
Search Strategies for an Anytime Usage of the Branch and Prune Algorithm

Raphael Chenouard

LINA, University of Nantes

France

Raphael.Chenouard@univ-nantes.fr

Alexandre Goldsztejn

CNRS, LINA

France

Alexandre.Goldsztejn@univ-nantes.fr

Christophe Jermann

LINA, University of Nantes

France

Christophe.Jermann@univ-nantes.fr

Abstract

When applied to numerical CSPs, the branch and
prune algorithm (BPA) computes a sharp covering
of the solution set. The BPA is therefore imprac-
tical when the solution set is large, typically when
it has a dimension larger than four or five which is
often met in underconstrained problems. The pur-
pose of this paper is to present a new search tree
exploration strategy for BPA that hybridizes depth-
first and breadth-first searches. This search strat-
egy allows the BPA discovering potential solutions
in different areas of the search space in early stages
of the exploration, hence allowing an anytime us-
age of the BPA. The merits of the proposed search
strategy are experimentally evaluated.

1 Introduction

We consider numerical CSPs (i.e. variables domains are con-
tinuous, usually intervals of reals) with equality and inequal-
ity constraints. NCSPs with less equations than variables typ-
ically have continuous (infinite) solution sets. For example,
the solution set of the NCSP

〈 (x, y) , ([−2, 2], [−2, 2]) , {x2 + y2 = 1} 〉 (1)

is the circle of radius 1 centered on (0, 0), a continuous set
of dimension 1. This kind of NCSPs are met in numer-
ous applications, e.g. design [Chenouard et al., 2007] and
robotics [Merlet, 2000].

Branch and prune algorithms (BPAs) [Van Hentenryck et
al., 1997] solve NCSPs alternating filtering and branching
in order to explore exhaustively the search space following
a search tree. Usually the stopping criterion is the size of the
domains: they are processed until they reach a minimum size
ε. The BPA hence returns a ε-paving, i.e. a sharp enclosure of
the solution set made of ε-boxes (box domains whose size is
smaller than ε). See different pavings of the CSP (1) on Fig-
ure 1. However, as soon as the solution set is too large (e.g.
when the number of variables exceeds the number of equa-
tions by more than four), computing a ε-paving is impractical
due to the huge number of boxes needed.

The BPA is however intrinsically anytime, since when
stopped prematurely one still gets an enclosure of the solution

set. But this premature paving is not very useful if the search-
tree is explored depth-first (DFS) or breadth-first (BFS): DFS
quickly converges to ε-boxes that are too close to one another
to be representative of the solution set (see the left part of
Figure 1); BFS computes a homogeneous paving but finds no
ε-box at all if stopped too early (see the center graphic of Fig-
ure 1; note that such a sharp paving cannot be computed for
larger solution sets, making BFS useless in such cases).

The search strategy used in an anytime BPA should quickly
find ε-boxes that are representative of the solution set: ε-
boxes should be discovered uniformly on a continuous con-
nected component in the solution set, while every connected
components should be reached by some ε-boxes in early
stages of the search. Two such strategies are introduced in
the present paper. The most distant-first strategy (MDFS)
is introduced in Section 3.1; it consists in exploring the leaf
of the search tree that maximizes the distance to the ε-boxes
found so far. This strategy has good asymptotic properties
(cf. Proposition 1), but lacks efficiency for quickly finding ε-
boxes. The depth and most distant-first strategy (DMDFS) is
introduced in Section 3.2; it is a greedy approximation of the
MDFS, the latter being hybridized with a depth-first search
to force a quick discovery of ε-boxes. Although the DMDFS
does not possess the good theoretical properties of the MDFS,
it shows a very good behavior on the presented experiments
(cf. Section 4). The right part of Figure 1 shows the paving
obtained using the DMDFS strategy. Six ε-boxes have been
found instead of 56 using the DFS, but they are more repre-
sentative than those obtained by the DFS.

Related Work

Recently [Goldsztejn and Granvilliers, 2008], an improved
BPA has been proposed to tackle NCSPs with manifolds of
solutions. However, this technique is based on the BFS and
thus typically cannot be used to approximate solution sets of
dimension higher than four or five.

