
A Kernel Method for Market Clearing

Sébastien Lahaie

Yahoo! Research

New York, NY 10018

lahaies@yahoo-inc.com

Abstract

The problem of market clearing in an economy is
that of finding prices such that supply meets de-
mand. In this work, we propose a kernel method
to compute nonlinear clearing prices for instances
where linear prices do not suffice. We first present
a procedure that, given a sample of values and costs
for a set of bundles, implicitly computes nonlinear
clearing prices by solving an appropriately formu-
lated quadratic program. We then use this as a sub-
routine in an elicitation procedure that queries de-
mand and supply incrementally over rounds, only
as much as needed to reach clearing prices. An em-
pirical evaluation demonstrates that, with a proper
choice of kernel function, the method is able to
find sparse nonlinear clearing prices with much less
than full revelation of values and costs. When the
kernel function is not suitable to clear the market,
the method can be tuned to achieve approximate
clearing.

1 Introduction

It is standard in microeconomic modeling to assume that util-
ities are concave and costs convex. These assumptions ensure
that linear prices exist that balance demand and supply, where
one price is assigned to each item and the price of a bundle
is simply the sum of item prices. But there are many realistic
conditions under which such assumptions may fail to hold,
such as complementary items or economies of scale. In such
cases nonlinear prices might be needed to clear the market.

The problem of finding nonlinear clearing prices is chal-
lenging because such prices may be difficult to succinctly de-
scribe, let alone efficiently compute. In this work, we propose
a kernel method for market clearing to address both of these
issues. We view nonlinear prices as linear prices with respect
to some high-dimensional representation of bundles. This
perspective is drawn directly from the field of kernel methods
in machine learning, in particular support vector machines,
where nonlinear classifiers are construed as linear classifiers
in high-dimensional feature space [Shawe-Taylor and Cris-
tianini, 2004].

We consider a simple model with one buyer and one seller.
In an environment with multiple buyers and sellers, our two

agents would correspond to representative buyers and sellers
that enact the aggregate demand and supply behavior of each
side of the economy. Thus there is little loss of generality in
considering just a buyer and a seller in this setting, and we
opt for this simpler two-agent model for this initial work.

The problem at hand is that of finding prices such that
the bundle that maximizes the buyer’s utility simultaneously
maximizes the seller’s profit; it is in this sense that supply
meets demand. We make no convexity assumptions on the
value and cost functions of the buyer and seller. Now, no
single clearing method can hope to perform universally well
under such general conditions. A kernel method has the mod-
ularity to adopt an appropriate kernel function to clear any
particular instance of value and cost functions.

We first provide a quadratic program that, given a sample
of values and costs for a set of bundles, computes nonlinear
clearing prices using only inner-products of high-dimensional
bundle representations; this is the usual notion of a kernel
method. Unlike typical machine learning scenarios, however,
a sample of values and costs is not just given to us, it must
be elicited. Thus we embed our quadratic program as a sub-
routine in an elicitation procedure that queries demand and
supply incrementally over rounds.

Kernel methods have been applied to single-agent prefer-
ence elicitation, where the goal is to recover or approximate
an agent’s preferences in order to act on its behalf or assist
it on some tasks (i.e., for decision support). Domshlak and
Joachims [2006] provide a method for generating an ordi-
nal utility function given qualitative preference statements.
Chappelle and Harchaoui [2005] and Evgeniou et al. [2005]

apply support vector machines to conjoint analysis (prefer-
ence elicitation for marketing purposes).

We are not aware of any applications of kernel methods in
the context of multi-agent preference elicitation, where the
goal is not to recover preferences in any complete way, but
rather to solve some ulterior problem involving all the agents
(such as market clearing). Our elicitation procedure is similar
to the work of Lahaie and Parkes [2004], who give an auction-
style protocol that leads to clearing prices. They fit valuation
functions to the agent’s reported values using techniques from
computational learning theory, and ultimately reach clearing
prices on the basis of these valuations. Our method bypasses
the step of fitting functions and directly computes clearing
prices based on sample information of values and costs.

