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Abstract

This paper presents an axiomatic analysis of ne-
gotiation problems within task-oriented domains
(TOD). We start by applying three classical bar-
gaining solutions of Nash, Kalai-Smorodinsky and
Egalitarian to the domains of problems with a pre-
process of randomization on possible agreements.
We find out that these three solutions coincide
within any TOD and can be characterized by the
same set of axioms, which specify a solution of
task oriented negotiation as an outcome of dual-
process of maximizing cost reduction and minimiz-
ing workload imbalance. This axiomatic character-
ization is then used to produce an approximate so-
lution to the domain of problems without random-
ization on possible agreements.

1 Introduction

Negotiation or bargaining is a typical form of interaction
between intelligent agents. Initiated by Nash’s seminal
work [Nash, 1950], the study of negotiation in game the-
ory has reached high sophistication with a variety of mod-
els and solutions. The theory has been extensively applied
to economics, management science, social science as well
as computer science [Binmore et al., 1992; Thomson, 1994;
Rosenschein and Zlotkin, 1994; Jennings et al., 2001].

Game-theoretic account of bargaining consists of two typi-
cal models: axiomatic model (cooperative theory) and strate-
gic model (non-cooperative theory). The axiomatic model
specifies a bargaining problem as a one-shot game with com-
plete information and characterizes bargaining solutions ax-
iomatically [Thomson, 1994]. The strategic model devices
explicit construction of negotiation procedures and identifies
bargaining outcomes as equilibria [Binmore et al., 1992]. The
attempt to establish the relationship between the two models
is known as the Nash program.

The axiomatic model of negotiation is domain-dependent,
which means that a solution can have totally different charac-
teristics with different domain of problems. Given the Nash
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solution as an example, the axiomatic systems for convex do-
main, comprehensive domain, finite domain, and ordinal do-
main are significantly different (see Section 6 for a brief sum-
mary). This feature causes the axiomatic theory of bargaining
rather complicated and the research exceedingly interesting.

Task Oriented Domain (TOD), introduced by Zlotkin and
Rosenschein (1993), represents a class of negotiation prob-
lems that can be abstracted as task sharing among au-
tonomous agents. More specifically, the domain specifies a
certain kind of interaction among agents in which the agents
have sets of tasks to carry out, and can exchange tasks and
share in their execution. A range of real-world applications,
such as parcel delivery, database queries, job allocation, can
be described in this domain [Rosenschein and Zlotkin, 1994].

As originated from computer science and AI, the task
oriented domain has specific features that differentiate it
from those that have been studied in game theory. The
domain is not convex even after randomization, therefore
the traditional axiomatizations for the Nash solution, the
Kalai-Smorodinsky (KS) solution and the Egalitarian solu-
tion are not applicable [Nash, 1950; Kalai and Smorodin-
sky, 1975]. The modern extensions of these solutions to the
non-convex domain are inapplicable as well because the do-
main is not comprehensive [Conley and Wilkie, 1991; 1996;
Xu and Yoshihara, 2006]. Those solutions specially designed
for discrete domains are also not suitable for task oriented
negotiation [Mariotti, 1998; Özgür Kibris and Sertel, 2007].
As we will see, the above mentioned three solutions coincide
within TODs and their axiomatic characterization is signifi-
cantly different from the ones for any other domains.

The paper is organized as the following. Section 2 recalls
the basic concepts on TOD from [Rosenschein and Zlotkin,
1994]. Section 3 presents a cooperative model of task ori-
ented negotiation. In Section 4, we redefine and characterize
three classical bargaining solutions in mixed deals. In Sec-
tion 5, we demonstrate how the axiomatic characterization
can be used to produce an approximate solution in pure deals.
In the final two sections, we conclude the paper with a dis-
cussion of related work.

2 Task oriented domains

A task oriented domain specifies a negotiation situation in
which a group of agents have to decide how to cooperate for
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reducing execution costs. More formally, we have the follow-
ing definition.

Definition 1 [Zlotkin and Rosenschein, 1993] A task ori-
ented domain (TOD) is a tuple 〈T ,A, c〉 where:

1. T is a finite set of possible tasks;

2. A = {A1, A2} is the set of agents;

3. c : 2T → �+ is a monotonic function that maps a set of
possible tasks to a non-negative real number, satisfying
X ⊆ Y ⊆ T implies c(X) ≤ c(Y );

4. c(∅) = 0.

