
Dynamic Configuration of Agent Organizations

Evan A. Sultanik Robert N. Lass William C. Regli

Department of Computer Science
Drexel University
3141 Chestnut St.

Philadelphia, PA 19104
{eas28, urlass, regli}@cs.drexel.edu

Abstract

It is useful to impose organizational structure over
multiagent coalitions. Hierarchies, for instance, al-
low for compartmentalization of tasks: if organized
correctly, tasks in disjoint subtrees of the hierarchy
may be performed in parallel. Given a notion of the
way in which a group of agents need to interact, the
Dynamic Distributed Multiagent Hierarchy Gener-
ation (DynDisMHG) problem is to determine the
best hierarchy that might expedite the process of
coordination. This paper introduces a distributed
algorithm, called Mobed, for both constructing
and maintaining organizational agent hierarchies,
enabling exploitation of parallelism in distributed
problem solving. The algorithm is proved correct
and it is shown that individual additions of agents
to the hierarchy will run in an amortized linear
number of rounds. The hierarchies resulting after
perturbations to the agent coalition have constant-
bounded edit distance, making Mobed very well
suited to highly dynamic problems.

1 Introduction

It is useful to impose organizational structure over multiagent
coalitions. Hierarchies, for instance, allow for compartmen-
talization of tasks: if organized correctly, tasks in disjoint
subtrees of the hierarchy may be performed in parallel. In-
tuitively, the shallower the hierarchy the more subordinates
per manager, leading to more potential for parallelism. The
difficulty lies in determining a minimum depth hierarchy that
is isomorphic to the problem being solved; in a business, for
example, there is very little sense in assigning an accountant
from the billing department as the superior of a marketing as-
sociate. Given a notion of the way in which the agents need to
interact, the initial problem, then, is to determine the best hi-
erarchy that might expedite the process of coordination. This
is called the Dynamic Distributed Multiagent Hierarchy Gen-
eration (DynDisMHG) problem.

Solutions to the DynDisMHG problem currently have di-
rect application in the field of multiagent systems, including
distributed problem solving [Shehory and Kraus, 1998], co-
operative multiagent systems [Sycara et al., 1996], distributed
constraint reasoning (DCR), command and control, mobile

ad hoc networks (MANETs), sensor nets, and manufactur-
ing. For example, the computation time required by most
complete DCR algorithms is determined by the topology of a
hierarchical ordering of the agents [Silaghi and Yokoo, 2008].
The difficulty is that (1) most algorithms assume that an ora-
cle exists to provide an efficient hierarchy; and (2) the few ex-
isting solutions to the Multiagent Hierarchy Generation prob-
lem are either centralized or do not deal well (or at all) with
dynamic addition and removal of agents from the hierarchy.

One potential application of a solution to DynDisMHG is
in MANETs. Protocols such as Fireworks [Law et al., 2007]
overlay a communications structure onto a wireless network,
which is highly dynamic as the nodes are constantly moving.
There is the potential for cross-layer design: if the mobile
nodes are executing a multiagent system, a communications
structure could be created to exploit knowledge of both net-
work and application layer properties.

There has been interest in DCR algorithms that are able
to solve constantly changing problems [Petcu and Faltings,
2007], including those in which agents can dynamically en-
ter and leave the hierarchy [Lass et al., 2008]. All existing
provably superstabilizing (i.e., “complete”) dynamic DCR al-
gorithms, however, make a similar assumption to their static
DCR counterparts: that a separate algorithm exists to gener-
ate and maintain the dynamically changing agent hierarchy.

Similar to dynamic DCR, there has been much interest
in hierarchies of holonic multiagent systems (or holarchies),
with wide ranging applications in distributed problem solv-
ing and manufacturing [Fischer et al., 2004]. Some have even
claimed that a prerequisite for innovation in multiagent sys-
tems is the capability for subsets of agents to dynamically
create ad hoc hierarchies, called “adhocracies” [van Aart et
al., 2004]. Empirical evaluations have concluded that agents
in a dynamic hierarchy are able to perform distributed prob-
lem solving better than agents in a static hierarchy [Yokoo,
1995]. It is anticipated that solutions to the problem of dis-
tributed multiagent hierarchy/holarchy/adhocracy generation
will motivate many other applications.