208

2 The Model

There is one buyer, one seller, and m items. A bundle is a
subset of the items. We associate each bundle with its indi-
cator vector, and denote the set of bundles by X = {0, 1}m.
We write x ≤ x′ to denote that bundle x is contained in bun-
dle x′ (the inequality is understood component-wise). The
buyer has a value function v : X → R+ denoting how much
it is willing to pay for each bundle. The seller has a cost
function c : X → R+ denoting how much it would cost to
produce each bundle. We assume that each function is mono-
tone: v(x) ≤ v(x′) whenever x ≤ x′, and the same for c. We
also assume v(0) = c(0) = 0.

A bundle is efficient if it maximizes the gains from trade:
value created minus cost of production. Formally, x ∈ X is
efficient if x ∈ arg maxx′∈X v(x′)− c(x′). Together with an
efficient bundle, we wish to find prices p : X → R such that
at these prices, supply meets demand. Let

D(p) = arg max
x∈X

{v(x)− p(x)}

S(p) = arg max
x∈X

{p(x)− c(x)}

In words, D(p) is the set of bundles that maximizes the
buyer’s utility—value minus price—and similarly S(p) are
those bundles that maximize the seller’s profit—revenue mi-
nus cost. Prices p are clearing prices if D(p) ∩ S(p) �= ∅.
At clearing prices, there is some bundle that simultaneously
maximizes the buyer’s utility and the seller’s profit; in this
sense, supply meets demand and the market clears.

Clearing prices are important because they decentralize the
problem of efficient trade. If x∗ ∈ D(p) ∩ S(p), then for any
other bundle x we have

v(x∗)− p(x∗) ≥ v(x) − p(x)

p(x∗)− c(x∗) ≥ p(x)− c(x)

and adding these two inequalities shows that v(x∗)−c(x∗) ≥
v(x) − c(x). Thus x∗ is efficient. In our model nonlinear
clearing prices always exist because observe that we can sim-
ply take p = v or p = c. As mentioned in the introduc-
tion, convexity assumptions would imply that linear clear-
ing prices exist; formally, these can be described by a vector
p ∈ R

m so that the price of a bundle x ∈ X is the usual inner
product 〈p, x〉 =

∑m

j=1
pjxj .

We need to explain how value and cost information will be
provided to our algorithms. Because the domain of bundles is
exponentially large, passing an encoded description of v and
c would be infeasible in general for even moderate m (such as
m = 30). In fact, one main goal of our work is to try to find
clearing prices by eliciting as little value and cost information
as possible. Thus we will just assume that our algorithms
have oracle access to the value and cost functions through two
kinds of queries. We assume that agents respond truthfully to
queries, and leave the question of incentive-compatibility to
future work. On a value query, the buyer is presented a bundle
x and replies with v(x). On an ε-demand query, the buyer
is presented a bundle x, prices p, and an ε ≥ 0; the buyer
returns any bundle that maximizes its utility at prices p within
an additive error of ε, breaking ties however it wishes, with
the exception that if x applies then it is returned. The notions

of cost query and ε-supply query are defined analogously for
the seller. Because prices are communicated to the agents in
demand and supply queries, we must ensure that they have
succinct encodings for such queries to be practical. This is
another goal of our work, for which we draw on techniques
from kernel methods.

3 Kernels

To compute nonlinear clearing prices, we view these as linear
prices in a higher-dimensional space to which we map the
bundles via a mapping φ : X → R

M , where M ≥ m. Entry
i in the vector φ(x) defines the value of the ith “feature” of
bundle x, for i = 1, . . . , M . Now, given p ∈ R

M , the price
of bundle x is 〈p, φ(x)〉. The mapping φ therefore indirectly
describes how each bundle is priced.

We might need M � m to ensure that clearing prices exist,
but with large M we cannot explicitly exhibit vectors φ(x) or
prices p drawn from R

M . The key insight of kernel meth-
ods is known as the “kernel trick”. Instead of working with
vectors in R

M , which may be impractical or even infeasible,
one formulates the relevant problem (e.g., classification, re-
gression) as a mathematical program that relies only on the
inner products 〈φ(xi), φ(xj)〉. What makes this practical is
that, for many kinds of mappings, the inner products can be
efficiently evaluated in time that does not depend on M .

