
Monte Carlo Tree Search Techniques in the Game of Kriegspiel

Paolo Ciancarini

Dipartimento di Scienze dell’Informazione
University of Bologna
ciancarini@cs.unibo.it

Gian Piero Favini

Dipartimento di Scienze dell’Informazione
University of Bologna

favini@cs.unibo.it

Abstract

Monte Carlo tree search has brought significant
improvements to the level of computer players in
games such as Go, but so far it has not been used
very extensively in games of strongly imperfect in-
formation with a dynamic board and an emphasis
on risk management and decision making under un-
certainty. In this paper we explore its application to
the game of Kriegspiel (invisible chess), providing
three Monte Carlo methods of increasing strength
for playing the game with little specific knowl-
edge. We compare these Monte Carlo agents to the
strongest known minimax-based Kriegspiel player,
obtaining significantly better results with a con-
siderably simpler logic and less domain-specific
knowledge.

1 Introduction

Imperfect information games provide a good model and
testbed for many real-world problems and situations involv-
ing decision making under uncertainty. They typically in-
volve a combination of complex tasks such as heuristic
search, belief state reconstruction and opponent modeling,
and they can be very difficult for a computer agent to play
well. Some games are particularly challenging because at
any time, the number of possible, indistinguishable states far
exceeds the storage and computational abilities of present-
day computers. In this paper, the focus is on one such game,
Kriegspiel or invisible chess. It has several features that make
it interesting: firstly, its rules are identical to those of a very
well-known game and only the players’ perception of the
board is different, only being able to see their own pieces;
secondly, it is a game with a huge number of states and lim-
ited means of acquiring information; and finally, the nature
of uncertainty is entirely dynamic. This differs from other
games such as Phantom Go or Stratego, wherein a newly dis-
covered piece of information remains valid for the rest of the
game. Information in Kriegspiel is scarce, precious and ages
fast.

In this paper we present the first full application of Monte
Carlo tree search to the game of Kriegspiel. Monte Carlo tree
search has been imposing itself over the past years as a ma-
jor tool for games in which traditional minimax techniques

do not yield good results due to the size of the state space
and the difficulty of crafting an adequate evaluation function.
The game of Go is the primary example, albeit not the only
one, of a tough environment for minimax where Monte Carlo
tree search was able to improve the level of computer players
considerably. Since Kriegspiel shares the two traits of being
a large game and a difficult one to express with an evaluation
function (unlike its perfect information counterpart), it is only
natural to test a similar approach. This would also allow to re-
duce the amount of game-specific knowledge used by current
programs by a large amount.

The paper is organized as follows. In Section 2, we intro-
duce the game of Kriegspiel, its rules, and the most signifi-
cant research results obtained in the field. In Section 3, we
provide a few highlights in the history of Monte Carlo tree
search methods applied to games, with an emphasis on Phan-
tom Go, which is to Go what Kriegspiel is to chess. We then
describe our Monte Carlo approaches in Section 4, showing
how we built three Monte Carlo Kriegspiel players of increas-
ing strength. Section 5 contains experimental tests comparing
strength and performance of the various programs. Finally,
we give our conclusions and furure research directions in Sec-
tion 6.

2 Kriegspiel

Kriegspiel, named after the ‘war game’ used by the Prussian
army to train its officers, is a chess variant invented at the end
of the XIX century by Michael Henry Temple. It is played
on three chessboards in different rooms, one for either player
and one for the umpire. From the umpire’s point of view, a
game of Kriegspiel is a game of chess. The players, however,
can only see their own pieces and communicate their move
attempts to the umpire, so that there is no direct communica-
tion between them. If a move is illegal, the umpire will ask
the player to choose a different one. If it is legal, the umpire
will instead inform both players as to the consequences of
that move, if any. This information depends on the Kriegspiel
variant being played; on the Internet Chess Club, which has
the largest player base for this game, it consists of the follow-
ing.

• When something is captured: in this case the umpire will
say whether the captured chessman is a pawn or another
piece and where it was captured, but in the latter case he

474



will not say what kind of piece.

• When the king of the player to move is in check from
one or more directions among the following: rank, file,
short diagonal, long diagonal, knight.

• When the player to move has one or more capturing
moves using his pawns (“pawn tries”).

• When the game is over.