Given a graph of expected interaction between the agents,
this paper introduces an algorithm, called Multiagent Organi-
zation with Bounded Edit Distance (Mobed), for determining
and maintaining an organizational hierarchy that is compati-
ble with the problem being solved. It is shown that Mobed
is correct and that it outperforms alternative approaches by as

305

much as 300% in terms of edit distance between perturbations
with little impact to computation and privacy.

2 Preliminaries

Let G = 〈A, E〉 be a graph consisting of an ordered set of
agents, A, and a set of edges E. Each edge 〈ai, aj〉 ∈ E
implies that agent ai will need to interact with aj . We shall
hereafter call this an interaction graph. Let Ni denote the
neighborhood of agent ai: the set of all agents that share an
edge with ai. A multiagent hierarchy for a given graph G =
〈A, E〉 is an unordered, labeled, rooted tree denoted by the
tuple T = 〈A, π : A → A〉, where π is a function mapping
agents to their parent in the tree. The inverse of the parent
function, π−1(ai), shall be used to denote the set of children
of agent ai. The notation “R+” shall be used to represent
the transitive closure of a binary relation R. Agent aj is said
to be the ancestor of an agent ai in a hierarchy if aj has the
property (aj = π(ai))+. Let Ci be the set of ancestors of
agent ai. Likewise, agent aj is a descendant of ai if (aj ∈
π−1(ai))+. Let Di be the set of descendants of agent ai. Let
v : P(A × A) → B be a validity testing function defined as:

v(I) = (∀〈ai, aj〉 ∈ I : ai ∈ (Cj ∪ Dj)) . (1)

Given an interaction graph G = 〈A, E〉, a multiagent hierar-
chy T is said to be valid for a given problem if v(E) = TRUE.
A valid hierarchy inherently has the property that each pair
of neighboring agents in the interaction graph are either an-
cestors or descendants of each other in the hierarchy. This
ensures that no interaction will necessarily occur between
agents in disjoint subtrees. Therefore, interactions in disjoint
subtrees may occur in parallel.

3 Existing Work

It is relatively trivial to prove that a simple depth-first traver-
sal of the interaction graph will produce a valid hierarchy.
Distributed algorithms for performing such a DFS traversal
are known [Hamadi et al., 1998; Collin and Dolev, 1994]. A
general problem with DFS-based approaches, though, is that
they will often produce sub-optimal hierarchies (i.e., trees
that are unnecessarily deep). For example, the hierarchy in
Figure 1(b) might have been generated using a DFS traver-
sal, however, the best-case hierarchy in Figure 1(c) could not
have been generated using DFS. One metric for the amount
of possible parallelism in a tree is induced-width; in general,
the problem of finding a minimum-induced-width spanning
tree of a graph is NP-HARD [Arnborg, 1985].

Agent hierarchies, often called “variable orderings,” are
employed in many DCR algorithms, usually as a means to
parallelize computation for portions of the constraint graph.
Most provably optimal DCR algorithms require a special hi-
erarchy in the form of pseudotree. A decentralized algorithm
for creating valid pseudotrees has been proposed [Chechetka
and Sycara, 2005], however, its efficiency relies upon a priori
knowledge about the maximum block size of the interaction
graph, and it is also unclear how it might be extended to dy-
namic hierarchies. Some DCR algorithms construct a DFS-
based pseudotree as the problem is being solved [Hamadi et
al., 1998; Silaghi and Yokoo, 2008], however, it is likewise

a1

a2

a3

a4

a5

a6

(a)

a1

a2

a3

a4

a5

a6

(b)

a1

a2

a3

a4

a5

a6

(c)

Figure 1: a6, whose interaction graph neighbors are a2 and
a5, requests to join the existing hierarchy in (a). If DFS is
simply re-run the hierarchy in (b) results. Note that the par-
ents of both a4 and a5 change. The optimal hierarchy in terms
of minimal depth and edits—which could not have been pro-
duced by a DFS traversal—is in (c).

unclear how these algorithms might be extended to handle the
intricacies of concurrency imposed by dynamic hierarchies.
A number of algorithms based on asynchronous backtrack-
ing have been developed that dynamically reorder the agents
within the hierarchy as the problem is being solved [Yokoo,
1995; Zivan and Meisels, 2006], but this approach has only
been explored in terms of static DCR problems and it is un-
clear how it might be extended to problems in which agents
can dynamically be added and removed.

