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Abstract

In this paper we provide a logical framework for us-
ing computers to discover theorems in two-person
finite games in strategic form, and apply it to
discover classes of games that have unique pure
Nash equilibrium payoffs. We consider all possible
classes of games that can be expressed by a con-
junction of two binary clauses, and our program re-
discovered Kats and Thisse’s class of weakly uni-
laterally competitive two-person games, and came
up with several other classes of games that have
unique pure Nash equilibrium payoffs. It also came
up with new classes of strict games that have unique
pure Nash equilibria, where a game is strict if for
both player different profiles have different payoffs.

1 Introduction

Given that both modern computer science and modern game
theory were John von Neumann in 1950s [Shoham, 2008],
it is only fitting that there has been enormous intersections
between the two subjects. While the applications of game
theory concepts, models as well as theorems to computer
science domains have been ubiquitous these days, the oppo-
site direction remains limited on topics such as computational
complexities of various solution concepts in games [Halpern,
2007]. In this paper, however, we explore a new application
of computer science to game theory. We will show how AI
search and knowledge representation techniques can be used
to discover some interesting theorems about pure Nash equi-
libria.

Traditional equilibrium analysis has been mostly focused
on mixed strategy equilibria. Part of the reasons for this
bias is that such an equilibrium always exists and algorithms
such as the one by Lemke-Howson are guaranteed to find
one. Moreover, best response functions in games with mixed
strategies are continuous and differentiable, allowing for stan-
dard calculus techniques to be applied.

However, pure Nash equilibria (PNEs) are also of interest,
and there is already much work about them. Examples here
include the existence of PNEs in (ordinal) potential games
[Monderer and Shapley, 1996], (quasi-)supermodular games
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[Topkis, 1998] as well as games with dominant strategies, and
uniqueness of PNE payoffs1 in two-person strictly competi-
tive games [Moulin, 1976].

In this paper, as part of our project on using computers to
discover theorems in game theory, we consider the possibil-
ity of using computers to discover new classes of two-person
games that have unique PNE payoffs. Our starting point is the
class of two-person strictly competitive games. We first for-
mulate the notions of games, strictly competitive games and
PNEs in first-order logic. Under our formulation, a class of
games corresponds to a first-order sentence. In particular, the
sentence that corresponds to the class of strictly competitive
games is a conjunction of two binary clauses with all vari-
ables universally quantified. So we implemented a program
that examines all these universally quantified conjunctions of
binary clauses to see if there is another such condition that
also captures a class of games with unique PNE payoffs. We
did not expect much as these conditions are rather simple, but
to our surprise, our program returned a condition that is more
general than the strict competitiveness condition. As it turned
out, it exactly corresponds to Kats and Thisse’s [1992] class
of weakly unilaterally competitive two-person games. Our
program also returned some other conditions. Two of them
capture a class of “unfair” games where one player has ad-
vantage over the other. The remaining ones capture games
where everyone gets what he wants - each receives his max-
imum payoff in every equilibrium state, thus there is no real
competition among the players. Thus one conclusion that we
can draw from this experiment is that among all classes of
games that can be expressed by a conjunction of two binary
clauses, the class of weakly unilaterally competitive games is
the most general class of “competitive” and “fair” games that
have unique PNE payoffs. Of course, this does not mean that
the other conditions are not worth investigating. For instance,
sometimes one may be forced to play an unfair game.

For the same set of conditions, we also consider strict two-
person games where different profiles have different payoffs
for each player. Among the results returned by our program,
two of them are exactly the two conjuncts in Kats and Thisse’s
weakly unilaterally competitive condition, but the others all

1Note that the uniqueness of PNE payoffs is also an ordinal prop-
erty, which means all the PNEs in a game are equally preferred to all
players. In particular, the notion of unique PNE payoffs degenerates
to unique PNEs in strict games.
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turn out to be special cases of games with dominant strate-
gies. Motivated by these results, we consider certain equiva-
lent classes of games, and show that a strict game has a unique
PNE iff it is best-response equivalent [Rosenthal, 1974] to a
strictly competitive game.

The rest of the paper is organized as follows. We first re-
view some basic concepts in two-person games in strategic
form, and then reformulate them in first-order logic. We then
show that for a class of conditions, whether any of them en-
tails the uniqueness of PNE payoff needs only to be checked
on games up to certain size. We then describe a computer
program based on this result, and report our experimental re-
sults.