Because the information shared with the players is rela-
tively little, the information set for Kriegspiel is huge. If
one considers the number of distinct belief states in a game
of Kriegspiel, the KRK (king and rook versus king) ending
alone is not very far from the whole game of checkers. How-
ever, many of these states are in practice equivalent since
there is no strategy that allows to distinguish among them
in a normal game. This complexity is the primary reason
why, for a long time, research only focused on algorithms
for specific endings, such as KRK, KQK or KPK. Ferguson
showed algorithms for solving KBNK and KBBK under cer-
tain circumstances; see, for example, [Ferguson, 1992]. It
was only recently that the computer actually started to play
Kriegspiel. State reconstruction routines are the main object
of [Nance et al., 2006]; [Russell and Wolfe, 2005] focuses on
efficient belief state management in order to recognize and
find Kriegspiel checkmates; [Parker et al., 2005] is the first
Monte Carlo approach to Kriegspiel, using and maintaining a
state pool that is sampled and evaluated with a chess function.
Finally, [Ciancarini and Favini, 2007] is based on ideas first
applied to Shogi in [Sakuta, 2001] with the addition of eval-
uation functions. A similar program to the one described in
[Ciancarini and Favini, 2007], with some improvements, will
be used as a benchmark for the players in the present work.

3 Related work

Approaches to imperfect information games can be summar-
ily divided into two broad categories: those which consider
individual possible game states, and those which reason on
an abstract model that is unable to see each single possible
state. As far as Kriegspiel is concerned, [Parker et al., 2005]
is an example of the former type, being a Monte Carlo ap-
proach (albeit a very different one from Monte Carlo tree
search) based on running possible states through a chess en-
gine. On the other hand, [Ciancarini and Favini, 2007] is an
example of the latter approach, reducing the game to an ab-
stract model and essentially treating it as a perfect informa-
tion game. Ever since the introduction of the UCT algorithm
in [Kocsis and Szepesvari, 2006], Monte Carlo programs of
the first type have been more and more successful over the
past few years in facing very complex games such as Go,
though they have also been used in games of imperfect in-
formation such as poker and Scrabble.

The Phantom Go program described in [Cazenave, 2006]
may be one of the most significant examples, since the game
is the Go equivalent of Kriegspiel: the player only sees his
own stones and a move is declared illegal when he tries to
place a stone on an occupied intersection. A Monte Carlo
player obtained good results in terms of playing strength
against humans on a 9x9 board. A thorough comparison of

several Monte Carlo approaches to Phantom Go, with or with-
out tree search, has recently been given in [Borsboom et al.,
2007]. Given the success of these methods, it is reasonable
to wonder how similar methods would perform in a game
with such high uncertainty as Kriegspiel. On the other hand,
there are several differences worth mentioning between the
two games.

• The nature of Kriegspiel uncertainty is completely dy-
namic: while Go stones are, if not immutable, at least
largely static and once discovered permanently decrease
uncertainty by a large factor, information in Kriegspiel
ages and quickly becomes old. One needs to consider
whether uncertainty means the same thing in the two
games, and whether Kriegspiel is a harsher battlefield
in this respect.

• There are several dozen combinations of messages that
the Kriegspiel umpire can return, compared to just two
in Phantom Go. This makes their full representation in
the game tree very difficult.

• In Phantom Go there always exists a sequence of ille-
gal moves that will reveal the full state of the game and
remove uncertainty altogether; no such thing exists in
Kriegspiel, where no sequence of moves can ever reveal
the umpire’s chessboard except near the end of the game.

• Uncertainty grows faster in Phantom Go, but also de-
creases automatically in the endgame. By contrast,
Kriegspiel uncertainty only decreases permanently when
a piece is captured, which is rarely guaranteed to happen.

• In Phantom Go, the player’s ability to reduce uncertainty
increases as the game progresses since there are more
enemy stones, but the utility of this additional informa-
tion often decreases because less and less can be done
about it. It is exactly the opposite in Kriegspiel: much
like in Battleship, since there are fewer enemies on the
board and fewer allies to hit them with, the player has
a harder time making progress, but any information can
give him a major advantage.

• Finally, there are differences carried over from their per-
fect information counterparts, most notably the victory
conditions. Kriegspiel is about causing an event that can
happen suddenly and at almost any time, whereas Go
games are concerned with the accumulation of score.

Because of these differences, the resemblance with Phan-
tom Go might be more superficial than it can appear at a first
glance and adds further motivation to see if analogous meth-
ods can work on both games despite their differences.