DFS-based algorithms are relatively inexpensive (most re-
quire only a linear number of rounds), so an argument might
be made that DFS could simply be re-run every time the tree
changes, possibly through the use of a self-stabilizing algo-
rithm. In certain instances, however, such an approach might
cause a large disparity between the original hierarchy and the
hierarchy resulting after the perturbation, as pictured in Fig-
ure 1. Continuing the corporation example, the marketing
department should not necessarily have to change its man-
agerial structure every time a new accountant is hired in the
billing department. An approach with a minimal number of
edits to the existing hierarchy is therefore desirable. One way
to ensure a constant number of edits is to simply add new
agents as a parent of the root of the hierarchy. The problem
with this method, however, is that if many new agents are
added then the hierarchy will tend toward a chain, which is
the worst case topology in terms of parallelism. What is ul-
timately desirable, then, is an approach that both minimizes
edit distance between successive hierarchies and also mini-
mizes tree depth.

4 The Algorithm

We assume that the communications network provides guar-
anteed delivery of messages, however, there may be arbitrary
latency (i.e., an asynchronous network [Lynch, 1997]). We
furthermore assume that all agents are honest and correct and
thus need not consider the problem of Byzantine failure. The
agents are non-adversarial insofar as their primary goal is to
optimize the utility of the entire coalition, however, the in-
dividual agents may have data that they wish to keep private
from others. Agents’ perceptions of the interaction graph are
consistent, possibly through the use of a distributed consen-

306

sus algorithm [Lynch, 1997]. Each agent has a unique iden-
tifier with a globally agreed ordering. Each agent, however,
may not know of all of the other agents in the network; it
is only assumed that ai knows the existence of all aj ∈ Ni.
Each agent that has already been placed in the hierarchy only
knows its parents, children, and interaction graph neighbors.
Agents also know the relative location of interaction graph
neighbors (i.e., ancestor or descendant).

As Mobed applies to DCR, it should be noted that our no-
tion of an interaction graph can be equated to DCR’s notion
of a constraint graph. In this sense, though, our formalization
is then in the context of constraint graphs of agents as op-
posed to constraint graphs of variables (the latter of which is
the norm for DCR). This presentation was chosen for sake of
both brevity and accessibility. Nothing precludes this algo-
rithm from being applied to constraint graphs with multiple
variables per agent; in such a case the work herein may be
read such that “agents” are instead “variables.”

With these assumptions in mind, there are a number of
challenges in devising a DynDisMHG algorithm (compli-
cated by the fact that there is no central server and agents
act asynchronously in an asynchronous network): To what
extent can privacy be maintained? What if a new agent has
neighbors in disjoint hierarchies? How are multiple, concur-
rent requests for addition and removal handled? How is the
hierarchy initialized? To what extent can the perturbation of
an existing hierarchy be minimized subsequent to agent ad-
dition or removal? The remainder section introduces Mobed:
an algorithm that addresses all of these challenges.

4.1 Theory

Given an existing hierarchy and a new agent, the first prob-
lem is to determine where in the hierarchy that agent should
be added such that the hierarchy remains valid. We shall now
propose and prove a series of lemmas that define such an in-
sertion point. We first define Equation 2 that tests whether or
not a given agent already in the hierarchy is a valid insertion
point. In Lemmas 1 and 2 we prove, respectively, that such
an insertion point must exist and that it must be unique. In
Lemmas 3 and 4 we prove that the new agent can be inserted
either as the parent or child of the insertion point.

Let h : A × P(A) → B be a function defined as

h(ai, I) = v({ai} × I \ {ai}) ∧ (Di ∩ I = ∅ ∨
|{aj ∈ π−1(ai) : (Dj ∪ {aj}) ∩ I �= ∅}| > 1)

∧ (∀aj ∈ Ci : ¬h(aj , I)).
(2)

We shall hereafter refer to an agent ai that satisfies h(ai, I)
as an insertion point for the set I . h(ai, I) will be TRUE if all
of the following are true: ai is an ancestor or descendant of
all agents in I \ {ai}; ai either has no descendants in I or ai

has more than one child whose subtree has agents in I; and
none of ai’s ancestors are insertion points for I .