When the solution set has a nonempty interior (typically
when the NCSP involves only inequality constraints), BPAs
can be improved by computing interior boxes, i.e. boxes that
contain only solutions. However, the BPA still accumulates ε-
boxes on the boundary of the solution set, a subspace having
a dimension equal to that of the problem minus one. Thus,
most of high dimensional solution sets remain out of reach of
usual BPAs with interior box computation.

468

Figure 1: From left to right: The depth-first, the breadth-first and the depth and most distant-first strategies stopped after 100
bisections for the CSP (1). Each ε-box, for ε = 10−2, is pointed by an arrow (56 for DFS, 0 for BFS and 6 for DMDFS).

Interleaved DFS [Meseguer, 1997] consists in starting a
DFS at each node obtained after a BFS limited to a reason-
ably low depth. However, this search strategy cannot give
rise to an anytime algorithm: determining an adequate depth
for the initial BFS is very difficult; too small it prevents lo-
cal consistencies to be efficient enough, but too big it yields
combinatorial explosion.

2 Interval Analysis

To tackle CSPs with continuous domains, a key issue is to
prove properties on continuum of real numbers. Interval anal-
ysis handles this problem in an efficient way by using compu-
tations on floating point numbers. We recall here some basics
which are required to understand the paper. More details can
be found in [Neumaier, 1990; Jaulin et al., 2001].

Interval analysis is mainly used to perform rigorous filter-
ing through so-called interval contractors. An interval con-
tractor for a constraint c on n variables with solution set
ρc ⊆ R

n is a function Contractc : IR
n −→ IR

n that sat-
isfies the following relations:

1. Contractc([x]) ⊆ [x];

2. ∀x
(
x ∈ [x] ∧ x ∈ ρc

)
=⇒ x ∈ Contractc([x]).

Here, intervals are denoted with bracketed symbols and IR

is the set of closed intervals. This definition is extended
to a set of constraints C identifying C to the conjunction of
its constraints. Hence, x ∈ ρC is true if and only if every
constraint in C is true for x. Such contractors for standard
equality and inequality constraints can be implemented using
several techniques [Neumaier, 1990; Collavizza et al., 1999]

among which the 2B–consistency (also known as hull consis-
tency) [Lhomme, 1993] and the box-consistency [Benhamou
et al., 1994] play key roles in the resolution of numerical CSP.
These filtering techniques are typically used in a branch and
prune algorithm (BPA, described in Algorithm 1). This al-
gorithm alternates filtering and branching so as to compute a
sharp enclosure of the solution set. The output of the algo-
rithm is a set of ε-boxes whose union contains all the solu-
tions of the CSP. These boxes can be post-processed in order
to check if they actually contain some solution1. The search
strategy in the generic BPA is parametrized by the procedures

1this post-process usually applies to under-constrained systems

Algorithm 1: Generic Branch and Prune Algorithm.

Input: C = {c1, . . . , cm}, [x] ∈ IR
n, ε > 0

Output: E = {[x1], . . . , [xp]}
L ← 〈ContractC([x])〉;1

E ← ∅;2

while L �= ∅ do3

([x],L) ← Extract(L);4

if wid([x]) < ε then5

E ← E ∪ {[x]};6

else7

T ← Split([x]);8

T ← Map(ContractC , T)2;9

L ← Insert(L, T \{∅});10

end11

end12

return E ;13

Extract and Insert which handle the list L of boxes to be
processed (current leaves of the search-tree). A DFS is im-
plemented managing the list as a stack (LIFO), while a BFS
is obtained managing the list as a queue (FIFO).

3 Search-tree Exploration Strategies

The goal of the proposed exploration strategies is to find ε-
boxes in an order that is useful in an anytime algorithm, i.e.,
ε-boxes must spread across the search space in early stages.