A kernel function κ computes the inner product of the im-
ages of two bundles under a mapping φ : R

m → R
M , so

that κ(x1, x2) = 〈φ(x1), φ(x2)〉. A fundamental result on
kernels states that if a function κ : X×X → R with a count-
able domain is the kernel function of some map φ, then for
any finite sample {x1, . . . , xk} from X , the k× k kernel ma-
trix K with entries Kij = κ(xi, xj) is positive semi-definite
(see, e.g., [Shawe-Taylor and Cristianini, 2004]).

Instances of useful kernel functions for various classifica-
tion and regression tasks abound in the machine learning lit-
erature. By way of example, we list here those kernels that
we use later for the empirical evaluation of our method.

Linear At one extreme we have the kernel κ(xi, xj) =
〈xi, xj〉 which simply corresponds to the identity map
φ(x) = x. We would use this kernel in the method devel-
oped later if we were to try to find linear clearing prices.

Identity At the other extreme, we have the kernel function
κ(xi, xj) = 1 if xi = xj , and 0 otherwise. List all the pos-

sible bundles as x1, x2, . . . , x2m . If we define ei ∈ R
2

m

to
be the unit vector that has a 1 in entry i (and zeroes in the
remaining), then the implied map is simply φ(xi) = ei. This
corresponds to the case were each bundle is priced explicitly,
and therefore clearing prices are guaranteed to exist.

All-subsets The all-subsets kernel maps bundles into vec-
tors in R

2
m

. The range has a dimension for each bundle
x ∈ X . We have φx(x′) = 1 if x ≤ x′ and 0 other-
wise. Thus the price of a bundle is the aggregate of the prices
on all its subsets. The actual kernel function is defined as
κ(x, x′) =

∏m

i=1
(1 + xix

′
i), which can be evaluated in linear

time. With the ability to implicitly price subsets of commodi-
ties, this kernel seems well suited to market clearing.

Gaussian This is one of the most widely used ker-
nels in machine learning. It is defined as κ(x, x′) =

209

exp(−‖x− x′‖2 /2σ2). (Here and everywhere else, ‖·‖
refers to the Euclidean norm.) The parameter σ controls the
flexibility of the kernel. With smaller σ, it is better able to
fit arbitrary functions, and the kernel matrix approaches the
identity matrix (i.e., the kernel matrix of the identity kernel).
It is difficult to glean any economic motivation for this ker-
nel, but its success with classification and regression suggests
it should be worth trying for market clearing as well.

4 Formulation

In this section, we formulate the market clearing problem as
a quadratic program. To do this, we need to work with con-
tinuous approximations of the value and cost functions. Let
r = |X |. Let Y = φ(X), where φ is the mapping under
consideration, and let yi = φ(xi) for each xi ∈ X . With a
slight abuse of notation, the value function v can be written as
a function over Y rather than X (assuming φ is one-to-one,
but this can be dispensed with in the developments that fol-
low). Let Ȳ be the convex closure of Y , namely the set of all
convex combinations of elements in Y . We introduce a func-
tion v̄ over Ȳ , parametrized by λ ≥ 0, with v̄(y) for y ∈ Ȳ
defined as

max
Pr

i=1
αi=1

α∈R
r
+

{
r∑

i=1

αiv(yi)−
λ

2
‖α‖2

∣∣∣∣∣
r∑

i=1

αiyi = y

}
.

We will refer to v̄ as the buyer’s extended value function.
When λ = 0, v̄ is the concave extension of v over Ȳ : the
smallest concave function such that v̄(yi) ≥ v(yi) for each
yi ∈ Y . When λ is large, the second term in the objective
dominates. It is maximized when α is uniform: αi = 1/k for
each i. Thus it induces the function to consider more points in
the neighborhood of y when imputing a value. The extended
cost function c̄ of c is defined similarly: above, min replaces
max, c(yi) replaces v(yi), and the second term in the objec-
tive is added rather than subtracted. When λ = 0, c̄ is the
convex extension of c over Ȳ .

Lemma 1 The extended value (cost) function is concave
(convex) for all λ ≥ 0.