Lemma 1. Given a valid hierarchy T = 〈A, π〉 and an agent
ai /∈ A, then

Ni ⊆ A =⇒ (∃a� ∈ A : h(a�, Ni) = TRUE) . (3)

Proof. Let us assume, on the contrary, that Ni ⊆ A but there
does not exist an agent a� such that h(a�, Ni). This means
that either ∀aj ∈ A : Ni \ {aj} � Dj ∪ Cj ; every agent has
exactly one child whose subtree contains an agent in Ni; or
every agent has at least one ancestor that is an insertion point
for Ni. The first case contradicts Ni ⊆ A. The second case
implies that the hierarchy T is cyclic (and therefore invalid)
which is a contradiction. The third case either means that an
a� must exist or it means that the hierarchy T is cyclic, both
of which are contradictions.

Lemma 2. The insertion point must be unique.

Proof. Let us assume, on the contrary, that there are at least
two agents in A that satisfy the existential quantification of a�

in Equation 3; let us call two such agents a1 and a2. h(a1, Ni)
and h(a2, Ni) both must be TRUE, which implies that neither
a1 nor a2 is an ancestor of the other, further implying that
a1 and a2 must be in disjoint subtrees. Since the hierarchy
is valid it must not be cyclic, and there must be some agent
a3 that is the deepest common ancestor of a1 and a2. Since
a1 and a2 are both insertion points for Ni, all of the agents
in Ni \ {a3} must be in C3, which by Equation 2 means that
h(a3, Ni) must be TRUE, contradicting the fact that both a1

and a2 are insertion points for Ni.

Lemma 3. Given a valid hierarchy T = 〈A, π〉, the addi-
tion of a new agent ai /∈ A inserted between a� ∈ A and
π(a�) will produce a valid new hierarchy T ′ = 〈A∪{ai}, π∪
{〈a�, ai〉, 〈π(ai), a�〉} \ {〈π(ai), ai〉}〉 if h(a�, Ni).

Proof. Since a� will be the only child of ai, ai will share
all of a�’s previous ancestors and descendants. Since a� was
already a valid insertion point, ai must also remain valid.

Lemma 4. Given a valid hierarchy T = 〈A, π〉, the addition
of new agent ai /∈ A as a child of a� ∈ A will produce a valid
new hierarchy T ′ = 〈A∪{ai}, π∪{〈ai, a�〉}〉 if Ni∩D� = ∅
and a� is the insertion point for Ni.

Proof. Assume, on the contrary, that the addition of ai as a
child of a� will produce an invalid hierarchy. By Equation 1,
this means that there is at least one pair of neighboring agents
that are neither ancestors nor descendants of each other. Since
the original hierarchy T was valid, we know that such a pair
of agents must be in {ai} × Ni. Since v({a�} × Ni) is true,
we know that all of ai’s interaction graph neighbors are either
ancestors or descendants of a�. Since ai is added as a child
of a� and therefore shares all of a�’s ancestors, it must be true
that ∃aj ∈ Ni : aj ∈ D�, which contradicts Ni∩D� = ∅.

4.2 General Principles

Based upon the results of the previous section, Mobed adds an
agent ai to an existing hierarchy by the following procedure:

1: find a valid insertion point a� /* one must exist accord-
ing to Lemmas 1 and 2 */

2: if D� ∩ Ni = ∅ then /* Lemma 4 */
3: π(ai) ← a�

4: else /* Lemma 3 */
5: π(ai) ← π(a�)
6: π(a�) ← ai

307

a1

a2

a3

a4

a5

Add Me

Add Me

(a) a5 initiates its addition to
the existing hierarchy by send-
ing messages to all aj ∈ N5.

a1

a2

a3

a4

a5

A
dding

a
5

(b) a4 forwards the message on
to its parent, a2.

a1

a2

a3

a4

a5

A
re

you
deepest?

(c) a2 has received two mes-
sages regarding the addition of
a5 and |N5| = 2, however, a2

has a single child, so ask that
child if it is deepest. . .

a1

a2

a3

a4

a5

I am
a
�child

(d) a4 did not receive any mes-
sages from its children (D4 ∩
N5 = ∅), so add a5 as a child.

Figure 2: An execution of the algorithm for addition of a
agent a5 to an existing hierarchy. Solid edges represent edges
in the existing hierarchy. Dashed edges represent message
passing.

Determining a� (step one in the procedure) can be performed
by recursively passing messages up the tree starting from all
agents in Ni. Without loss of generality, let us assume that all
agents in Ni are already present in the same hierarchy; this
assures that there must be some agent aj that will eventually
receive |Ni| messages from its children. Then,

1: while aj received exactly one message regarding the ad-
dition of ai do

2: aj ← the child from which aj received the message
3: a� ← aj

Using this method it is trivial to check whether D� ∩ Ni = ∅
(step two in the procedure): if a� did not receive any messages
from its children then we know D� ∩Ni = ∅ is true. Figure 2
provides an example execution of this algorithm.