In other words, a task oriented domain specifies a set of
possible tasks, a group of agents who are capable of carry-
ing out any possible combination of tasks, and a cost function
which determines the cost of execution of each set of tasks.
Different from the original setting in [Zlotkin and Rosen-
schein, 1993], we restrict the set of possible tasks to be finite
and the number of agents to be two.

Rosenschein and Zlotkin (1994) have demonstrated that a
number of real-world negotiation scenarios can be specified
in task oriented domains. All these scenarios satisfy the fol-
lowing common assumption:

Subadditivity: c(X∪Y ) ≤ c(X)+c(Y ) for any X, Y ∈ 2T .

In other words, regrouping tasks could reduce execution
costs. This motivates the agents to negotiate for a better task
distribution. Throughout this paper, we assume that all the
domains we consider are subadditive.

3 Task oriented negotiation

In order to facilitate analysis of task oriented negotiation,
Rosenschein and Zlotkin (1994) has introduced a few con-
cepts to model the problems. Let us recall the basic concepts
that will be used in this paper.

Given a TOD 〈T ,A, c〉, a pair (T1, T2) is an encounter
within the TOD if, for each i ∈ {1, 2}, Ti is a subset of
T . We denote the set of all encounters within the TOD by
Σ(T ,A, c).

Let T = (T1, T2) be an encounter, a pair (D1, D2) is a
pure deal of T if D1 ∪ D2 = T1 ∪ T2. In other words, a pure
deal is a redistribution of tasks in T among the agents. We
let Ω(T ) be the set of all pure deals of T . Note that T itself
is always a pure deal of T , which is referred to as the conflict
deal of the encounter. Also, (T1 ∪ T2, ∅) and (∅, T1 ∪ T2) are
pure deals of T .

Let (D1, D2) be a pure deal of T . Any expression in the
form of “(D1, D2) : p” is called a mixed deal of T if p is a
probability, i.e, (0 ≤ p ≤ 1). Intuitively, (D1, D2) : p rep-
resents a probabilistic redistribution of the tasks in (D1, D2)
in the way that agent 1 is assigned D1 with probability p and
D2 with 1 − p while agent 2 receives the sets of tasks with
the inverse probability. The set of all the mixed deals of T
is denoted by Ω(T ). In certain context, we view a pure deal
(D1, D2) as the mixed deal (D1, D2) : 1. Moreover, the
mixed deal (T1 ∪ T2, ∅) : p is called to be an all-or-nothing
deal of T . For more intuitive discussions on the above con-
cepts, see [Rosenschein and Zlotkin, 1994] Chapters 3 & 4.

We would like to remark that the operation of randomiza-
tion to generate a mixed deal is significantly different from
the way that Nash uses to convexify a feasible set, where
an “anticipation” is generated from two anticipations in the
form: pD′ + (1 − p)D′′. As a result, any feasible set be-
comes convex after Nash’s randomization. However, the set
of mixed deals is not necessarily convex (see Figure 1).

Next we extend the cost function of a TOD to mixed deals.
For each encounter T within a TOD 〈T ,A, c〉, we define a

cost function C : Ω(T ) → �2 as follows: for each D =
(D1, D2) : p ∈ Ω(T ), C defines the cost of the mixed deal to
each agent, i.e., C(D) = (C1(D), C2(D)), where

C1(D) = p ∗ c(D1) + (1 − p) ∗ c(D2)

C2(D) = (1 − p) ∗ c(D1) + p ∗ c(D2)

Note that for a mixed deal (D1, D2) : p, we always have
C1(D) + C2(D) = c(D1) + c(D2). In other words, the pro-
cess of randomizing a pure deal redistributes cost (workload)
between two agents but does not reduce cost. To reduce cost,
we need to redistribute tasks. In fact, there are two major fac-
tors that determine the outcome of a task oriented negotiation:
cost reduction and workload distribution. We will use these
two factors as the criteria to compare deals.