2 Two-person games

A (two-person) game (in strategic form) is a tuple (A, B,≤1

,≤2), where A and B are sets of strategies of players 1 and 2,
respectively, and ≤1 and ≤2 are total orders on A×B called
preference relations for players 1 and 2, respectively.

Instead of two preference relations, a two-person game can
also be specified by two payoff functions, one for each player,
which map profiles to numbers. The relationship between
these two formulations are as follows: for any profiles s and
s′, s ≤i s′ iff ui(s) ≤ ui(s′), where ui is the payoff func-
tion for player i. In the following, we shall use these two
formulations interchangeably.

In the following, two profiles (a, b) and (a′, b′) are
said to be equivalent if their payoff profiles are the same:
(u1(a), u2(b)) = (u1(a′), u2(b′)). In terms of preference re-
lations, (a, b) and (a′, b′) are equivalent iff

(x1, y1) ≤i (x2, y2) ∧ (x2, y2) ≤i (x1, y1),

for i = 1, 2.
For each b ∈ B, we define B1(b) to be the set of best

responses by player 1 to the strategy b by player 2:

B1(b) = {a | a ∈ A, and for all a′ ∈ A, (a′, b) ≤1 (a, b)}.
Similarly, for each a ∈ A, the set of best responses by player
2 is:

B2(a) = {b | b ∈ B, and for all b′ ∈ B, (a, b′) ≤2 (a, b)}.
A profile (a, b) ∈ A×B is a Pure Nash Equilibrium (PNE)

if both a ∈ B1(b) and b ∈ B2(a). A game can have exactly
one, more than one, or no PNEs. We say that a game has a
unique PNE payoff if all the PNEs are equivalent.

One interesting class of two-person games is that of strictly
competitive games. A game is strictly competitive [Moulin,
1976] if for every pair of profiles s1 and s2 in A × B, we
have that s1 ≤1 s2 iff s2 ≤2 s1. Thus in strictly competitive
games, the two players’ preferences are exactly opposite.

Strictly competitive games have many nice properties. If
(a, b) and (a′, b′) are both PNEs of a strictly competitive
game, then (1) they are equivalent; (2) they are interchange-
able in the sense that (a′, b) and (a, b′) are also PNEs. Thus
if a strictly competitive game has PNEs, then their payoffs
must be the same. Furthermore the unique PNE payoff can
be computed using the minmax procedure.

Another class of games that we shall consider in this paper
is that of strict games. A game is strict if for both players, dif-
ferent profiles have different payoffs, that is, (a, b) = (a′, b′)
whenever (a, b) ≤i (a′, b′) and (a′, b′) ≤i (a, b), where
i = 1, 2. As we shall see, strict games have some nice prop-
erties that general games do not have.

3 Formulating two-person games in

first-order logic

We consider a first-order language with two sorts α and β,
equality, and two predicates ≤1 and ≤2. We use “∧” for con-
junction, “∨” for disjunction, “¬” for negation, “⊃” for im-
plication, and “≡” for equivalence. Negation has the highest
precedence, followed by conjunction and disjunction, impli-
cation, and then equivalence. The rule of precedence can be
overridden by a new line. For instance, the following expres-
sion

p ⊃ q ∧
q ⊃ p

stands for the sentence (p ⊃ q) ∧ (q ⊃ p).
In our language, sort α is for player 1’s strategies, and β

for player 2’s strategies. In the following, we use variables
x, x1, x2, .. to range over α, and y, y1, y2, ... to range over
β. The two predicates represent the two players’ preference
relations. In the following, as we have already done above,
we write ≤i (x1, y1, x2, y2) in infix notation as (x1, y1) ≤i

(x2, y2), i = 1, 2, and (x1, y1) 	i (x2, y2) as a shorthand for

(x1, y1) ≤i (x2, y2) ∧ (x2, y2) ≤i (x1, y1),

where i = 1, 2. We also write (x1, y1) <i (x2, y2) as a short-
hand for

(x1, y1) ≤i (x2, y2) ∧ ¬(x2, y2) ≤i (x1, y1).