4.3 Merging Hierarchies

We shall now consider the case when a new agent’s neighbor-
hood contains agents in disjoint hierarchies. This may happen
if ai is an articulation point of the interaction graph. The ap-
proach for this case is simply to add ai as the new parent of
the roots of T1 and T2. The problem, however, is that no agent
in Ni necessarily knows that they are in disjoint hierarchies
and the addition process as described above will deadlock.

The solution is as follows: whenever a root of a hierar-
chy (e.g., a1 and a3) receives an addition request regarding
a new agent ai—regardless of whether that addition request
was sent directly to the root or whether it was propagated

up the hierarchy—and that root has received fewer than |Ni|
such addition requests, then that root will additionally send a
Rootmessage to ai stating that it is the root of a hierarchy. If
ai ever receives |Ni| such messages then ai will become the
new parent of all agents from whom it received the messages.

4.4 Preventing Race Conditions

The algorithm as it is presented above will work correctly
if there is exactly one agent being added at a time. Due to
the possibility of arbitrary message latency, there is a chance
that concurrent additions could result in inconsistent modifi-
cations to the hierarchy among the agents. To address this we
introduce a concept of active blocks of the hierarchy. When
an agent aj receives an add request regarding a new agent ai,
then aj goes into active mode and proceeds as normal. If aj

is already in active mode, however, it will immediately re-
ply to ai with an AlreadyActive message. Such an error
condition implies that another agent in the subtree rooted at
aj (or an agent on the path from aj to the root) is in the pro-
cess of either being added or removed; we shall call this agent
ak. aj will also send an AlreadyActive message to ak.
These messages contain a field stating whether k > i. If an
agent ever receives such a message it will inform all agents
in its neighborhood that it is cancelling its addition. If the
agent’s identifier is lower priority than the other sent in the
AlreadyActive message then that agent will perform an
exponential backoff before restarting its addition. Otherwise,
the agent will only sleep for a constant time period. Once
the algorithm is complete, all agents that received an addition
message regarding ai become inactive.

4.5 Initial Generation

The special cases addressed in the previous sections are suf-
ficient to generate and maintain hierarchies as long as a hi-
erarchy already exists. How should the initial hierarchy be
generated? Which agent should become the first root?

The solution is to construct the initial hierarchy semi-
synchronously: an agent will not attempt addition of itself to a
hierarchy until all of its higher-priority neighbors are already
members of a valid hierarchy. A new agent to be added to the
hierarchy, ai, will send an AddMe to all aj ∈ Ni, as described
above, however, ai will send them one-by-one in order of
decreasing priority of j. After each AddMe is sent, ai will
block until receipt of a reply from aj before proceeding to
the next, lower-priority neighbor. The neighbor’s reply can be
one of three possibilities: an AlreadyActive message as
described in §4.4, a NoTree message (meaning the neighbor
has not yet been added to a tree), or a AdditionStarted
message (meaning that the neighbor does have a tree and has
started the addition process for ai as described above). If ai

receives a NoTree message from aj and j > i then ai will
send a CancelSearchmessage to all ak ∈ Ni where k > j
and ai will block until it receives an AddRequest message
from another agent. If, on the other hand, a NoTree mes-
sage is received from an aj where j < i then it is ignored.
The addition will then proceed as in §4.2. Pseudocode for the
entire algorithm—implementing the constructs in §4.2–4.5—
is given in Algorithm 1.

308

Algorithm 1 Mobed’s distributed addition of a new agent, regardless of whether or not any of the agent’s neighbors are already
in hierarchies or whether those hierarchies are disjoint.

Note that the t argument is used as a type of logical clock to
avoid processing messages that have expired. If a message is ever
received with a t value that is lower than any other message that
has been received from the sender then the message is discarded.

1: procedure ADD-AGENT(ai, t = 0)
Require: ai is the agent to be added. t is a counter for this addi-

tion attempt, initially set to zero.
2: H ← Ni

3: for all aj ∈ Ni in order of descending j do
4: SEND-MESSAGE(HasTree?) to aj

5: wait for a reply from aj

6: if the reply is AlreadyActive then
7: handle as described in §4.4.
8: else if the reply is NoTree then
9: if j > i then

10: send a CancelSearch(t) message to all
am ∈ Ni where am > aj .