3.1 The Most Distant-First Strategy

In order to spread ε-boxes across the search space, the search
for a new ε-box should aim at maximizing the distance to
the ε-boxes found so far. Formally, being given m ε-boxes
E = {[x1], . . . , [xm]}, we wish the next ε-box [xm+1] to
maximize the cost function defined by

MinDist
[x1],...,[xm]

(x) := min{d(x, [x1]), . . . , d(x, [xm])}, (2)

i.e. to maximize the distance to the closest ε-box found so
far. The distance d is an arbitrary distance between elements

after fixing enough variables in order to obtain a well constrained
system, cf. [Kearfott, 2009]

2Map(f, {x1, . . . , xm}) = {f(x1), . . . , f(xm)}.

469

of the search space. It is extended to sets considering the
maximum distance between elements of these sets:

d([x], [y]) := max
x∈[x]
y∈[y]

d(x, y) (3)

which, though not a distance anymore, still satisfies the trian-
gular inequality.

The most distant-first strategy (MDFS) is defined by
choosing among all leaves of the search tree the one that max-
imizes (2). This is implemented in Algorithm 1 as follows:

(a) The boxes T \{∅} are inserted into L at Line 10 accord-
ing to MinDist[x1],...,[xm] so that the list is maintained
sorted decreasingly.

(b) Each time a new ε-box is found, the list L is
sorted decreasingly according to the new criteria
MinDist[x1],...,[xm],[xm+1] just after Line 6.

(c) The first element of L is extracted at Line 4.

At the beginning of the search, no ε-box is yet available and
MinDist[x1],...,[xm] is undefined. The strategy is thus started
with a depth-first search to quickly find out the first ε-box.

When ε tends toward 0, the (m + 1)th ε-box found using
the MDFS asymptotically converges to the actual most distant
solution

max
x∈ρC

MinDist
[x1],...,[xm]

(x) (4)

To prove this property, we need the following lemma.

Lemma 1. Provided that d is extended to sets using (3),
d([y], [z]) ≤ ε implies |MinDist([y])−MinDist([z])| ≤ ε.

Proof. There exist some i, j ∈ {1, . . . , m} such that

MinDist
[x1],...,[xm]

([y]) = d([xi], [y]) (5)

MinDist
[x1],...,[xm]

([z]) = d([xj], [z]). (6)

Suppose, without loss of generality, that d([xi], [y]) ≤
d([xj], [z]). We also suppose that i �= j, the other case be-
ing similar and simpler. By the triangular inequality, we have
d([xi], [z]) ≤ d([xi], [y])+d([y], [z]), which is less than ε by
hypothesis, while by (6) we have d([xj], [z]) ≤ d([xi], [z]).
We have therefore proved that

d([xi], [y]) ≤ d([xj], [z]) ≤ d([xi], [y]) + ε, (7)

which finally implies |d([xi], [y])− d([xj], [z])| ≤ ε.

Then, the following proposition shows that the MDFS
asymptotically converges to arbitrarily sharp approximations
of the global maximum of (4).

Proposition 1. Consider Algorithm 1 where ContractC im-
plements the global hull consistency. Let m ε-boxes S =
{[x1], . . . , [xm]} be found by Algorithm 1 and suppose that
at this point L �= ∅. Then the next ε-box [xm+1] found using
the MDFS contains a solution x which satisfies

|d∗ − MinDist
[x1],...,[xm]

(x)| ≤ ε, (8)

where d∗ is the global optimum of (4).

Proof. The function MinDist will be used without the ex-
plicit reference to the ε-boxes [x1], . . . , [xm] in the sequel.
First, we claim that there exist x

∗ ∈ [x∗] ∈ L such that
MinDist(x∗) = d∗, and thus MinDist([x∗]) ≥ d∗. This is
due to the fact that every boxes of L are non-empty and hull
consistent, and thus contain at least one CSP solution. Thus
d∗ obviously corresponds to a CSP solution that belongs to a
box of L (the solutions belonging to [xk] for k ≤ m having a
lower MinDist).

Now, because of the MDFS, when the ε-box [xm+1] is ex-
tracted at Line 4, it satisfies

∀[x] ∈ L , MinDist([x]) ≤ MinDist([xm+1]). (9)

Thus in particular MinDist([x∗]) ≤ MinDist([xm+1]) and
d∗ ≤ MinDist([xm+1]) is proved to hold. As [xm+1] con-
tains at least a solution x, we have proved

MinDist(x) ≤ d∗ ≤ MinDist([xm+1]). (10)

But finally as x ∈ [xm+1] and wid([xm+1]) ≤ ε, we
have d(x, [xm+1]) ≤ ε, and thus Lemma 1 proves that
|MinDist(x) −MinDist([xm+1])| ≤ ε which together with
(10) conclude the proof.