For any two mixed deals D and D′ of an encounter, we
say that D dominates D′, denoted by D � D′, if and only if
Ci(D) ≤ Ci(D

′) for all i ∈ {1, 2}. We say that D strongly
dominates D′, denoted by D 
 D′, if and only if D � D′

and there is an i such that Ci(D) < Ci(D
′). Moreover, we

say that D is equivalent to D′, written as D ≈ D′ if and only
if D � D′ and D′ � D. Obviously, ≈ is an equivalence
relation on Ω(T ). Based on the concept of domination, we

define the Pareto set of Ω(T ) as:

P (T ) = {D ∈ Ω(T ) : there is no D′ ∈ Ω(T ) s.t. D′ 
 D}
(1)

We can also compare two deals in terms of workload distri-
bution. We consider a deal to be “fairer” than the other if its
workload distribution between agents is closer to the origi-
nal allocation of the encounter. Formally, for any D′, D′′ ∈
Ω(T ), we write D′ �T D′′ if and only if dist(D′, T ) <
dist(D′′, T ), where

dist(D, T ) = |(C1(D) − C2(D)) − (c(T1) − c(T2))| (2)

Intuitively, D′ �T D′′ means that the workload distribution
of D′ is closer to T than that of D′′. Note that we use the
difference of costs to each agent to measure the workload dis-
tribution between the agents.

All the above concepts can also be defined on pure deals.
To save space, we omit their definitions.

The following lemmas describe the properties of Pareto
set, which will be frequently used in the proof of other the-
orems. The first lemma is a theorem in [Rosenschein and
Zlotkin, 1994] (Theorem 9), which says that Pareto optimal
deals maximize cost reduction. The second lemma asserts
that any Pareto optimal deal has an all-or-nothing representa-
tive. We omit their proof here.

Lemma 1 [Rosenschein and Zlotkin, 1994] For any
(D1, D2) : p ∈ P (T ), c(D1) + c(D2) = c(D1 ∪ D2).
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Lemma 2 (D1, D2) : p ∈ P (T ) if and only if there exists an
all-or-nothing deal D′ such that D ≈ D′.

4 Negotiation solutions in mixed deals

In this section, we consider the solutions that take mixed
deals as output. We apply three most outstanding bargain-
ing solutions in game theory: the Nash solution, the Kalai-
Smorodinsky (KS) solution and the Egalitarian solution1, to
TODs and characterize these solutions.

4.1 Game-theoretic bargaining model

Negotiation analysis aims to provide a clear-cut prediction of
the outcomes of any negotiation situation within the domain
under consideration. In game theory, a bargaining solution
is a function that assigns to each bargaining game a single
agreement or a set of agreements depending on the underlying
domains.

Formally, a bargaining game is a pair (S, d), where S ⊆
�2 is the feasible set that can be derived from possible agree-
ments and d ∈ S stands for the disagreement point. A bar-
gaining solution f is a function that assigns to each bargain-
ing game (S, d) a unique point of S or a subset of S.

Given an encounter T within a TOD 〈T ,A, c〉, we can
define a game-theoretic bargaining game by using Rosen-
schein and Zlotkin’s utility function: for each D ∈ Ω(T ),
u1(D) = c(T1) − C1(D) and u2(D) = c(T2) − C2(D).
We let S = {(u1(D), u2(D)) : (D1, D2) ∈ Ω(T )} and
d = (0, 0). Then (S, d) is the bargaining game that corre-
sponds to the encounter T . One may think that the task ori-
ented negotiation problem could have been solved if we apply
a game-theoretic solution to each of the bargaining games.
Unfortunately this is not the case. As we have mentioned in
the introduction, all game-theoretic negotiation solutions are
domain-dependent. As we will see in Example 1 and 2, all
three solutions we consider in this section give different re-
sults in mixed deals and in pure deals.

Figure 1: An example of bargaining game in task oriented
domain with mixed deals

Figure 1 shows an example of bargaining game in task ori-
ented domain with mixed deals (the dots represent pure deals

1see [Thomson, 1994] for a comprehensive introduction of these
solutions.

and the dashed lines represent mixed deals. We omit the orig-
inal example due to space limitation). It is easy to see that
such a bargaining game is neither convex nor comprehensive,
which means that the existing characterizations for the clas-
sical bargaining solutions are not applicable to this domain.

4.2 Three classical solutions

Although the axiomatic characterizations for classical game-
theoretic solutions are not applicable to task oriented negoti-
ation, the solutions themselves can be applied to the domain
of problems even though their behavior will be very likely
different. In this subsection, we redefine the three classical
bargaining solutions in the context of task oriented domains.