11: wait to receive an AddRequest message
12: return ADD-AGENT(ai, t + 1)
13: else
14: H ← H \ {aj}
15: else if the reply is a success then
16: do nothing
17: for all aj ∈ H do
18: SEND-MESSAGE(AddMe, ai, |H|, t) to aj

19: R ← ∅ /* R is a set and therefore does not allow
duplicates */

20: while |R| < |H| do
21: if the next message is a Root message from aj then
22: R ← R ∪ {aj}
23: if |R| = |H| then /* |Ni| contains agents in

disjoint hierarchies */
24: for all ar ∈ R do
25: π(ar) ← ar /* Become the new parent

of ar */
26: Tell ar that we are its new parent and that

it can become inactive.
27: else if the next message is Added(p, c) from aj then
28: π(ai) ← p /* our new parent is p */
29: π(c) ← ai /* our new child is c */
30: R ← H
31: send an AddRequest to all lower-priority agents to

whom ai has ever sent a NoTree message.

32: procedure HANDLE-ADDME(an, q, t) sent from aj

Require: an is the agent requesting to be added and ai is the
agent that received (and is processing) the message. m :
V → N, r : V → P(π−1(ai)), and s : V → B are all
maps retained in memory. m maps variables to an integer, r
maps variables to the power set of ai’s children, and s maps
variables to a boolean. If a key does not exist in s then its
value is taken to be FALSE. av is the agent for whom ai is
currently active, or ∅ if ai is inactive.

33: if ai is not yet in the hierarchy then
34: SEND-MESSAGE(NoTree, t) to an

35: return
36: else if av �= ∅ �= an then
37: SEND-MESSAGE(AlreadyActive, v > n, t) to

an and av

38: av ← ∅
39: Clear all of the maps in memory and tell aj to cancel

its search, forwarding the message to all agents in the current
active block.

40: return
41: else
42: av ← an /* make ai active for an */
43: if aj = an then /* aj is the variable requesting to be

added */
44: m(an) ← 1, r(an) ← ∅, and s(an) ←TRUE
45: else if aj ∈ π−1(ai) then /* aj is one of our children

*/
46: m(an) ← m(an) + 1
47: r(an) ← r(an) ∪ {aj}
48: if m(an) = q then /* ai satisfies Equation 1 for Nn

*/
49: if |r(an)| = 1 then /* ai is not the deepest */
50: q′ ← q
51: if s(an) 	→TRUE then /* ai was originally sent

a message from an (meaning ai ∈ Nn) */
52: q′ ← q′ − 1

53: ak ← the single variable in r(an)
54: SEND-MESSAGE(AddMe, an, q′, t) to ak

55: av ← ∅
56: remove m(an), r(an), and s(an) from memory
57: else /* ai is the deepest vertex satisfying Equation 1

*/
58: if r(an) �= ∅ then /* we have at least one de-

scendant that is in Nn (Lemma 3) */
59: π(an) ← π(ai)
60: π(ai) ← an

61: SEND-MESSAGE(Added, π(an), ai) to an

62: else /* Lemma 4 */
63: π(an) ← ai

64: SEND-MESSAGE(Added, ai, ∅) to an

65: av ← ∅
66: Tell all of the agents in r(an) that the search is

over and clear all of the maps in memory.
67: else if our vertex ai is not the root of the pseudotree then
68: SEND-MESSAGE(AddMe, an, q, t) to π(ai) /*

Forward the message to our parent */
69: else /* This situation may occur if there are two or more

variables in Nn from disjoint hierarchies */
70: SEND-MESSAGE(Root, ai, t) to an

309

4.6 Changes to Constraints and Agent Removal

Changes to constraints can be handled by removing and re-
adding all affected agents. Removal of an agent ai can be
accomplished by making ai, π(ai), and all aj ∈ π−1(ai)
active. All of the children are then made the children of π(ai)
and ai is removed. The hierarchy will remain valid.

5 Analysis

This section analyzes—both theoretically and empirically—
the performance of Mobed. For the empirical analysis, a se-
ries of random, connected graphs were randomly generated
from a uniform distribution with varying numbers of vertices
and edge densities1. 100 such random graphs were generated
for each pair of number of vertices and edge density. For each
graph both DFS and Mobed were run to generate a valid hier-
archies. A new vertex was then randomly added in such a way
as to maintain the given edge density. DFS and Mobed were
then re-run to produce a new valid hierarchy. Various metrics
including the average number of rounds of computation (i.e.,
the length of the longest causal chain of synchronous mes-
sages required for the algorithm to reach quiescence) and the
edit distance between hierarchy perturbations were recorded.