We stress that for any given λ, even λ = 0, it is not necessar-
ily the case that v̄(yi) = v(yi) for all yi ∈ Y , and the same
for c̄ and c. The point of v̄ and c̄ is to approximate v and c by
concave and convex functions over Ȳ , because we know that
with such functions linear clearing prices exist in Ȳ .

We now formulate the clearing problem with respect to the
extended value and cost functions. Explicitly, our quadratic
program only tries to identify an efficient bundle, but we will
see that the dual of the program gives the desired clearing
prices. Note that (1) below corresponds to M different con-
straints.

max
α,β≥0

r∑
i=1

αiv(xi)−
r∑

i=1

βic(xi)−
λ

2
‖α‖2 −

λ

2
‖β‖2

s.t.

r∑
i=1

αiφ(xi) =

r∑
i=1

βiφ(xi) (1)

r∑
i=1

αi = 1 ,

r∑
i=1

βi = 1 (2)

Observe that this quadratic program solves the problem of
finding an efficient bundle with respect to v̄ and c̄, except that
we have written v(xi) instead of v(yi) and φ(xi) explicitly
instead of yi. The dual of this program is as follows.

min
πs,πb,p,ε

πb + πs + μ
2

∥∥εb
∥∥2

+ μ
2
‖εs‖2

s.t. πb ≥ v(xi)− 〈p, φ(xi)〉 − εb
i i = 1, . . . , r

πs ≥ 〈p, φ(xi)〉 − c(xi)− εs
i i = 1, . . . , r

Here μ = 1/λ. At an optimal solution, we have πb =
maxi

{
v(xi)− 〈p, φ(xi)〉 − εb

i

}
. Thus πb reflects the max-

imum utility that the buyer can derive from any bundle in X
at prices p, to within a certain slack. The variable πs has an
analogous interpretation in terms of profit.

Ideally, the program would find a discrete solution, mean-
ing that the coefficients α and β would generate a yi ∈ Y ,
thus identifying a specific bundle xi ∈ X . However, it is pos-
sible (in fact typical) that the optimal convex combinations
do not result in a discrete solution. The following proposi-
tion gives a way to extract an (approximately) efficient bundle
from a solution to the primal. Its proof consists of a straight-
forward appeal to complementary slackness.

Proposition 1 Let (α, β) and (πb, πs, p, ε) be optimal pri-
mal and dual solutions. Assume there is an index i such that
αi > 0 and βi > 0. Then, letting δb = maxj εb

j − εb
i ,

δs = maxj εs
j − εs

i , and δ = δb + δs, we have that

(a) Bundle xi is efficient to within an additive error of δ.

(b) Bundle xi maximizes the buyer’s utility (seller’s profit)
at prices p to within an additive error of δb (δs).

This result also clarifies the purpose of the parameter λ. Sup-
pose that we set λ = 0 (equivalently, μ = ∞) and solve the
quadratic program, but that at the solution (α∗, β∗) there is
no index i such that α∗

i > 0 and β∗
i > 0. This indicates

that clearing prices have not been found, and necessarily oc-
curs if they do not exist for our choice of kernel. In this case
we can increase λ—equivalently, decrease μ—to allow for
approximate clearing prices in the dual. As λ → ∞ the opti-
mal solution tends to α∗

i = β∗
i = 1/k for all i, and thus we

will reach a point where the conditions of Proposition 1 are
satisfied. Therefore, increasing λ increases the chances that
the quadratic program will identify a discrete solution for any
given kernel function, with the caveat that the discrete solu-
tion might only be approximately efficient; correspondingly,
the prices obtained in the dual will only approximately clear
the market.

5 Algorithms

As formulated, our quadratic program is problematic in two
respects. First, it has too many constraints. Recall that M ,
the dimension of the range of φ, is potentially very large
because clearing prices may only exist in high-dimensional
space. The number of variables is also too large: there is a
variable αi and a variable βi for each xi ∈ X , and X is of
size 2m. We deal with the first concern by using a kernel
method, and then propose an elicitation procedure to address
the second concern.

210

5.1 Method of Multipliers

The usual approach in kernel methods is to formulate the
given problem as a mathematical program that only uses
inner-product information (i.e., the kernel matrix), and then
solve the optimization problem using general or special pur-
pose algorithms. Our quadratic program is not formulated in
terms of inner products. Instead, it is the procedure we use
to solve the program that only uses information in the kernel
matrix.