There is comparatively less research done on Monte Carlo
approaches to games with a mutable, dynamic board. We
recall, for example, [Chung et al., 2005], which deals with
real time strategy games, because it implements high-level
planning with a Monte Carlo method. This is of particu-
lar interest to us because it better reflects the way a human
Kriegspiel player thinks, giving himself strategic goals such
as attacking a square and then considering which goal offers
the best tradeoff between risks and rewards. In the quoted
paper, games are simulated with the AI following different

475



strategies and then choosing the one with the highest victory
ratio. This is an example of simulations run through a model
of the game rather than the game itself, and as such the ap-
proach seems compatible with a Kriegspiel model like the one
described in [Ciancarini and Favini, 2007].

4 Our approach

In this section, we provide three Monte Carlo methods for
playing Kriegspiel, which we label A, B and C. These ap-
proaches are quickly summarized in Figure 1. Initially, we
investigated an approach that was as close as possible to the
Monte Carlo techniques developed for Go and other games;
the first version of our program, approach A, was a more
or less verbatim translation of established Monte Carlo tree
search for Go. We developed the other two methods after
performing unsuccessful tests, though these only differ in the
simulation step, which is one of four phases in Monte Carlo
tree search. MCTS is an iterative method that performs the
following four steps until its available time runs out.

• Selection. The algorithm selects a leaf node from the
tree based on the number of visits and their average
value. Selection is a problem reminding of the n-armed
bandit, where the agent needs to keep a balance between
exploration and exploitation.

• Expansion. The algorithm optionally adds new nodes
to the tree.

• Simulation. The algorithm somehow simulates the rest
of the game one or more times, and returns the value
of the final state (or their average, if simulated multiple
times).

• Backpropagation. The value is propagated to the
node’s ancestors up to the root, and new average values
are computed for these nodes.

Our approach A would implement the four steps of Monte
Carlo tree search as follows.

• For Selection, our implementation used the standard
UCT algorithm (Upper Confidence bound applied to
Trees) first given in [Kocsis and Szepesvari, 2006]. This
algorithm chooses at each step the child node maximiz-
ing the quantity

Ui = vi + c

√
lnN

ni
,

where vi is the value of node i, N is the number of times
the parent node was visited, ni is the number of times
node i was visited, and c is a constant that favors ex-
ploitation if low, and exploration if high. At each step
the algorithm moves down the tree until it finds a leaf.

• For Expansion, our implementation would expand a new
node with each iteration, which we considered to be a
reasonable solution.

• Simulation raises a number of questions in a game of
imperfect information, such as whether and how to gen-
erate the missing information, and how to handle subse-
quent moves. Existing research is of limited help, since

to the best of our knowledge this is the first time MCTS
is applied to a game with such high uncertainty - a game
in which knowledge barely survives the next move or
two. Go is relatively straightforward in that move han-
dling can be as simple as playing a random move any-
where except in one’s own eyes. It is also easier to esti-
mate the length of a simulated Go game, which is gen-
erally related to the number of intersections left on the
board. Kriegspiel simulations are necessarily heavier to
compute due to the rules of the game.
Our program A simulated games as follows: first, a ran-
dom position was generated for the opponent’s pieces.
These positions were approximated using several heuris-
tics such as remembering how many pieces are left on
the board, and how many pawn can be on each file.
Then, both players would play random moves until they
drew by the fifty move rule or they reached a standard
endgame position (such as king and rook versus king),
in which case the game would be adjudicated. In order
to make simulation more accurate, both players would
almost always try to capture back or exploit a pawn try
when possible - this is basic and almost universal human
behavior when playing the game.

• We implemented standard Backpropagation, using the
average node value as backup operator.

Approach A failed, performing little better than the random
player and losing badly and on every time setting to a more
traditional player based on minimax search. Program A’s vic-
tory ratio was below 2%, and its victories were essentially
random and unintentional mid-game checkmates. Investigat-
ing the reasons of the failure showed three main ones in ad-
dition to the obvious slowness of the search. First, the posi-
tions for the opponent’s pieces as generated by the program
were not realistic. The generation algorithm used probability
distributions for pieces, pawns and king that were updated af-
ter each umpire message. While the probabilities were quite
accurate, this did not account for the high correlation be-
tween different pieces, that is, pieces protecting other pieces.
Kriegspiel players generally protect their pieces quite heavily,
in order to maximize their chances of successfully repelling
an attack. As a result, the program tended to underestimate
the protection level of the opponent’s pieces. Secondly, be-
cause moves were chosen randomly, it also underestimated
the opponent’s ability to coordinate an attack and hardly paid
attention to its own defense.