Definition 2 Given a TOD 〈T ,A, c〉, a negotiation solution
f in mixed deals is a function that assigns to each encounter
T ∈ Σ(T ,A, c) a set of mixed deals, i.e., f(T ) ⊆ Ω(T ).

Note that a negotiation solution is set-valued, which means
that the solution outputs a set of mixed deals as its predic-
tion. This is because there might be several equivalent ways
to redistribute tasks.

Now we define a few specific solutions. To facilitate these
definitions, let I(T ) be the individual rational deals of T , i.e,

I(T ) = {D ∈ Ω(T ) : c(Ti) − Ci(D) ≥ 0 for i = 1, 2} (3)

First, we define the Nash solution in the task oriented do-
main [Nash, 1950] (also see [Rosenschein and Zlotkin, 1994]

p.50).

Definition 3 A negotiation solution f in mixed deals is the
Nash solution if for all T ∈ Σ(T ,A, c),

f(T ) = arg max
D∈I(T )

(c(T1) − C1(D))(c(T2) − C2(D)) (4)

where arg max means the arguments of max function, i.e.,
the maximizers of the product of the utilities of two agents.

Next, we apply the Egalitarian solution to our domain:

Definition 4 A negotiation solution f in mixed deals is the
Egalitarian solution if for all T ∈ Σ(T ,A, c),

f(T ) = arg max
D∈I(T )

{v : c(T1)−C1(D) = c(T2)−C2(D) = v}

(5)
that is, the deals that maximize and divide equally the utilities
of two agents.

Finally, we simulate Kalai-Smorodinsky’s solution [Kalai
and Smorodinsky, 1975]. To this end, let (a1, a2) =
( max
D∈I(T )

(c(T1) − C1(D), max
D∈I(T )

(c(T2) − C2(D)), i.e., the

ideal point. Then we have

Definition 5 A negotiation solution f in mixed deals is the
Kalai-Smorodinsky solution if for all T ∈ Σ(T ,A, c),

f(T ) = arg max
D∈I(T )

{v : (c(T1) − C1(D)) = a1v and

(c(T2) − C2(D)) = a2v}
(6)

In other words, the solution gives the individual rational deals
that maximize the utilities on the diagonal from (0, 0), the
utilities of the conflict deal, to the ideal point (a1, a2).

(0↪ 0)

u2

u1
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Example 1 Let 〈T ,A, c〉 be a TOD where T = {a, b, c},
A = {A1, A2} and the cost function is the following:

c(∅) = 0, c({a}) = 1, c({b}) = 2, c({c}) = 3,

c({a, b}) = 2, c({a, c}) = 4, c({b, c}) = 4,

c({a, b, c}) = 5.

Consider an encounter T = ({a, b}, {b, c}) within the
TOD. It is not hard to know that the Nash solution, KS solu-
tion and Egalitarian solution give the same set of mixed deals
with the elements that are all equivalent to the all-or-nothing
deal ({a, b, c}, ∅) : 0.3. �

Lemma 3 For any encounter T within a TOD, fN(T ) =
fKS(T ) = fE(T ), where fN , fKS, fE are the Nash solu-
tion, the KS solution and the Egalitarian solution, respec-
tively.

Lemma 4 Let f be any of the three solutions defined above.
For any encounter T within a TOD and any D, D′ ∈ f(T ),
D ≈ D′. In other words, each of the three solutions gives
unique outcome modulo ≈.

The above results reflect the special features of task ori-
ented domains. The first result says that these three solutions
are actually the same. This is not surprising. Since a task
oriented domain assumes that all agents share the same cost
function, it is impossible for an agent to vary its utility to
gain more negotiation power. In other words, all the agents
have the same negotiation power. Therefore they can share
the available utility equally (note that this does not mean that
all the agents will be assigned the same amount of tasks or the
tasks with the same cost). On the contrary, the second result
is a bit surprising because typical solutions on non-convex
domains are multiple-valued [Mariotti, 1998]. We have such
a property because of the assumption of subadditivity on the
cost function and randomization on pure deals.