The procedure is known as the method of multipliers. (For
an extensive treatment of this method, see [Bertsekas, 1996].)
Despite its name, it was not originally conceived as a kernel
method, but simply as a way to solve equality-constrained
quadratic programs. That it only requires kernel matrix in-
formation when applied to our quadratic program was a cru-
cial insight in this work. The procedure eliminates the prob-
lematic constraints (1) and replaces them with multiplier and
penalty terms in the objective, which becomes

max
α,β≥0

r∑
i=1

αiv(xi)−
r∑

i=1

βc(xi)−
λ

2
‖α‖2 −

λ

2
‖β‖2

−

〈
p,

r∑
i=1

αiφ(xi)−
r∑

i=1

βiφ(xi)

〉
(3)

−
ν

2

∣∣∣∣∣
∣∣∣∣∣

r∑
i=1

αiφ(xi)−
r∑

i=1

βiφ(xi)

∣∣∣∣∣
∣∣∣∣∣
2

(4)

Let us ignore the multiplier term (3) for the moment. Evaluat-
ing the penalty term, one finds that it only involves the kernel
matrix K . As ν → ∞, the penalty term ensures that at an
optimal solution, the constraints (1) are satisfied. In practice,
one chooses a sufficiently large ν so that the constraints are
satisfied to within an acceptable tolerance. There is a draw-
back, however: as ν grows large the problem becomes in-
creasingly ill-conditioned, making it inherently more difficult
to solve with standard quadratic programming algorithms.
Thus one typically starts with a small initial ν1 and increases
it over several iterations until the constraints are sufficiently
satisfied, in an attempt to avoid ill-conditioning. A typical
update rule is νk+1 = τνk for some τ ∈ [4, 10], and this is
the rule we used in our experiments [Bertsekas, 1996].

To speed up convergence and further alleviate ill-
conditioning, one can introduce a multiplier term as in (3).
For simplicity, let h(α, β) =

∑r

i=1
αiφ(xi)−

∑r

i=1
βiφ(xi).

The original method of multipliers (there are several vari-
ants) uses at each iteration k the update rule pk+1 = pk +
νkh(αk, βk), where (αk, βk) is the optimal solution at the it-
eration. Under this update rule, the iterates pk converge to
the optimal dual solution [Bertsekas, 1996]—in this case the
clearing prices, which is why we used the suggestive notation
p for the multiplier. In theory and practice, using a multiplier
speeds up convergence. This was borne out in our experi-
ments. The multiplier is also essential for us because we seek
to compute clearing prices, not just an efficient bundle.

If we use p1 = 0 as the initial multiplier, then pk+1 =∑k

�=1
ν�h(α�, β�), and substituting this into (3) yields a term

that uses only inner-products. Thus the method of multipliers

leads to a kernel method when applied to our quadratic pro-
gram. At iteration k, the objective of our quadratic program
becomes

max
αk,βk≥0

r∑
i=1

αk
i v(xi)−

r∑
i=1

βk
i c(xi)−

λ

2

∥∥αk
∥∥2
−

λ

2

∥∥βk
∥∥2

−(ᾱk − β̄k)′K(αk − βk)

−
ν

2
(αk − βk)′K(αk − βk)

where ᾱk =
∑k−1

�=1
ν�α�

i and β̄k =
∑k−1

�=1
ν�β�

i . The con-
straints remain (2). One finds that the Hessian of the objective
is negative-semidefinite from the fact that K is positive semi-
definite, so we now have a straightforward quadratic maxi-
mization problem with concave objective function, for which
there is a wide selection of commercial and non-commercial
solvers.

At the final round k′, we use the multiplier as the clearing
prices given the method of multipliers’ convergence proper-
ties. Assuming clearing prices have been found (i.e., the con-
ditions of Proposition 1 hold), the price of a bundle x ∈ X is
given by

〈pk′

, x〉 =
r∑

i=1

(ᾱk′

i − β̄k′

i)κ(xi, x). (5)

If the vectors ᾱk′

and β̄k′

are sparse, this gives us a sparse
representation of nonlinear clearing prices.