Lastly, but perhaps most importantly, there is the subtler
issue of progress. Games where Monte Carlo approaches
have been tested most thoroughly have a built-in notion of
progress. In Go, adding a stone changes the board perma-
nently. The same happens in Scrabble. In Poker, the player
is always given the same options. Kriegspiel, on the other
hand, like real-time strategy games has no such notion; if the
players do nothing significant, nothing happens. In fact, it
can be argued that many states have similar values and a pro-
gram failing to find a good long-term plan will either rush a
very dangerous plan or just choose to minimize the risk by
moving the same piece back and forth. When a Monte Carlo
method does not perform enough simulations to find a stable

476



Value of b4-b5?

Umpire is silent Pawn try Illegal move

Silent (35%) Pawn try (30%) Illegal (35%)

Full game 

simulations

k-move 

simulations

value = 0.35*v(silent) + 0.3*v(pawn_try) + 0.35*v(illegal) Weighed average 

of B (k=1)

A

C

B

Figure 1: Comparison of three simulation methods. Approach A is standard Monte Carlo tree search, approach B simulates
umpire messages only and for k-move runs, approach C immediately computes the value of a node in approach B for k = 1.

maximum, it can do either.
Hence, performing Monte Carlo on single states proved far

too unstable for a generic program, though the approach may
work in specific situations with a small information set. In or-
der to overcome this problem, we define a second approach,
called B. Approach B removes the randomness involved in
generating single states and instead only simulates umpire
messages, without worrying about the enemy layout that gen-
erated them. The same abstract model used to create states in
approach A is now used to estimate the likelyhood of a given
umpire message in response to a certain move. For example,
there is a chance of the enemy retaliating on a capture one or
more times and a chance of a move being illegal. These are
all approximated with probability distributions on the vari-
ous squares, just like in approach A. In particular, the model
makes the following assumptions:

• The probability for a move to be illegal is equal to the
sum of the probabilities of each square on the piece’s
path being occupied; for pawns, this includes the desti-
nation square unless the move is a capture.

• When a capture takes place, there is a 99% chance of the
capturing piece being, in turn, captured by the opponent.
If the player can immediately retaliate once more, this
chance halves with each iteration.

• There is a 30% chance of the player’s piece being cap-
tured when a check message is heard.

• The probability distribution for enemy pieces is updated
with a simple algorithm after each move, which basi-
cally brings all values closer to the average and normal-
izes them. There is a 10% chance of the player suffering

a capture, with more exposed pieces being more likely
targets.

The second point of interest about method B is that it does not
play full games as that proved to be too detrimental to perfor-
mance. Instead, it simulates a portion of the game that is at
most k moves long. The algorithm also accounts for quies-
cence, and allows simulations to run past the limit of k moves
after its starting point in the event of a string of captures. The
first move is considered to be the one leading to the tree node
where simulation begins; as such, when k = 1, there is ba-
sically no exploration past the current node except for quies-
cence. Intuitively, a low value of k gives the program less
foresight but increases the number of simulations and as such
its short term accuracy; a high value of k should do the oppo-
site. At the end of the simulated snippet, the resulting chess-
board is evaluated using the only real notion of Kriegspiel
theory in this method; that basically reduces to counting how
many pieces the player has left, minus the number of enemy
pieces left.

The third and final approach, called C, is approach B taken
to the extreme for k = 1; it was developed after noticing the
success of that value of k in the first tests. Since the percent-
ages for each umpire message are known in the model, it is
easy to calculate the results for each and average them. This
operation, which builds implicit chance nodes (whose num-
ber would be enormous if actually created), makes it so each
node needs only be evaluated once. Because simulations are
assumed to instantly converge in this fashion, the backup op-
erator is also changed from the average to the maximum node
value. Of course, this is the fastest simulation strategy, blur-
ring the line between simulation and a UCT-driven evaluation
function (or, more accurately, a cost function in a pathfinding

477



algorithm), and it can be very discontinuous from one node
to the next. If approach C is successful, it means that in-
formation in Kriegspiel is so scarce and of such a transient
nature, as outlined in the previous section, that the benefits
of global exploration by simulating longer games are quite
limited compared to the loss of accuracy in the short run,
thus emphasizing selection strategies over simulation strate-
gies. Another way to think of approach C is as if simulations
happened entirely on the tree itself rather than in separate tri-
als, at the rate of one simulation per node. This is based on
the assumption that good nodes are more likely to have good
children, and the best node usually lies at the end of a series
of good or decent nodes.