The global hull consistency is necessary in Proposition 1.
Though usual consistencies are not as strong as the optimal
hull consistency, their efficiency increases as the width of
interval decreases, and thus Proposition 1 is an asymptotic
property of the MDFS for small ε.

Proposition 1 shows that the MDFS actually solves a con-
strained optimization problem to find the solution of the
NCSP that maximizes the distance to the solutions found
so far. Thus one can think of using other methods to solve
this optimization problem. However, our experiments have
shown that local optimizers, including genetic algorithms, do
not converge to good enough solutions to be used in place of
MDFS, while global optimizers are too slow.

3.2 Mixing the Most Distant and Depth-First
Strategies

The BPA with a MDFS can be used as an anytime algorithm
since it produces ε-boxes that are well distributed. However,
as it solves a global optimization problem to find each new
ε-box, it cannot be efficient in general. The search strategy
proposed in this section is an approximation of the MDFS
that finds representative ε-boxes much quicker. To this end,
the MDFS is hybridized with the depth-first strategy, so as to
keep the advantages of both approaches, i.e. a quick discov-
ery of ε-boxes which are still representative of the solution
set. The depth and most distant-first strategy (DMDFS) is de-
fined by keeping the points (b) and (c) of the MDFS and by
modifying (a) to

(a’) The boxes T \{∅} are inserted at the beginning of L at
Line 10 (LIFO).

Thus, the DMDFS search-tree is reorganized according to
the distance to the ε-boxes found so far each time a new ε-
box is found. An additional heuristic is used for choosing
among the boxes at the same depth: the one that maximizes
MinDist[x1],...,[xm] is explored first. This is performed in (a’)

470

sorting decreasingly w.r.t. MinDist[x1],...,[xm] the boxes in

T \{∅} before inserting them in front of L.
The DMDFS does not have as good asymptotic properties

as MDFS: it implements a greedy optimization of (4) instead
of a global optimization. The following example shows a sit-
uation where it does not converge to the global optimum.

Example 1. Consider the situation depicted on the left of
Figure 2: we have already found one ε-box (black box) and
the problems has six remaining solutions x1, . . . ,x6 (black
points) distributed into the two boxes to be processed (light
gray boxes). The solution x2 is the one that maximizes the
distance to the ε-box. However, the right hand side light gray
box maximizes MinDist[x1] (dashed line). Therefore, both the
MDFS and the DMDFS process this box first, bisecting and
filtering it, and finally give rise to the right hand side graphic
of Figure 2 where three boxes remain to be processed.

In this situation, the MDFS and the DMDFS operate dif-
ferently: the MDFS processes the box that maximizes the dis-
tance to the ε-box among all three boxes, i.e. the light gray
box, and will eventually converge to x2; while, the DMDFS
processes the box that maximizes the distance to the ε-box
among the boxes of largest depth only, i.e. dark gray boxes,
and will eventually converge to x6.

However, experiments reported in Section 4 show that the
DMDFS computes well distributed ε-boxes while being much
quicker than MDFS.

3.3 Implementation Issues

Sorting operations performed in (a), (a’) and (b) are very fast
provided that the distance to the closest ε-box found so far

min{d([x], [x1]), d([x], [x2]), . . . , d([x], [xm])} (11)

is stored together with boxes insideL, and updated when nec-
essary. The most expensive operation is the computation of
the new distances to the closest ε-box in (b) : When a new
ε-box [xm+1] is found, the number

min{d([x], [x1]), d([x], [x2]), . . . , d([x], [xm+1])} (12)

must be computed for each box [x] ∈ L. This must be done
using the following identity:

(12) = min{ (11) , d([x], [xm+1]}, (13)

which saves most of the computations reusing (11) for the
computation of (12).

