID1 was not run on the 42-vertex graphs.

Figure 3 shows that adding IVPR to ID1 halves the num-
ber of nodes expanded, and adding DVPR as well halves them
again. These reductions can be attributed to combining dupli-
cate avoidance with dominance criteria. We also see that ID2
is about 2.5 times faster than ID1, which is a larger improve-
ment than the number of node expansions. This is because
duplicate avoidance also decreases the number of node gener-
ations. The improvement in running time from ID2 to ID3 is
not as large as the improvement in node expansions, because
the addition the DVPR adds extra computational overhead to
each expansion. In the set of 42-vertex graphs, we see that
the runtime improvement of ID3 over ID2 is more significant
than in the smaller graphs. This can be attributed to the fact
that this set includes several graphs where the transposition
table was unable to hold every expanded node in the allo-
cated 1800 MB, thus requiring the LRU replacement scheme.
The next set of experiments investigates how these algorithms
scale when memory is limited.

Figure 4 demonstrates the runtime of ID2 and ID3 on the
set of 42-vertex graphs with various memory constraints. We
ran both algorithms while limiting memory usage to 1800,
1200, 600, 300, and 100 MB. The figure shows that when re-
stricted to 1800 MB of memory ID3 is twice as fast as ID2,
when restricted to 600 MB of memory ID3 is almost three

Time (sec) tree-
Graph BFHT D2 ID3 | width
queen6-6 1.3 0.8 0.9 25
queen7-7 109.5 66.5 62.9 35
queen8-8 6941.6 32919 | 2854.8 45
myciel5 155.3 338 333 19
pigs mem | *17038.4 | *5289.1 9
B_diagnose 28.1 7.5 6.6 13
bwt3ac 1.4 0.1 0.1 16
depotOlac 71.4 17.1 11.8 14
driverlogOlac 175.1 12.6 10.5 9

Table 1: Running time on benchmark graphs. ‘mem’ denotes
algorithm required > 1800MB of memory and did not com-
plete. “*’ denotes that algorithm utilized all 1800MB.

times as fast, and when restricted to 100 MB of memory ID3
is almost five times as fast. These experiments are not meant
to suggest that we want to solve treewidth with only 300 or
100 MB of memory. Instead, they demonstrate that DVPR
helps our search scale much better when the transposition ta-
ble can only hold a fraction of the expanded nodes. As we try
to find the treewidth of larger graphs, we expect the addition
of DVPR to help significantly.

Finally, we compare the performance of our algorithms to
the existing state-of-the-art algorithm, BFHT, on benchmark
graphs. Table 1 shows the runtime of BFHT, ID2, and ID3 on
various benchmark graphs. The first five graphs! are graph
coloring instances and Bayesian networks used to evaluate
previous treewidth search algorithms [Gogate and Dechter,
2004; Dow and Korf, 2007; Zhou and Hansen, 2008]. Note
that this is the first time that the exact treewidth for queen8-8
and pigs has been reported. The last four graphs? are graph-
ical models from the Probabilistic Inference Evaluation held
at UAT’08. The graphs included here were chosen because
they had less than 100 vertices, they were not trivial to solve,
and at least one algorithm successfully found the treewidth.

The table shows that ID2 and ID3 are several times faster
than BFHT on all graphs. It also shows that for all but one
of the included graphs both ID2 and ID3 were able to store
every encountered node in the transposition table. As is con-
sistent with the random graph experiments, when memory is
sufficient ID3 is a little faster than ID2, The most difficult
graph is clearly the pigs Bayesian network. The treewidth of
this graph was not previously known, and BFHT was unable
to complete because of insufficient memory. ID2 and ID3 uti-
lized all 1800 MB and, as is consistent with the random graph
results, ID3 outperformed ID2 by a factor of three.

9 Conclusion

Search on a graph-structured problem space can lead to an
exponential increase in the size of the search versus the size
of the problem space. In this paper, we have discussed several
techniques for duplicate elimination that can prevent this in-
crease. We have shown that duplicate avoidance, as opposed

'"http://www.cs.uu.nl/ hansb/treewidthlib.
2Available at http://graphmod.ics.uci.edu/uai0s.

485

to duplicate detection, can lead to a substantial decrease in
the number of expanded nodes when combined with dom-
inance criteria. Additionally, we have presented inductive
duplicate avoidance, a duplicate avoidance technique based
on discovering duplicate operator sequences during search.
We have demonstrated how to implement this technique on
the treewidth problem. Our experimental results show that
adding duplicate elimination techniques to an iterative deep-
ening search for treewidth consistently outperforms the ex-
isting state-of-the-art on hard benchmark graphs. Existing
techniques are limited by their memory requirement, and we
have shown that our method scales well when memory is lim-
ited. This has allowed us to, for the first time, find the exact
treewidth of two hard benchmark graphs.

Acknowledgments

This research was supported by NSF grant No. I11S-0713178
to Richard Korf.

References

[Arnborg et al., 1987] Stefan Arnborg, Derek Corneil, and
Andrzej Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J Algbrc & Dscrt Mthds, 8(2), 1987.

[Bodlaender et al., 2001] Hans Bodlaender, Arie Koster,
Frank van den Eijkhof, and Linda van der Gaag. Pre-
processing for triangulation of probabilistic networks. In
Proc. 17th UAI, pages 32-39, San Francisco, CA, 2001.

[Bodlaender et al., 2004] Hans L. Bodlaender, Arie M. C. A.
Koster, and Thomas Wolle. Contraction and treewidth
lower bounds. In Proc. 12th European Symposium on Al-
gorithms (ESA-04), pages 628-639, January 2004.

[Bodlaender, 2005] Hans L. Bodlaender.
treewidth. LNCS, 3381:1-16, January 2005.

[Bosnacki er al., 2007] Dragan BoSnacki, Edith Elkind,
Blaise Genest, and Doron Peled. On commutativity based
edge lean search. In ICALP, pages 158—170, 2007.

[Dow and Korf, 2007] P. Alex Dow and Richard E. Korf.
Best-first search for treewidth. In Proc. 22nd AAAI, pages
1146-1151, Vancouver, British Columbia, Canada, 2007.

[Dow and Korf, 2008] P. Alex Dow and Richard E. Korf.
Best-first search with a maximum edge cost function. In
Proc. 10th Int’l Sym on Al and Math, Ft Lauderdale, 2008.

[Gogate and Dechter, 2004] Vibhav Gogate and Rina
Dechter. A complete anytime algorithm for treewidth. In
Proc. 20th UAI pages 201-20, Arlington, Virginia, 2004.

[Korf, 1985] Richard E. Korf. Depth-first iterative-
deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97-109, 1985.

[Taylor and Korf, 1993] Larry A. Taylor and Richard E.
Korf. Pruning duplicate nodes in depth-first search. In
AAAI pages 756761, 1993.

[Zhou and Hansen, 2008] Rong Zhou and Eric A. Hansen.
Combining breadth-first and depth-first strategies in

searching for treewidth. In Symp. on Search Techniques
in Al and Robotics, Chicago, Illinois, USA, July 2008.

Discovering