5.1 Computational Complexity

Let us consider the computational complexity of adding a new
agent ai to an existing valid hierarchy T = 〈AT , π〉. We as-
sume that Ni ⊆ AT and there are no other agents attempt-
ing to be concurrently added. ai will first send one message
to each neighbor in Ni. Each aj ∈ Ni will then forward
the message up the tree. In the worst case in terms of syn-
chrony, each of the |Ni| messages will have to traverse up
the tree to the root, followed by the root propagating a single
message back down to the insertion point. The addition of a
single agent therefore requires worst case O(|Ni|dT) rounds,
where dT is the depth of the deepest agent in T . In the worst
case in terms of existing hierarchy topology, T will be a chain
and the worst case number of rounds for a single insertion is
O(|Ni||AT |). Construction of a hierarchy from scratch for
a worst-case fully-connected interaction graph therefore re-
quires O

(∑|A|
i=1 i· |A|

)
= O

(|A|3) rounds. The best-case
runtime, however, is O(|Ni|), which in the real world will of-
ten be quite small. Therefore, the runtime in terms of number
of rounds will always be polynomial and—if Ni is bounded—
individual additions will run in amortized linear time. This
theory is supported by the empirical results (Figure 3).

5.2 Edit Distance

The edit distance between two hierarchies, T1 = 〈A1, π1〉
and T2 = 〈A2, π2〉, is defined as2

|{〈ai, π1(ai)〉 : ai ∈ A1}Δ{〈aj , π2(aj)〉 : aj ∈ A2}|.
1Edge density, ranging in [0, 1], is the percentage of possible

edges that exist in the graph. A density of 0.0 means that the graph
has no edges while a density of 1.0 means that the graph is complete.

2i.e., the minimum number of child-parent relationships that
must be reassigned in order for the two trees to become isomorphic.

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

#
of

R
ou

nd
s

Agents

Density 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 3: Average number of rounds for Mobed to reach qui-
escence for a single agent addition.

Ideally, after a single addition of an agent the edit distance be-
tween the original hierarchy and the resulting hierarchy will
be minimized. The worst case edit distance for DFS will oc-
cur whenever the existing hierarchy T = 〈AT , π〉 consists
of a root with |AT | − 1 children and the agent being added,
ai /∈ AT , has the property Ni = AT . In this case |A| edits
may occur. In contrast, Mobed bounds the number of edits
for each agent addition at two.

During our empirical analysis, edit distance according to
the metric formalized above was noted for both DFS and
Mobed between the initial and post-vertex-addition hierar-
chies. Figure 4 gives the percentage difference between the
edit distance of DFS and Mobed; positive percentages mean
that DFS had a worse edit distance. DFS performed worse
for sparse graphs (density ≤ 0.5). Although DFS performed
better on dense graphs, it was only ever one edit better.

Our definition of edit distance is quite favorable to DFS; in
some domains a better metric may be the number of ancestor-
descendant relationships that are modified as a result of each
change to the interaction graph. Such perturbations in the
context of DCR might cause large portions of the previously
explored search space to be expanded again. With this stricter
metric, Mobed still has a bounded edit distance of two, while
DFS may perform much worse.

6 Conclusions and Future Work

This paper has two primary contributions: a formal gener-
alization of the DynDisMHG problem and introduction of
Mobed: an algorithm for distributedly constructing and main-
taining multiagent hierarchies with bounded edit distance be-
tween hierarchy perturbations. Mobed was compared—both
theoretically and empirically—to the only other viable solu-
tion to the DynDisMHG problem: distributed DFS. It was

310

-50

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

%
A

ve
ra

ge
E

di
tD

is
ta

nc
e

Agents
Density 0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

Figure 4: Comparison of the edit distance of DFS to Mobed.
The Y-axis is the percentage difference between DFS and
Mobed; positive values imply DFS performed worse.

shown that Mobed will always reach quiescence in a linear
number of rounds for each agent addition with respect to the
total number of agents, but under certain circumstances it
can theoretically run in constant time. Re-running DFS af-
ter such a perturbation would also require a linear number of
rounds, but may have arbitrarily bad edit distance. The edit
distance of Mobed is always bounded at two edits, which is
very low. For sparse graphs (density less than 0.5) Mobed
has at least as good an edit distance as DFS, and exhibited as
much as a 300% benefit. For those instances when Mobed ex-
hibited a higher edit distance than DFS (i.e., when the graph is
dense) its edit distance was no more than one edit worse. Pri-
vacy is also maintained in Mobed insofar as agents only ever
have knowledge of their interaction graph neighbors, hierar-
chy parents, and hierarchy children. Therefore Mobed is a
viable replacement for DFS as a solution to the DynDisMHG
problem, especially for sparse interaction graphs.