4.3 Characterization

We have seen above that the task oriented domain is a specific
domain that unifies three classical bargaining solutions. This
indicates that the characterization of these solutions within
a TOD requires specific axioms. It is well known that the
Egalitarian solution can be characterized in convex domain
by the axioms: Pareto optimality, scale invariance, symme-
try and strong monotonicity [Thomson, 1994]. We notice that
scale invariance is not applicable to a TOD because the agents
share the same cost function. Without this axiom, symme-
try becomes useless. In addition, strong monotonicity is also
hard to apply because an arbitrary subset of the set of mixed
deals does not necessarily correspond to another encounter.
However, it is easy to see that Pareto optimality and individ-
ual rationality (implied by other axioms in game theory) are
true with any TOD. In short, the following axioms will char-
acterize all three solutions within a TOD.

IR: D ∈ f(T ) implies D � T . (Individual rationality)

PO: f(T ) ⊆ P (T ). (Pareto optimality)

NV: f(T ) �= ∅. (Non-vacuity)

Eq: D ∈ f(T ) and D ≈ D′ imply D′ ∈ f(T ). (Equiva-
lence)

WB: D ∈ f(T ) and D′ �T D imply D′ �∈ Ω(T ). (Workload
balance)

The first two axioms are standard requirements for negoti-
ation solutions, which are self-expanatory. The other three
are specific to the task oriented negotiation. NV says that the
solution guarantees an output (obviously the worst case is the
conflict deal). Eq says that all deals are treated the same if
their costs to each agent are the same. WB says that a so-
lution should guarantee that the workload distribution of the
final agreement must be the closest to the original allocation.
Note that this property implies that if an agent is originally al-
located heavier tasks than the other (measured in their costs),
the agent should receive also heavier tasks in the final agree-
ment.

Theorem 1 Given a TOD 〈T ,A, c〉, a negotiation function
in mixed deals is the Egalitarian solution (therefore, the Nash
solution and the KS solution) if and only if it satisfies IR, PO,
NV, Eq and WB.

It is easy to see that the key components of the charac-
terization are the two optimality axioms: PO and WB. PO
requires a solution to be the best in cost reduction while WB
requires the solution to be the best to match the original work-
load distribution.

5 Negotiation solutions in pure deals

In the previous section we allow to randomize a pure deal so
that the tasks can be divided in any portion to balance work-
load. If we disable randomization by restricting a solution to
pure deals, the problem will become much harder. To see the
problem, let’s consider Example 1 again.

Example 2 Consider the negotiation encounter in Example
1. If we restrict the solutions introduced in Section 4.2
to pure deals, only the Nash solution is non-empty, which
is {({a}, {b, c}), ({b}, {a, c}), ({a, b}, {c})}. In fact, these
deals are exactly all the deals that are Pareto optimal and
individual rational. The Egalitarian solution and Kalai-
Smorodinsky solution are empty. Therefore none of the solu-
tions offers useful prediction.

The reason that causes the failure of all the solutions is that,
without mixed deals, we are not always able to divide tasks to
each agent to match the original workload distribution due to
the indivisibility of atomic tasks. In fact, this is not a problem
particularly to task oriented negotiation. Almost every ne-
gotiation domain has the same problem: a solution exists in
an idealized domain, say convex hell or comprehensive hell,
but cannot be found in its original domain. In this section,
we demonstrate how to use the characterization we presented
in the previous section to construct an approximate solution
for the task oriented negotiation problems. First, we redefine
negotiation solution by restricting the outcomes to be pure
deals.

Given a TOD 〈T ,A, c〉, a pure deal negotiation solution F
is a function that assigns to each encounter T ∈ Σ(T ,A, c) a
set of pure deals of T , i.e., F (T ) ⊆ Ω(T ).
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Definition 6 A pure deal negotiation solution F is the mini-
mal distance solution if for all T ∈ Σ(T ,A, c),

F (T ) = arg min
D∈NS(T )

dist(D, T ), (7)

where NS(T ) = P (T ) ∩ I(T ), i.e., the negotiation set of T .
P (T ), I(T ) and dist(D, T ) can be redefined in pure deals by
using the equations (1), (3) and (2), respectively.

The following result indicates that the minimal distance
solution is an approximation of the Egalitarian solution in
mixed deals (we omit the proof of the proposition).

Proposition 1 Let f be the Egalitarian solution in mixed
deals on a TOD 〈T ,A, c〉. Then for any T ∈ Σ(T ,A, c),

f(T ) = arg min
D∈P (T )∩I(T )

dist(D, T )

Example 3 Consider the negotiation encounter in Example 1
again. It is easy to calculate that the minimal distance solution
of the encounter is:

F (T ) = {({a}, {b, c}), ({a, b}, {c})}. �

Notice that different from the mixed deal solution, F (T ) is
not unique even after modulo operation. However, the worst
case is two modulo equivalence.