4 Experiments

This section presents experiments showing that the MDFS
and the DMDFS both cover uniformly a simply connected
solution set, and quickly reach all connected components of
a solution set that has several ones. They will also illustrate
Proposition 1 and demonstrate the practical efficiency of the
DMDFS.

Experiments have been carried out on an 1.5 GHz Intel
Pentium M based computer. The algorithms used for filtering
are based on the interval library PROFIL/BIAS [Knueppel,
1994].

4.1 A Simply Connected Solution Set

We wish here to verify the repartition of the first so-
lutions computed by the MDFS and the DMDFS in-
side one connected component. We consider the CSP
〈(x, y), ([−2, 2], [−2, 2]), {11x8−x6−183x4y2 +44x6y2 +
117x2y4 + 66x4y4 − 21y6 + 44x2y6 + 11y8 ≤ 0}〉. This
CSP has a flour shaped solution set with area π. The first
10−5-boxes obtained with the MDFS and the DMDFS are
shown on Figure 3. The MDFS behaves very well, while the
DMDFS is less good at the beginning of the search though
yielding quite homogeneously distributed 200 solutions.

More formally, the distance between the closest solutions
among m solutions placed on a regular grid inside a square of

surface π is
√

π/m. Therefore, a good repartition of m solu-
tions (with m large enough) should have an average distance
to closest neighbor that converges to this ideal distance. As
shown by Figure 4, both the MDFS and the DMDFS reach
this asymptotically good repartition, though the standard de-
viation is slightly better for the MDFS. On the other hand,
computing the first 200 solutions took 27 seconds with the
MDFS while only 5 seconds with the DMDFS.

4.2 Solution Set with Multiple Connected
Components

We now wish to verify that the search strategies quickly reach
all connected components of the solution set. To this end, we
will measure the time needed to place at least one ε-box on
each connected components of a scalable CSP whose solu-
tion set consists of n non-overlapping balls in a space of di-
mension n. The balls have radius 1 and a random center in
[−100, 100]n. This solution set is naturally obtained with a
disjunction of constraints, but also corresponds to the follow-
ing conjunction of constraints:

n∑

i=1

(xi − cji)
2 − 1 = yj , (j = 1..n) (14)

n∏

j=1

yj ≤ 0. (15)

We have varied n from 2 to 14 and measured the average
time on 10 different random problems for ε = 10−6. The
MDFS already failed for n = 3 and therefore does not ap-
pear in the following comparison. The DMDFS has been
tested with both hull-consistency and box-consistency, al-
though hull-consistency is foreseen to be more efficient on
this NCSP since it has one occurence of each variable in each
constraint.

A natural competitor to our strategies is the Monte Carlo
approach, which here consists in randomly generating solu-
tion candidates in the variables domains. However, this ran-
dom search must be hybridized with a local search since the
probability of obtaining a solution at random is quasi-null.
For the local search, two state of the art optimizers have
been used, namely knitro3 and donlp24. In order to apply

3Available at http://www.ziena.com/knitro.htm.
4Available at http://www-fp.mcs.anl.gov/OTC/

Guide/SoftwareGuide/Blurbs/donlp2.html.

471

x1

x2 x3

x4

x5

x6 x1

x2 x3

x4

x5

x6

Figure 2: Situation where DMDFS does not converge to the same solution as MDFS.

Figure 3: First 1, 3, 5, 7 and 200 solutions found using the MDFS (upper graphics) and DMDFS (lower graphics).

50 100 150 200

0.5

1.0

1.5

2.0

2.5

50 100 150 200

0.5

1.0

1.5

2.0

Figure 4: Average distance to the closest neighbor obtained enclosed inside the ± standard deviation hull, for the MDFS (left)

and the DMDFS (right). The asymptotic ideal distance
√

π/m is shown in dashed line.