5.2 Elicitation Procedure

The kernel method of the previous section addresses the ques-
tion of computing nonlinear clearing prices given a kernel and
full information of the value and cost functions, namely v(xi)
and c(xi) for all xi ∈ X . If, instead of this full information,
we only know the values and costs of bundles in some lim-
ited sample S, it is still possible apply the algorithm of the
previous section with respect to S rather than X . To check
whether the resulting bundle y is efficient, and whether the
resulting prices p are clearing, we can perform demand and
supply queries with these as inputs. If y is returned in both
cases, then it maximizes both the buyer’s utility and seller’s
profit at prices p, and we are done, following the arguments
of Section 2. Otherwise, we can grow our sample S by in-
cluding the buyer and seller’s replies.

The elicitation procedure based on these ideas is given
formally as Algorithm 1. It begins with an empty sample.
Throughout, prices are represented by the multiplier (ᾱ, β̄),
which is zero in the first round, leading to zero prices. The
buyer’s demand query reply at each round is recorded in xb,
initialized to 1, the bundle containing all items; the seller’s
reply at each round is xs, initialized to 0, the empty bundle.
The bundle y refers to the optimal bundle at each round, and
δb and δs are the slacks at each round.

The elicitation proceeds as long as no bundle common to
the demand and supply sets is found. At each round, the sam-
ple is updated with the latest replies. We write value(xb)
rather than v(xb) to indicate that an explicit value query is
performed, and similarly for cost queries; when we write

211

Input: κ, λ, query access to v and c.
Output: whether clearing prices were found.
S = ∅, p = (0,0), y = 0;

xb = 1, xs = 0;
δb = 0, δs = 0;
while xb �= y or xs �= y do

S ← S ∪ {xb, xs};
record value(xb), cost(xb), value(xs), cost(xs);
(α, β, ᾱ, β̄)← multipliers-method(S, κ, λ);
if there is an index i where αi > 0 and βi > 0 then

y ← xi;
p← (ᾱ, β̄);

δb = maxxj∈S[v(xj)− p(xj)]− [v(xi)− p(xi)];
δs = maxxj∈S[p(xj)− c(xj)]− [p(xi)− c(xi)];

else
return false;

end

xb = demand(y, p, κ, δb);
xs = supply(y, p, κ, δs);

end
return true;

Algorithm 1: Elicitation procedure to compute an efficient
bundle and sparse clearing prices.

v(xi) or c(xi), it is because the algorithm has already ob-
tained the value or cost of bundle xi.

At each round, the method of multipliers is run with re-
spect to S to find a candidate efficient bundle and clearing
prices using the kernel κ. Specifically, the method returns the
primal solution (α, β), from which we can deduce whether
an efficient bundle was found, and the final multiplier (ᾱ, β̄),
which represents the prices according to (5). If the criterion
of Proposition 1 does not hold at this point, then the proce-
dure halts with a failure flag.

In the demand and supply queries, the kernel κ is passed
along with the coefficients p = (ᾱ, β̄) because it is needed
to evaluate the price of bundles—recall (5). To ensure that
the procedure makes progress at each round, we must have
xb �∈ S or xs �∈ S for at least one of the replies. This is
the essence of the following result. (Below, δ = δb + δs as
before.)

Proposition 2 Algorithm 1 converges in a finite number of
rounds. Upon convergence, y is a δ-optimal bundle, and it
maximizes the buyer’s utility (seller’s profit) at prices p to
within an additive error of δb (δs).

If v = c, then observe that the only possible clearing prices
are p = v = c. In this case, any procedure that finds clearing
prices must elicit the complete information of one agent. In
the worst-case, this requires an exponential number of queries
(in m), so there is no hope for our procedure or any other to
always run in polynomial-time. (For formal communication
complexity results to this effect, see [Nisan and Segal, 2006].)
Nevertheless, none of this discounts the possibility that our
method could perform well in practice, especially given that
the modularity of the method allows one to choose a kernel
function appropriate for the clearing task at hand. Therefore,
we now turn to an empirical evaluation.