5 Tests

We test our approaches, with the exception of A which is not
strong enough to be interesting, against a similar program
to the one described in [Ciancarini and Favini, 2007]. The
main feature of the Kriegspiel player in the cited paper is the
use of metapositions as representations of the game’s belief
state that can be evaluated in a minimax-like fashion. Tests
against humans on the Internet Chess Club showed that the
minimax program’s playing strength is reasonable by human
standards, ranking above average at around 1700 Elo points;
specifically, it possesses good defense but is often unable to
find a good attack strategy unless the opponent is in a weaker
position, which limits its strength as Kriegspiel favors a wise
attacker. The program used in our tests is probably slightly
stronger than the aforementioned one, since it performs a se-
ries of hard-coded checks that prevent the agent from making
obvious blunders. It should be noted that our Monte Carlo
players do not include these checks. The evaluation function
of the minimax player is rather complex, consisting of sev-
eral components including material, positional and informa-
tion bonuses. By contrast, our Monte Carlo programs know
very little about Kriegspiel: approaches B and C only know
that the more pieces they have, the better. They know noth-
ing about protection, promoting pawns, securing the center or
gathering information.

The results of the tests are summarized in Figure 2. Pro-
grams are evaluated through comparison with the minimax
player, with the value of k on the x axis and the difference in
Elo points on the y axis. Thus, programs that perform worse
than the minimax player are below 0 in the graph, and better
programs are above 0. We recall that in the Elo rating system
a difference of 200 points corresponds to an expected result
of about 0.75 (with 1 being a win and 0.5 being a draw), and
a difference of 400 points has an expected result of about 0.9.
The minimax player itself always runs at the same, optimal
setting for its evaluation function, requiring between 1 and
2 seconds to run. The program hits a performance plateau
after this point, preventing it from further increases in perfor-
mance.

After witnessing the failure of approach A, we limit our
tests to approaches B and C. The Monte Carlo programs do
not have particular optimizations and their parameters have
not been thoroughly fine-tuned. The programs are all identi-
cal outside the simulation task, with the single exception of

B (1 s)

B (2 s)

B (4 s)
C (1 s)

C (2 s)
C (4 s)

Figure 2: Comparison of Monte Carlo approaches B and C
with a fixed-depth minimax player at different time settings
and simulation depths, with error intervals.

the UCT exploration parameter c. Approach C uses a lower
value of c leaning towards exploitation more on the basis that
each node is only evaluated once. However, this different
value of c has only a small beneficial value on the program:
most of the advantage of the weighed average method lies
in its speed, which allows it to visit many more nodes than
the corresponding B program for k = 1 - the speedup factor
ranges from 10 to 20 on average, everything else being equal.
In fact, approach C lacks randomness altogether and could be
considered a degeneration of a Monte Carlo technique.

Experimental findings more or less confirm our expecta-
tion, that is, lower values of k should be more effective under
faster time settings, and higher values of k should eventually
gain the upper hand as the program is given more time to
reason. When k is low, the program can execute more sim-
ulations which make it more accurate in the short term, thus
reducing the number of tactical blunders. On the other hand,
given enough time the broader horizon of a higher k finds
more strategic possibilities and longer plans through simula-
tion that the lower k cannot see until they are encountered
through selection.

At 1 second per move, k = 1 has a large advantage over
the other B programs. Doubling the time reduces the gap
among all programs, and at 4 seconds per move the longer
simulations have a small but significant edge, actually out-
performing the minimax player by a slight margin. The only
disappointment came from the k = 3 players, which did not
really shine under any time setting. It is possible that three
moves is just not enough to consistently generate good plans
out of random tries. Since Kriegspiel plans can be interleaved
with basically useless moves that more or less maintain the
status quo on the board, a ten-move sequence can contain a
good three-move sequence with higher likelyhood.

Given the simplicity of the approach and the lack of spe-
cialized knowledge compared to the minimax player’s trained
parameters and pruning techniques, B programs are quite re-
markable, though not as much as the performance of C type

478



programs. These can defeat the benchmark program con-
sistently, ranking over 100 Elo points above it and winning
about three times more games than they lose to it. Since ap-
proach C has basically no lookahead past the node being ex-
plored, we can infer that UCT selection is the major respon-
sible for its performance, favoring the paths of least danger
and highest reward under similar time settings to the minimax
player’s. The UCT exploration-exploitation method beats the
hard pruning algorithms used by the minimax player, show-
ing that in such a game as Kriegspiel totally pruning a node
can often remove an interesting, underestimated line of play:
there are relatively few bad nodes that can be safely ignored.
It appears more profitable to allocate different amounts of
time and resources to different moves, like in Monte Carlo
tree search and the related n-armed bandit problem.