The two relations need to be total orders (in the rest of the
paper, unless otherwise stated, all free variables in a displayed
formula are assumed to be universally quantified from out-
side):

(x, y) ≤i (x, y), (1)
(x1, y1) ≤i (x2, y2) ∨ (x2, y2) ≤i (x1, y1), (2)
(x1, y1) ≤i (x2, y2) ∧ (x2, y2) ≤i (x3, y3) ⊃

(x1, y1) ≤i (x3, y3), (3)

where i = 1, 2. In the following, we denote by Σ the set of the
above sentences. Thus two-person games correspond to first-
order models of Σ, and two-person finite games correspond to
first-order finite models of Σ. This correspondence extends to
other type of games as well. For instance, let Σs be the union
of Σ with the following two axioms:

(x1, y1) 	1 (x2, y2) ⊃ (x1 = x2 ∧ y1 = y2),
(x1, y1) 	2 (x2, y2) ⊃ (x1 = x2 ∧ y1 = y2).

Then strict games and models of Σs are isomorphic.
We now show how some other notions in game theory can

be formulated in first-order logic. The condition for a profile
(ξ, ζ) to be a PNE is captured by the following formula:

∀x.(x, ζ) ≤1 (ξ, ζ) ∧ ∀y.(ξ, y) ≤2 (ξ, ζ) (4)
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In the following, we shall denote the above formula by
NE(ξ, ζ).

The following sentence expresses the uniqueness of PNE
payoff in a game:

NE(x1, y1) ∧ NE(x2, y2) ⊃
(x1, y1) 	1 (x2, y2) ∧ (x1, y1) 	2 (x2, y2) (5)

A game is strictly competitive if it satisfies the following
property:

(x1, y1) ≤1 (x2, y2) ≡ (x2, y2) ≤2 (x1, y1). (6)

Thus it should follow that

Σ |= (6) ⊃ (5). (7)

Notice that we have assumed that all free variables in a dis-
played formula are universally quantified from outside. Thus
(6) is a sentence of the form ∀x1, x2, y1, y2ϕ. Similarly for
(5).

Theorems like (7) can actually be generated automatically
using the following theorem.

Theorem 1 Suppose Q is a formula without quantifiers, �x1

and �x2 tuples of variables of sort α, and �y1 and �y2 tuples of
variables of sort β. We have that

1. Σ |= ∃�x1∃�y1∀�x2∀�y2Q ⊃ (5)
iff for all model G of Σ such that |A| ≤ |�x1| + 2 and
|B| ≤ |�y1| + 2, we have that
G |= ∃�x1∃�y1∀�x2∀�y2Q ⊃ (5),
where A is the domain of G for sort α, and B the domain
of G for sort β.

2. Σ |= ∃�x1∃�y1∀�x2∀�y2Q ⊃ ¬∃x, y.NE(x, y)
iff for all model G of Σ such that |A| ≤ |�x1| + 1 and
|B| ≤ |�y1| + 1 we have that
G |= ∃�x1∃�y1∀�x2∀�y2Q ⊃ ¬∃x, y.NE(x, y),
where A is the domain of G for sort α, and B the domain
of G for sort β.

Proof: “Only if” is trivial. To show “if”, suppose there is
a game G (model of Σ) such that it satisfies the condition
∃�x1∃�y1∀�x2∀�y2Q but has two non-equivalent PNEs, (a, b)
and (a′, b′): either (a, b) �	1 (a′, b′) or (a, b) �	2 (a′, b′).
Thus there is a tuple �a1 of elements from A and a tuple �b1 of
elements from B such that |�a1| = |�x1|, |�b1| = |�y1|, and G
satisfies

(∀�x2∀�y2Q)|�x1/�a1,�y1/�b1
,

which is obtained from (∀�x2∀�y2Q) by replacing in it every
free occurrence of each variable in �x1 by its corresponding
element in �a1, and every free occurrence of each variable in
�y1 by its corresponding element in �b1. Now construct a new
game G′ = (A′, B′,≤′

1,≤′
2) as follows:

• A′ = {a, a′} ∪ �a1 and B′ = {b, b′} ∪�b1.

• ≤′
1 is the restriction of ≤1 on A′, and ≤′

2 is the restric-
tion of ≤2 on B′.

Notice that this game is well-defined as ≤′
1 and ≤′

2 are
both total orders, i.e. G′ |= Σ. Clearly, the size of G′ is
smaller or equal to (|�x1| + 2) × (|�y1| + 2), both (a, b) and

(a′, b′) are still non-equivalent PNEs of G′, and the formula
∃�x1∃�y1∀�x2∀�y2Q is still true in G′.