6 Empirical Evaluation

In this section we report on experiments run to evaluate
the clearing, elicitation, and efficiency performance of our
method. We used the CATS suite of distributions to gener-
ate value and cost functions for the buyer and seller [Leyton-
Brown et al., 2000]. CATS generates instances in the XOR
language [Nisan, 2000]. An XOR representation of a value
function consists of a subset of bundles Z ⊆ X together with
their values, in the form of atomic bids (z, v(z)) for all z ∈ Z .
The value of a bundle x ∈ X according to an XOR represen-
tation is v(x) = max{z≤x|z∈Z} v(z). For cost functions, we

used the semantics c(x) = min{z≥x|z∈Z} c(z) to interpret
the XOR instance. CATS allows one to specify the number of
atomic bids desired in an XOR representation, as well as the
number of items; in all our experiments, we used m = 30.

CATS was originally designed to generate valuation func-
tions for the purpose of testing winner-determination algo-
rithms for combinatorial auctions, not to generate pairs of
value and cost functions, so ours is an unconventional use
of the test suite. Nevertheless, this scheme generated non-
trivial test instances. In fact, the relative difficulty of clear-
ing the market under different CATS distributions (in terms
of runtime) agreed with the relative difficulty of the distribu-
tions for winner determination in combinatorial auctions, as
reported by Leyton-Brown and Shoham [2006].

Algorithm 1 was coded in C. To solve the quadratic pro-
grams within the method of multipliers, we used a non-
commercial C implementation of the LOQO interior-point
code [Vanderbei, 1999].1 We used default parameters for
LOQO, except for a margin of 0.25 rather than 0.95 (this
amounts to a more aggressive stepsize). We used τ = 6 for
the updates in the method of multipliers.

CATS provides five different distributions: arbitrary, paths,
matching, regions, and scheduling. The matching distribution
generated exceedingly easy instances where linear clearing
prices almost always existed, so we do not report on this dis-
tribution.

Clearing. To evaluate the clearing ability of our method with
different kernels, we ran it on each of the four CATS distribu-
tions, varying the total number of atomic bids. Letting Zb and
Zs be the bundles in the XOR representations of the value and
cost functions, the total number of bids refers to |Zb|+ |Zs|.
The average number of instances cleared are reported in Ta-
ble 1. As expected, the identity kernel cleared 100% of the
instances for all distributions. The fact that the linear kernel
regularly failed to clear the market indicates that the CATS
distributions often generate interesting instances for which
linear clearing prices do not exist. For the paths and schedul-
ing distributions, the all-subsets kernel generated a kernel ma-
trix with such large entries that the penalty term (4) swamped
the linear terms in the objective, leading LOQO to ignore
the latter and reach suboptimal solutions. This revealed an
unanticipated limitation of the all-subsets kernel and of our
method. We believe this could be remedied to an extent with
proper scaling and more conservative LOQO settings.

1The implementation, due to Alex Smola, was retrieved at
www.kernel-machines.org/code/prloqo.tar.gz

212

arbitrary paths regions scheduling

κ bids clr. elc. clr. elc. clr. elc. clr. elc.

linear
100 61 16 8 32 61 17 18 15

300 17 6 6 14 33 6 16 8

500 5 4 6 10 38 4 20 9

Gaussian
100 100 25 59 45 95 24 61 31

300 89 18 66 26 78 13 43 19

500 78 15 79 22 73 8 50 15

all-subsets
100 100 33 n/a n/a 100 39 n/a n/a

300 100 43 n/a n/a 100 28 n/a n/a

500 100 43 n/a n/a 100 21 n/a n/a

identity
100 100 43 100 32 100 45 100 46

300 100 44 100 22 100 41 100 43

500 100 44 100 20 100 38 100 43

Table 1: Average clearing and elicitation performance of our
method over 200 instances using λ = 0 and σ = 30. Elicita-
tion figures are averages over those instances that cleared.

Elicitation. The elicitation metric is defined as |S|/|Zb∪Zs|,
where S is the sample upon termination of Algorithm 1. The
motivation for this definition is that at most |Zb∪Zs| bundles
can be elicited when the value and cost functions are repre-
sented with XOR. Table1 shows that with all choices of ker-
nels, the method is able to reach clearing prices with much
less than full revelation on average. Importantly, elicitation
often decreases as bids are scaled up; this is particularly the
case for the Gaussian kernel. That the identity kernel is able
to clear the market with less than 50% elicitation on average
was an unexpected but welcome finding. The reason this oc-
curs is that the kernel explicitly prices the empty bundle; this
amounts to adding a constant term to the price of every other
bundle, and this can lead to a much sparser way of represent-
ing clearing prices.