In the future we will empirically analyze the use of Mobed
in distributed problem solving algorithms. There is also much
work to be done in studying hierarchy generation techniques
that better balance the tradeoff between computational effi-
ciency/messaging, edit distance, and privacy, and also meth-
ods to maintain other invariants on the hierarchy’s topology.

References

[Arnborg, 1985] Stefan Arnborg. Efficient algorithms
for combinatorial problems on graphs with bounded
decomposability—a survey. BIT Numerical Mathematics,
25(1):1–23, March 1985.

[Chechetka and Sycara, 2005] Anton Chechetka and Katia
Sycara. A decentralized variable ordering method for
distributed constraint optimization. In Proceedings of

the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, July 2005.

[Collin and Dolev, 1994] Zeev Collin and Shlomi Dolev.
Self-stabilizing depth-first search. Information Processing
Letters, 49(6):297–301, 1994.

[Fischer et al., 2004] Klaus Fischer, Michael Schillo, and
Jörg Siekmann. Holonic and Multi-Agent Systems for
Manufacturing, volume 2744 of Lecture Notes in Com-
puter Science, chapter Holonic Multiagent Systems: A
Foundation for the Organisation of Multiagent Systems,
pages 1083–1084. Springer, 2004.

[Hamadi et al., 1998] Youssef Hamadi, Christian Bessière,
and Joël Quinqueton. Backtracking in distributed con-
straint networks. In Proceedings of the European Con-
ference on Artificial Intelligence, pages 219–223, 1998.

[Lass et al., 2008] Robert N. Lass, Evan A. Sultanik, and
William C. Regli. Dynamic distributed constraint reason-
ing. In Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, pages 1886–1887, 2008.

[Law et al., 2007] Lap Kong Law, Srikanth V. Krishna-
murthy, and Michalis Faloutsos. Understanding and ex-
ploiting the trade-offs between broadcasting and multicas-
ting in mobile ad hoc networks. IEEE Transactions on
Mobile Computing, 6(3):264–279, 2007.

[Lynch, 1997] Nancy A. Lynch. Distributed Algorithms.
Morgan Kaufmann, 1997.

[Petcu and Faltings, 2007] Adrian Petcu and Boi Faltings. R-
DPOP: Optimal solution stability in continuous-time opti-
mization. In Proceedings of the International Conference
on Intelligent Agent Technology, November 2007.

[Shehory and Kraus, 1998] Onn Shehory and Sarit Kraus.
Methods for task allocation via agent coalition formation.
Artificial Intelligence, 101(1-2):165–200, 1998.

[Silaghi and Yokoo, 2008] Marius Calin Silaghi and Makoto
Yokoo. Encyclopedia of Artificial Intelligence, chapter on
Distributed Constraint Reasoning, pages 507–513. Infor-
mation Science Reference, 2008.

[Sycara et al., 1996] Katia Sycara, Keith Decker, Anandeep
Pannu, Mike Williamson, and Dajun Zeng. Distributed
intelligent agents. IEEE Expert: Intelligent Systems and
Their Applications, 11(6):36–46, 1996.

[van Aart et al., 2004] Chris J. van Aart, Bob Wielinga, and
Guus Schreiber. Organizational building blocks for design
of distributed intelligent system. International Journal of
Human-Computer Studies, 61(5):567–599, 2004.

[Yokoo, 1995] Makoto Yokoo. Asynchronous weak-
commitment search for solving distributed constraint satis-
faction problems. In Proceedings of the First International
Conference on Principles and Practice of Constraint Pro-
gramming, pages 407–422, 1995.

[Zivan and Meisels, 2006] Roie Zivan and Amnon Meisels.
Dynamic ordering for asynchronous backtracking on
DisCSPs. Constraints, 11:179–197, 2006.

311