472

�

� �

�

� �
�

�

� �

�

�
�

�
�

�

�

�

�

�

�
�

�
�

�
�

�

�
�

�
�

� �
�

� �
� �

�

�

�

�

�

�

�
�

�
�

�
�

�
�

4 6 8 10 12 14

0.1

1

10

100

1000

� dmdfs �box�

� dmdfs �hull�

� donlp2

� knitro

Figure 5: Time needed in seconds by each tested method to reach the n connected components of the Section 4.2 NCSP, w.r.t.
n. As expected, hull-consistency provides better timings than box-consistency on these NCSP.

them to our problem, we have transformed our NCSP into an
optimization problem either with a constant objective func-
tion when they accept equation constraints (donlp2) or with
a least-square objective function on the violation of the equa-
tions when they do not handle equation constraints (knitro).
Both methods have been used with their default settings af-
ter verifying that these settings prove to be optimal for the
problem we address.

Figure 5 shows that the DMDFS allows tackling prob-
lems that are out of reach of random searches even when hy-
bridized with efficient local searches.

5 Conclusion

Two new search-tree exploration strategies for branch and
prune algorithms have been proposed. They both allow us-
ing the BPA as an anytime algorithm by spreading solutions
across the solution set in early stages of the search. The
most distant-first strategy (MDFS) has good asymptotic prop-
erties but is not very efficient in practice. The depth and most
distant-first strategy (DMDFS) is a hybridization of the DFS
and the MDFS that takes advantage of both. The DMDFS
is very promising as it allows tackling NCSPs with large so-
lution set while only a very few techniques are available for
searching representative solutions of such CSPs. Reported
experiments have confirmed the practical applicability of this
search strategy and shown that local search approaches can-
not compete on tested benchmarks. It is worthwhile noting
that our strategies are not restricted to numerical CSPs since
the BPA applies also in the discrete case. We thus plan to ap-
ply it to mixed discrete-continuous CSPs met in design prob-
lems and other applicative domains.

References

[Benhamou et al., 1994] F. Benhamou, D. McAllister, and
P. Van Hentenryck. CLP(Intervals) Revisited. In Interna-
tional Symposium on Logic Programming, pages 124–138,
1994.

[Chenouard et al., 2007] R. Chenouard, P. Sébastian, and
L. Granvilliers. Solving an Air Conditioning System Prob-
lem in an Embodiment Design Context Using Constraint
Satisfaction Technique. In Proceedings of CP 2007, vol-
ume 4741/200 of LNCS, pages 18–32, 2007.

[Collavizza et al., 1999] H. Collavizza, F. Delobel, and
M. Rueher. Comparing Partial Consistencies. Reliable
Comp., 1:1–16, 1999.

[Goldsztejn and Granvilliers, 2008] A. Goldsztejn and
L. Granvilliers. A New Framework for Sharp and Efficient
Resolution of NCSP with Manifolds of Solutions. In
Proceedings of CP 2008, volume 5202/2008 of LNCS,
pages 190–204, 2008.

[Jaulin et al., 2001] L. Jaulin, M. Kieffer, O. Didrit, and
E. Walter. Applied Interval Analysis with Examples
in Parameter and State Estimation, Robust Control and
Robotics. Springer-Verlag, 2001.

[Kearfott, 2009] R.B. Kearfott. Interval Analysis: Verify-
ing Feasibility. In C.A. Floudas and P.M. Pardalos, ed-
itors, Encyclopedia of Optimization, pages 1730–1733.
Springer, 2009.

[Knueppel, 1994] O. Knueppel. PROFIL/BIAS - A Fast In-
terval Library. Computing, 53(3-4):277–287, 1994.

[Lhomme, 1993] O. Lhomme. Consistency Techniques for
Numeric CSPs. In Proceedings of IJCAI 1993, pages 232–
238, 1993.

[Merlet, 2000] J.P. Merlet. Parallel robots. Kluwer, Dor-
drecht, 2000.

[Meseguer, 1997] P. Meseguer. Interleaved depth-first
search. In Proceedings of IJCAI 1997, pages 1382–1387,
1997.

[Neumaier, 1990] A. Neumaier. Interval Methods for Sys-
tems of Equations. Cambridge Univ. Press, 1990.

[Van Hentenryck et al., 1997] P. Van Hentenryck,
D. McAllester, and D. Kapur. Solving polynomial
systems using a branch and prune approach. SIAM J.
Numer. Anal., 34(2):797–827, 1997.

473