Lemma 5 For any encounter T in a TOD, the minimal dis-
tance solution F (T ) is non-empty and has at most two ele-
ments modulo ≈.

The following theorem shows that the minimal distance so-
lution can be characterized by the same set of axioms for the
mixed deal solutions.

Theorem 2 Given a TOD 〈T ,A, c〉, a negotiation function
in pure deals is the minimal distance solution if and only if it
satisfies the following properties:

IR: D ∈ F (T ) implies D � T . (Individual rationality)

PO: F (T ) ⊆ P (T ). (Pareto optimality)

NV: F (T ) �= ∅. (Non-vacuity)

Eq: D ∈ f(T ) and D ≈ D′ imply D′ ∈ f(T ). (Equiva-
lence)

WB: D ∈ F (T ) and D′�T D imply D′ �∈ P (T ). (Workload
balance)

This theorem again exhibits another specific feature of task
oriented domains that different solutions share the same ax-
iomatization. Note that the axioms may play different roles
in different characterization. For instance, in Theorem 1, WB
forces the solution to be zero distance to T while in Theorem
2, it just requires the solution to be as close to T as possible.

6 Related work

Axiomatic analysis of bargaining situations started from Nash
(1950). Nash proposed a bargaining solution and charac-
terized it with a set of axioms. Nash’s characterization
only applies to convex domains, which can be implemented
via randomizing possible agreements. Kaneko (1980) ex-
tended Nash’s characterization to non-convex domain but en-
forced continuity on the domain meanwhile allowing the so-
lution to be set-valued. This result was refined by a few

other authors so that the requirement for convexity is re-
placed by comprehensiveness without need to amend Nash’s
original axioms [Conley and Wilkie, 1996; Zhou, 1996;
Xu and Yoshihara, 2006]). The result was also extended
to the Kalai-Smorodinsky solution and Egalitarian solution
[Conley and Wilkie, 1991; Hougaard and Tvede, 2003;
Xu and Yoshihara, 2006]. However, these results are re-
stricted to continuous domains. Characterizing a bargaining
solution on discrete or finite domains is much harder mostly
because the idealized points that satisfy certain axioms, say
Nash’s, may not exist in the feasible set. Among a few au-
thors, Mariotti and Lahiri proposed two different characteri-
zations of the Nash solution in finite domains [Mariotti, 1998;
Lahiri, 2003]. Kibris and Sertel characterized a few non-
standard solutions for finite ordinal domains [Özgür Kibris
and Sertel, 2007]. Unfortunately none of these results can
be applied to the task oriented domains. Mariotti’s axioms
require to operate a feasible set by adding or removing a
point. Such an operation is not allowed for our domain. Kib-
ris and Sertel’s axioms also apply set operations on feasible
sets. Lahiri’s characterization applies only on a special finite
domain, in which the task oriented problems are not describ-
able.

This work was developed based on Rosenschein and
Zlotkin’s framework [Zlotkin and Rosenschein, 1993; Rosen-
schein and Zlotkin, 1994]. The basic concepts of task ori-
ented domains, pure deals and mixed deals are extended from
their work. We would like to remark that the special design
of randomization for mixed deals is the key to most of the
elegant results. Different from Nash’s approach, it does not
convexify a domain but can guarantee the uniqueness of solu-
tion. It maximally keeps the link to original deals so that the
original deals are still operable (see Lemma 1) while gains
the benefit of divisibility of tasks.

7 Conclusion and discussions

We have presented an axiomatic analysis of negotiation prob-
lems within task oriented domains. We found that such a do-
main has a number of interesting features. Firstly, three clas-
sical bargaining solutions coincide when they are applied to
a TOD with mixed deals but diverge if their outcomes are re-
stricted to pure deals. Secondly, all these solutions in mixed
deals have unique value by equivalence and their pure deal
approximation has at most two values. Thirdly, the solutions
in mixed deals and their pure deal approximation share the
same axiomatic characterization. All these special features
originate from the specific setting of task oriented domains.
The combination of simplicity of cost function setting and
requirement for dual optimality gives the domains rich prop-
erties with manageable complexity and makes the research
deeply interesting.