In other words, to prove that a sentence of the form
∃�x1∃�y1∀�x2∀�y2Q is a sufficient condition for the uniqueness
of PNE payoff, it suffices to verify that this is the case for
all games of sizes up to (|�x1| + 2) × (|�y1| + 2), and to
prove that it is a sufficient condition for the non-existence
of PNE, it suffices to verify this for games of sizes up to
(|�x1| + 1) × (|�y1| + 1).

Theorem 1 holds for many specialized games as well. For
instance, it holds for strict games as well.

Theorem 2 Theorem 1 holds when Σ is replaced by Σs.

In fact, Theorem 1 holds when Σ is replaced by any set of
universally quantified sentences.

4 Theorem discovering

Since p ≡ q is logically equivalent to (¬p∨ q)∧ (p∨¬q), the
condition (6) for strictly competitive games can be written as
a conjunction of two binary clauses:

(l1 ∨ l2) ∧ (l3 ∨ l4), (8)

where each li, 1 ≤ i ≤ 4, is a literal, i.e. either an atom
or the negation of an atom. As we mentioned, we want to
know if there are other sentences of the form (8) that also
capture classes of games with unique PNE payoffs. In the
following, we say that a condition ϕ is a uniqueness condition
if whenever a game satisfies this condition, it has unique PNE
payoff, that is, if Σ |= ϕ ⊃ (5).

Based on Theorem 1, a straightforward way of discov-
ering uniqueness conditions of the form (8) is as follows:
For each condition of the form (8), check that if a 2 × 2
game does not have unique PNE payoff, then it does not sat-
isfy this condition. There are 810,000 such conditions, 1950
non-isomorphic 2 × 2 two-person games, and among them
709 games that do not have unique PNE payoffs. Thus this
strategy can be implemented on a modern computer even by
brute-force search.

The search space can also be pruned by noticing that the
conditions of the form (8) are not independent. For instance,
condition

(x1, y1) ≤1 (x2, y2)
entails (is stronger than) condition

(x1, y1) ≤1 (x1, y2).

Once we know that a condition C is a uniqueness condition,
those that entail C are no longer interesting as they become
special cases of C, thus can be pruned.

However, checking logical entailment is in general not de-
cidable for first-order logic. But as a strategy for pruning
search space, we can use a weaker notion called subsumption
on conditions of the form (8): C subsumes C ′ if there is a
substitution σ such that Cσ = C ′. For our language, sub-
sumption can be checked efficiently, and the search tree can
be designed in such a way that the condition associated with
a node always subsumes the conditions associated with the
ancestors of the node. Thus once a condition is found to be a
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uniqueness condition, the entire sub-tree under this condition
can be pruned.

However, we still need a way to check for complete logical
entailment under Σ for conditions of the form (8). This is
because we want every condition returned by our program
to be a most general, “weakest” uniqueness condition in the
sense that it does not entail any other uniqueness condition of
the form (8). Fortunately, this can be done using the following
proposition.

Proposition 1 To check whether condition ∀�x1�y1Q1 entails
condition ∀�x2�y2Q2 for all two-person games, it suffices to
check this for all games up to max{|�x2|, 1} × max{|�y2|, 1},
where Q1 and Q2 are formulas without quantifiers. This
result holds for strict games as well.

Notice that what we have described applies to the task of
discovering uniqueness conditions of the form (8) for strict
two-person games as well.

We now report our experimental results, first for general
two-person games, and then for strict two-person games.

5 General games

For two-person general games, our program returns the fol-
lowing seven uniqueness conditions for 2x2 games.

(x1, y) ≤1 (x2, y) ⊃ (x2, y) ≤2 (x1, y) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y2) ≤1 (x, y1) (9)

(x1, y) ≤1 (x2, y) ⊃ (x1, y) ≤2 (x2, y) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y2) ≤1 (x, y1) (10)

(x1, y) ≤1 (x2, y) ⊃ (x2, y) ≤2 (x1, y) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y1) ≤1 (x, y2) (11)

(x1, y1) ≤1 (x2, y1) ⊃ (x1, y2) ≤2 (x2, y2) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y1) ≤1 (x, y2) (12)

(x1, y) ≤1 (x2, y) ⊃ (x1, y) ≤2 (x2, y) ∧
(x1, y1) ≤2 (x1, y2) ⊃ (x2, y1) ≤1 (x2, y2) (13)