Sparsity. The sparsity metric we use is the number of
nonzero coefficients in the final prices (5) divided by the term
|Zb∪Zs|, which is the maximum possible price size. By def-
inition, sparsity is never more than elicitation, because prices
contain one coefficient for each element of S, and some coef-
ficients may be zero. We do not report on any sparsity statis-
tics because we found that sparsity was always extremely
close to elicitation. This indicates that the method elicits very
few superfluous bundles for the purpose of clearing.

Approximation. As explained, the λ parameter can be ad-
justed to increase the chances that clearing prices are found,
at the expense of approximate rather than exact clearing. Fig-
ure 1 illustrates its effect on the paths distribution. We see that
with a modest efficiency sacrifice of around 3%, the Gaussian
kernel can be made to clear almost all instances, where it was
able to clear less than 70% when exact clearing was imposed.
The improvement is even more dramatic for the linear kernel:
a clearing improvement of almost 75% with less than a 5%
sacrifice in efficiency. The trade-off was comparable on the
other distributions.

0 0.5 1 1.5 2
0

20

40

60

80

100

%
 c

le
ar

in
g

0 0.5 1 1.5 2
95

96

97

98

99

100

λ

%
 e

ffi
ci

en
cy

 linear, clr.
 gaussian, clr.

 linear, eff.
 gaussian, eff.

Figure 1: Clearing and efficiency performance of the linear
and Gaussian kernels (σ = 30) on the paths distribution with
250 bids, varying the approximation parameter λ. Each data
point is averaged over 200 instances.

References
[Bertsekas, 1996] Dimitri P. Bertsekas. Constrained Optimization

and Lagrange Multiplier Methods. Athena Scientific, 1996.

[Chapelle and Harchaoui, 2005] Olivier Chapelle and Zaı̈d Har-
chaoui. A machine learning approach to conjoint analysis. In
Advances in Neural Information Processing Systems, 17. MIT
Press, 2005.

[Domshlak and Joachims, 2006] Carmel Domshlak and Thorsten
Joachims. Unstructuring user preferences: Efficient non-
parametric utility revelation. In Proc. of the 21st Conference
on Uncertainty in Artificial Intelligence (UAI), pages 169–177,
2006.

[Evgeniou et al., 2005] Theodoros Evgeniou, Constantinos Bous-
sios, and Giorgos Zacharia. Generalized robust conjoint estima-
tion. Marketing Science, 24(3):415–429, 2005.

[Lahaie and Parkes, 2004] Sébastien Lahaie and David C. Parkes.
Applying learning algorithms to preference elicitation. In Proc.
of the 5th ACM Conference on Electronic Commerce (EC), pages
180–188, 2004.

[Leyton-Brown and Shoham, 2006] Kevin Leyton-Brown and Yoav
Shoham. A test suite for combinatorial auctions. In Combinato-
rial Auctions, chapter 18, pages 451–478. MIT Press, 2006.

[Leyton-Brown et al., 2000] Kevin Leyton-Brown, Mark Pearson,
and Yoav Shoham. Towards a universal test suite for combinato-
rial auction algorithms. In Proc. of the second ACM Conference

on Electronic Commerce (EC), pages 66–76, 2000.

[Nisan and Segal, 2006] Noam Nisan and Ilya Segal. The com-
munication requirements of efficient allocations and supporting
prices. Journal of Economic Theory, 129(1):192–224, 2006.

[Nisan, 2000] Noam Nisan. Bidding and allocation in combinato-
rial auctions. In Proc. second ACM Conference on Electronic
Commerce (EC), pages 1–12, 2000.

[Shawe-Taylor and Cristianini, 2004] John Shawe-Taylor and
Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[Vanderbei, 1999] Robert Vanderbei. LOQO user’s manual–version
3.10. Optimization Methods and Software, 12:485–514, 1999.

213