Nash’s axiomatic model laid on the foundation of bargain-
ing theory. It is also one of the most fundamental models in
modern economic theory [Rubinstein, 2000]. An axiomatic
model of bargaining fully specify a domain and captures the
nature of problems in the domain. It achieves great generality
by avoiding any specification of bargaining processes there-
fore can serve as a guideline for devising variety of specific
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negotiation procedures or solutions for specific applications
(Section 5 is a simple example of such an application).

Negotiation and bargaining has been a research area in
economics and social science for nearly sixty years. The
research has been mostly motivated by problems from eco-
nomics and social science. Problems raised from computer
science or AI can be appreciably different from those from
other disciplines. Besides task oriented domains, similar do-
mains of problems can also be found in AI literature, such
as state oriented domains [Rosenschein and Zlotkin, 1994],
argumentation-based negotiation [Kraus et al., 1998], con-
tract negotiation [Dunne, 2005], and etc. Axiomatic analysis
on these domains will not only help us to gain a better under-
standing of these problems but also would make a contribu-
tion towards the game-theoretic research of bargaining.
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Appendix: Proof of Theorems
Note: Due to space limitation, we omit the proof of a few theorems
and outline the proof of the others.
Proof of Lemma 3: All solutions divide available utility equally
between the two agents (see [Rosenschein and Zlotkin, 1994] The-
orem 11 for the proof of the Nash solution. The proof for the other
two is obvious). �

Proof of Lemma 4: By Lemma 3 we can assume that f is the Nash
solution. Firstly, it is not hard to prove that f(T ) is non-empty and
each deal in f(T ) is Pareto optimal. Next, by Lemma 2, any Pareto
optimal deal is equivalent to an all-or-nothing deal. Then we can
verify that only one all-or-nothing deal can be the maximizer of the
product of utilities of two agents. �

Proof of Theorem 1: “⇒” The proof of IR and Eq is trivial. PO
is implied by Lemma 4. WB holds because dist(D,T ) = 0 for any
deal D in the Egalitarian solution.

“⇐” Given any encounter T within a TOD, by NV, there exists a
deal D of T such that D ∈ f(T ). PO and Lemma 2 implies that D is
equivalent to an all-or-nothing deal D′. By Eq, we have D′ ∈ f(T ).

Let D′′ = (T1∪T2, ∅) : p, where p = c(T1∪T2)+c(T1)−c(T2)
2c(T1∪T2)

. Since

dist(D′′, T ) = 0, WB implies that dist(D′, T ) = 0. It then fol-
lows that c(T1) − C1(D

′) = c(T2) − C2(D
′). In addition, D′ is

individual rational and Pareto optimal. Let fE(T ) be the Egalitarian

solution. We then have D′ ∈ fE(T ). By Eq, D ∈ fE(T ). There-

fore f(T ) ⊆ fE(T ). However, Lemma 4 says that fE(T ) has only

one element modulo ≈. Thus f(T ) must be equal to fE(T ). �

Proof of Lemma 5: Assume that there are three pure deals
D1,D2,D3 in F (T ). Among these three, there must be at least
two deals that make (c(D1) − c(D2)) − (c(T1) − c(T2)) either
≥ 0 or ≤ 0 if replace D with one of them. Without losing general-
ity, we assume that (c(D1

1) − c(D1
2)) − (c(T1) − c(T2)) ≥ 0 and

(c(D2
1)− c(D2

2))− (c(T1)− c(T2)) ≥ 0. Note that dist(D1, T ) =
dist(D2, T ). Therefore (c(D1

1) − c(D1
2)) − (c(T1) − c(T2)) =

(c(D2
1)−c(D2

2))− (c(T1)−c(T2)). It turns that c(D1
1)−c(D1

2) =
c(D2

1) − c(D2
2). If c(D1

1) �= c(D2
1), say c(D1

1) < c(D2
1), we have

c(D1
2) > c(D2

2) because D1 and D2 are Pareto optimal. This im-
plies that c(D1

1)−c(D1
2) < c(D2

1)−c(D2
2), a contradiction. There-

fore c(D1
1) = c(D2

1). By Pareto optimality, we have D1 ≈ D2. �

Proof of Theorem 2: Straightforward from the definition of the
minimal distance solution. �
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