(x1, y1) ≤1 (x2, y2) ⊃ (x1, y1) ≤2 (x2, y1) ∧
(x1, y1) ≤2 (x2, y2) ⊃ (x2, y1) ≤1 (x2, y2) (14)

(x1, y1) ≤1 (x2, y2) ⊃ (x1, y2) ≤2 (x2, y2) ∧
(x1, y1) ≤2 (x2, y2) ⊃ (x1, y1) ≤1 (x1, y2). (15)

By Theorem 1, these are also uniqueness conditions for
all two-person games. Furthermore, since these are the only
conditions returned by our program, for any sentence C of the
form (8), if it is a uniqueness condition, then it must entail one
of the above conditions under Σ. In other words, the above
seven conditions are the weakest (most general) uniqueness
conditions of the form (8).

Notice that condition (10) and condition (11) are symmet-
ric in the sense that one can be obtained from the other by
swapping the roles of the two players. So are (12) and (13),
and (14) and (15). On the other hand, (9) is symmetric to
itself. It is easy to see that if two conditions are symmetric,
then one is a uniqueness condition iff the other is.

Condition (9) looks like condition (6) for strictly compet-
itive games, except that the strategy of one of the players is

fixed in each implication. As it turned out, it captures ex-
actly the class of two-person games that are weakly unilater-
ally competitive [Kats and Thisse, 1992]:

“a game belongs to this class if a unilateral move
by one player which results in an increase in that
player’s payoff also causes a (weak) decline in the
payoffs of all other players. Furthermore, if that
move causes no change in the mover’s payoff then
all other players’ payoffs remain unchanged.”

Clearly, if a game is strictly competitive, then it is also weakly
unilaterally competitive, but the converse is not true in gen-
eral. Kats and Thisse [1992] showed that if a game is weakly
unilaterally competitive, then it has unique PNE payoff. For
us, for two-person games, this follows directly from our com-
puter output and Theorem 1.

Condition (10) can be given a similar interpretation:
A two-person game satisfies this condition if a uni-
lateral move by player 1 which results in a (weak)
increase in his payoff also causes a (weak) increase
in the payoff of player 2, but a unilateral move by
player 2 which results in a (weak) increase in his
payoff will causes a (weak) decline in the payoff of
player 1.

Thus in this class of games, the two players are not equal, and
it clearly favors player 2. The game may be competitive for
player 1, but not for player 2.
Proposition 2 Given a game that satisfies (10), if player 2’s
payoff is maximal at (a, b), i.e. (a′, b′) ≤2 (a, b) for all a′, b′,
then there is a strategy a∗ such that (a∗, b) is a PNE and
(a∗, b) 	2 (a, b).

Thus for the class of games that satisfy condition (10), the
optimal strategy for player 2 is to do the strategy for which
there is a strategy by the other player that will give him the
maximum payoff. The following is an example of such games
(as usual, player 1 is the row player, and player 2 the col-
umn player; the first number in a cell is the payoff of the row
player, the second the column player):

3, 6 4, 5 5, 1

2, 3 1, 4 6, 2

It has a unique equilibrium (3, 6).
As we mentioned, condition (11) is symmetric to condi-

tion (10), with the roles of the two players swapped. For the
classes of games corresponding to the other conditions, (12)
- (15), both players can obtain their maximal payoffs.

Proposition 3 Given a game that satisfies one of the condi-
tions (12) - (15), if player 1’s (player 2’s) payoff at (a, b) max-
imal, then there is a strategy b∗ (a∗) such that (a, b∗) ((a∗, b))
is a PNE where both players receive the maximum payoffs.

Thus, from these two propositions, we see that the classes
of games represented by the conditions (10) - (15) are not re-
ally “competitive” games. We can then conclude that among
the classes of games that can be represented by a conjunc-
tion (8) of two binary clauses, the class of weakly unilaterally
competitive games is the most general class of “competitive”
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and “fair” games that have unique PNE. As we mentioned
above, by this we do not mean that other types of games are
not interesting. In real life, unfair games like those described
by (10) may well arise.

6 Strict games

We now describe our experimental results for strict games.
Recall that these are games where for each player, different
profiles have different payoffs. Thus uniqueness of PNE pay-
off simply means uniqueness of PNE in strict games.