6 Conclusions and future work

There are several conclusions to be drawn from these exper-
iments. First, they show that a Monte Carlo tree search al-
gorithm can converge to good results in a reasonable amount
of time even in a very difficult environment like Kriegspiel,
whose lengthy simulations might at first appear to be a signif-
icant disadvantage of the method. However, precautions need
to be taken so that the program does not end up sampling data
that is too noisy to be useful; in this case, such a requirement
is met by abstracting the game with a model in which single
states are not important, and only their perception matters.

Secondly, we can explain the success of approach C, which
is basically UCT with a node evaluation function, with its
accuracy in simulating the very next move. Also, it can
be argued that variable-depth UCT selection can outperform
fixed-depth minimax in high-uncertainty situations even un-
der these unorthodox premises. Still, approach B - the more
traditional Monte Carlo method - seems to have the largest
room for improvement. While experimental data indicates
that stable evaluation of the first move is the largest factor to-
wards improving performance and avoiding tactical blunders
when time is short, a longer simulation with higher values
of k provides better strategic returns under higher time set-
tings. In particular, k = 10 shows great improvement at 4
seconds per move. It is possible that, with more effective
simulation strategies and more processing power, approach
B will be able to outperform approach C. It is too early to
reach a conclusion on this point. A hybrid approach, treating
the first move like C and the following moves like B, is also
worth investigating.

The program as a whole can still be improved by a large
factor. In the game of Go, Monte Carlo tree search is more
and more often combined with game-specific heuristics that
help the artificial player in the selection and simulation tasks.
Since Monte Carlo methods are weak when they are short on
time, these algorithms drive exploration through young nodes
when there is little sampling data available on them. An ex-
ample of such algorithms is the two progressive strategies
described in [Chaslot et al., 2008]. Since Kriegspiel is of-
ten objective-driven when played by humans, objective-based
heuristics are the most likely candidates to make good pro-
gressive strategies, and research is already underway in that

direction. There are several other optimizations borrowed
from Go that might be useful under imperfect information,
such as the all-moves-as-first heuristic.

References

[Borsboom et al., 2007] J. Borsboom, J. Saito, G. Chaslot,
and J. Uiterwijk. A comparison of Monte-Carlo methods
for Phantom Go. 2007.

[Cazenave, 2006] T. Cazenave. A Phantom-Go program.
Lecture Notes in Computer Science, 4250:120–125, 2006.

[Chaslot et al., 2008] G. Chaslot, M. Winands, J. van der
Herik, J. Uiterwijk, and B. Bouzy. Progressive strategies
for Monte-Carlo tree search. New Mathematics and Natu-
ral Computation, 4(3):343–352, 2008.

[Chung et al., 2005] M. Chung, M. Buro, and J. Schaeffer.
Monte Carlo planning in RTS games. In Proceedings of
the IEEE Symposium on Computational Intelligence and
Games, 2005.

[Ciancarini and Favini, 2007] P. Ciancarini and G. Favini.
Representing Kriegspiel states with metapositions. In
Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI 07),
pages 2450–2455, Hyderabad, India, 2007.

[Ferguson, 1992] T. Ferguson. Mate with bishop and knight
in Kriegspiel. Theoretical Computer Science, 96:389–403,
1992.

[Kocsis and Szepesvari, 2006] L. Kocsis and C. Szepesvari.
Bandit based Monte-Carlo planning. Lecture Notes in
Computer Science, 4212:282–293, 2006.

[Nance et al., 2006] M. Nance, A. Vogel, and E. Amir. Rea-
soning about partially observed actions. In Proc. 21st Na-
tional Conference on AI, Boston, USA, 2006.

[Parker et al., 2005] A. Parker, D. Nau, and VS. Subrahma-
nian. Game-tree search with combinatorially large belief
states. In Int. Joint Conf. on Artificial Intelligence (IJ-
CAI05), pages 254–259, Edinburgh, Scotland, 2005.

[Russell and Wolfe, 2005] S. Russell and J. Wolfe. Effi-
cient belief-state AND-OR search, with application to
Kriegspiel. In Int. Joint Conf. on Artificial Intelligence
(IJCAI05), pages 278–283, Edinburgh, Scotland, 2005.

[Sakuta, 2001] M. Sakuta. Deterministic solving of problems
with uncertainty. PhD thesis, Shizuoka University, Japan,
2001.

479