6.1 Games with dominant strategies

We first consider conditions that mention only ≤1:

s1 ≤1 s2 ∨ s3 ≤1 s4.

For this class of conditions, our program outputs the follow-
ing six uniqueness conditions on 2x2 strict games:

(x1, y1) ≤1 (x2, y1) ∨ (x2, y1) ≤1 (x1, y2),
(x1, y1) ≤1 (x2, y1) ∨ (x2, y2) ≤1 (x1, y1),
(x1, y1) ≤1 (x2, y1) ∨ (x2, y2) ≤1 (x1, y2),
(x1, y1) ≤1 (x2, y2) ∨ (x2, y1) ≤1 (x1, y1),
(x1, y1) ≤1 (x2, y2) ∨ (x2, y2) ≤1 (x1, y2).

By Theorem 2, these are also uniqueness conditions for all
strict two-person games. Notice that these conditions do not
mention ≤2. This means that if player 1’s preference rela-
tion satisfies any of the above conditions, then the game has
a unique PNE, no matter what the other player’s preference
relation is.

For instance, the first condition can be written as

¬(x1, y1) ≤1 (x2, y1) ⊃ (x2, y1) ≤1 (x1, y2).

For strict games, this is equivalent to

(x2, y1) <1 (x1, y1) ⊃ (x2, y1) ≤1 (x1, y2)

as ¬(x1, y1) ≤1 (x2, y1) iff (x2, y1) <1 (x1, y1). It is not
hard to see that the above condition implies the following
condition:

∃x∀x′, y.(x′, y) ≤1 (x, y),
meaning that no matter what player 2 does, the best response
for player 1 is always the same. For strict games, this means
that player 1 has a strictly dominant strategy: a strategy x is a
strictly dominant strategy if for all other strategy x′ of player
1, and any strategy y of player 2, (x′, y) <1 (x, y). As it
turned out, this is also the case for the other five conditions
above, as the following proposition shows.
Proposition 4 A strict game G = (A, B,≤1,≤2) has a
strictly dominant strategy for player 1 if and only if for
any preference relation ≤′

2 for player 2, the game G′ =
(A, B,≤1,≤′

2) has exactly one PNE.
Given this result, there is no need to consider any condition
of the form (8) that mentions only one player’s preference.

It is interesting to note that for the prisoner’s dilemma

4, 4 0, 5

5, 0 1, 1

each player has a strictly dominant strategy, thus should play
this strategy. The dilemma is that each player can get a higher
payoff by a unilateral move away from his dominant strategy.

6.2 Weakly unilaterally competitive games for
individual players

For other conditions of the form (8), our program returns 16
uniqueness conditions for strict games. However, each of
them has a symmetric one when the roles of the two players
are swapped. Thus there are really only eight such conditions,
given below:

(x1, y) ≤1 (x2, y) ∨ (x1, y) ≤2 (x2, y), (16)
(x1, y1) ≤1 (x1, y2) ∨ (x1, y2) ≤2 (x2, y1), (17)
(x1, y1) ≤1 (x1, y2) ∨ (x2, y2) ≤2 (x1, y1), (18)
(x1, y1) ≤1 (x1, y2) ∨ (x2, y2) ≤2 (x2, y1), (19)
(x1, y1) ≤1 (x2, y2) ∨ (x1, y2) ≤2 (x1, y1), (20)
(x1, y1) ≤1 (x2, y2) ∨ (x2, y2) ≤2 (x1, y2), (21)
(x1, y1) ≤1 (x1, y2) ∨ (x1, y1) ≤2 (x2, y1), (22)
(x1, y1) ≤1 (x2, y1) ∨ (x2, y2) ≤2 (x2, y1). (23)

In particular, we found that for strict games, a conjunction
C1 ∧ C2 of two binary clauses is a uniqueness condition iff
either C1 or C2 is a uniqueness condition.

The first condition is equivalent to

(x2, y) ≤1 (x1, y) ⊃ (x1, y) ≤2 (x2, y) (24)

as in strict games, s1 ≤1 s2 iff s1 <1 s2 ∨ s1 = s2. This
is exactly one of the two conjuncts in the condition (9) for
weakly unilaterally competitive games.

Now swap the roles of the two players in (24), we get the
following condition

(x, y1) ≤2 (x, y2) ⊃ (x, y2) ≤1 (x, y1), (25)

which is exactly the other conjunct in the condition (9).
In the following, we call a game that satisfies (24) a weakly

unilaterally competitive for player 1, and a game that satis-
fies (25) a weakly unilaterally competitive for player 2. Thus
a game is weakly unilaterally competitive if it is weakly uni-
laterally competitive for both players. The following example
shows that a game can be weakly unilaterally competitive for
player 1 but not for player 2.

2, 1 3, 4

1, 2 4, 3

This example also shows that a weakly unilaterally competi-
tive game for player 1 may not be almost strictly competitive
[Aumann, 1962]: a game is almost strictly competitive if

1. the set of payoff vectors of the PNEs is the same as the
set of payoff vectors of the twisted equilibria; and

2. there is a PNE that is also a twisted equilibrium,
where (a, b) is a twisted equilibrium if no player can de-
crease the payoff of the other player by a unilateral change
of his strategy: for every a′ ∈ A (b′ ∈ B), (a, b) ≤2 (a′, b)
((a, b) ≤1 (a, b′)). For this example, it is easy to see that the
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only equilibrium of the game, (4, 3), is not a twisted equilib-
rium.

As it turns out, (24) and (25) are the only non-trivial con-
ditions. The last two conditions (22) and (23) can never be
satisfied by games larger or equal to 3x3. The remaining five
conditions (17) - (21) are games with dominant strategies.

Proposition 5 If G is a strict game and satisfies one of the
conditions (17) - (21), then one of the players has a strictly
dominant strategy in G.

6.3 Strictly competitive game classes

To summarize, for strict games, the only interesting unique-
ness conditions that can be expressed by a conjunction of two
binary clauses and include games that do not have dominant
strategies are weakly unilaterally competitive conditions for
individual players, (24) and (25). This led us to wonder if
these two conditions are also necessary conditions for a strict
game to have a unique PNE. However, it is easy to see that
this is not the case. In fact, a universal condition like (8)
can never be both a necessary and a sufficient condition for
a game to have unique PNE. This is because for any given
game, no matter how many PNEs it has, we can always ex-
tend it by one more strategy for each player, and make it into
a game with a unique PNE by assigning payoffs large enough
to a profile made of the two new strategies. However, if a uni-
versal condition is satisfied by a game, it is also satisfied by
any of its sub-games.

This led us to consider not individual games, but classes of
games under certain equivalence relation.

Two games G1 = (A, B,≤1,≤2) and G2 = (A′, B′,≤′
1

,≤′
2) are unilaterally order equivalent2 if
• A = A′, and B = B′.
• For every a ∈ A, b, b′ ∈ B, (a, b) ≤2 (a, b′) iff (a, b) ≤′

2
(a, b′).

• For every b ∈ B, a, a′ ∈ A, (a, b) ≤1 (a′, b) iff
(a, b) ≤′

1 (a′, b).
They are best-response equivalent [Rosenthal, 1974] if for
all a ∈ A, B2(a) in G1 and G2 are the same, and for all
b ∈ B, B1(b) in G1 and G2 are the same. Clearly, if G1 and
G2 are unilaterally order equivalent, then they are also best-
response equivalent, but the converse is not true in general.
Both notions of equivalence preserve PNEs.

We have the following result.
Theorem 3 A strict game has at most one PNE iff it is best-
response equivalent to a strictly competitive game.

Theorem 3 does not hold for general two-person games.
For instance, the following game

1, 1 2, 2

2, 2 1, 1

has a unique equilibrium (2, 2) but is not best-response equiv-
alent to any strictly competitive games.

2We call it unilaterally order equivalence to distinguish it from
order equivalence [Rosenthal, 1974] that requires both the row and
column orders in the two games to be the same for both players.

7 Concluding remarks

We have provided a logical framework for computer-aided
theorem discovery in two-person game theory, and applied it
successfully to the task of discovering classes of two-person
games with unique PNE payoffs. The general methodology
used here is similar to the ones used by Lin [2004] for discov-
ering state invariants in planning, by Lin and chen [2007] for
discovering strongly equivalent logic programs and by Tang
and Lin [2009] for proving and discovering theorems in social
choice theory.

There are many directions for future work. An obvious one
is to see how interesting theorems can be discovered using
Theorem 1 on classes of games that do not have any PNE and
games whose PNEs are Pareto optimal.
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