
Strengthening Schedules Through Uncertainty Analysis

Laura M. Hiatt†, Terry L. Zimmerman‡, Stephen F. Smith‡, Reid Simmons†‡
†Computer Science Department

‡Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15213
{lahiatt, wizim, sfs, reids}@cs.cmu.edu

Abstract

In this paper, we describe an approach to schedul-
ing under uncertainty that achieves scalability
through a coupling of deterministic and probabilis-
tic reasoning. Our specific focus is a class of over-
subscribed scheduling problems where the goal is
to maximize the reward earned by a team of agents
in a distributed execution environment. There is
uncertainty in both the duration and outcomes of
executed activities. To ensure scalability, our so-
lution approach takes as its starting point an initial
deterministic schedule for the agents, computed us-
ing expected duration reasoning. This initial agent
schedule is probabilistically analyzed to find likely
points of failure, and then selectively strengthened
based on this analysis.
For each scheduled activity, the probability of fail-
ing and the impact that failure would have on the
schedule’s overall reward are calculated and used
to focus schedule strengthening actions. Such ac-
tions generally entail fundamental trade-offs; for
example, modifications that increase the certainty
that a high-reward activity succeeds may decrease
the schedule slack available to accommodate uncer-
tainty during execution. We describe a principled
approach to handling these trade-offs based on the
schedule’s “expected reward,” using it as a metric
to ensure that all schedule modifications are ulti-
mately beneficial. Finally, we present experimen-
tal results obtained using a multi-agent simulation
environment, which confirm that executing sched-
ules strengthened in this way result in significantly
higher rewards than are achieved by executing the
corresponding initial schedules.

1 Introduction

The general problem of scheduling for uncertain domains re-
mains a difficult challenge. Research that focuses on con-
structing schedules (or scheduling policies) by reasoning with
explicit models of uncertainty has produced some promis-
ing mechanisms for coping with specific types of domain
uncertainties (e.g., [McKay et al., 2000; Beck and Wilson,

2007]), but in general these approaches have scaling difficul-
ties [Bryce et al., 2008]. Research in robust scheduling has
alternatively emphasized the use of expected models and de-
terministic scheduling techniques, with the goal of construct-
ing a flexible schedule (or a set of schedules) that can absorb
deviations at execution time [Policella et al., 2006]. These ap-
proaches are much more scalable, but either result in overly
conservative schedules at the expense of performance (e.g.,
[Morris et al., 2001]) or ignore the potential leverage that can
be provided by an explicit uncertainty model.

In this paper, we adopt a composite approach that couples
the strengths of the two above tactics. Like [Policella et al.,
2006], we assume as our starting point a partial-order sched-
ule, which is constructed (based on deterministic modeling
assumptions) to optimize the performance objective at hand,
but retains temporal flexibility where permitted by domain
constraints as a basic hedge against uncertainty. Our main
contribution is the act of layering an uncertainty analysis on
top of the deterministic schedule, taking advantage of the
known uncertainty model while avoiding the computational
overhead of probabilistic scheduling. We use this analysis of
the schedule to identify its weak points and strengthen them,
increasing the expected quality of schedule execution.

The general problem that motivates our work is that of co-
ordinating the activities of a team of collaborative agents as
they execute a joint schedule in an uncertain environment. In
the class of problems we focus on, various activities in the
joint schedule contribute differentially to the reward (referred
to in this paper as quality) that is achieved by executing the
schedule. All activities have both durational and outcome un-
certainty, and are subject to deadlines. Lower quality and
shorter duration backup activities are often available as al-
ternatives if time is short. Overall, the challenge is one of
constructing a robust, quality-maximizing schedule.

Some ways to increase schedule robustness in this context
are to: (1) protect against activity failure by adding redun-
dant, backup activities; (2) increase schedule slack by replac-
ing activities with shorter backup activities; or (3) remove
activities altogether, potentially increasing slack and the like-
lihood that other methods meet their deadlines. However,
there are basic trade-offs in trying to fortify the schedule in
these ways. The addition of new activities will reduce overall
temporal slack in the agents’ schedules, possibly increasing
the risk that other activities will fail to execute within their

175



specified time windows; similarly, removing activities from
the timeline ensure that they earn zero quality, potentially de-
creasing quality earned overall.

We argue that reasoning about the uncertainty associated
with scheduled activities provides a basis for effectively
strengthening deterministic schedules. In this paper, a failure
probability analysis is developed for targeting the most prof-
itable activities to bolster, and an analysis of overall expected
quality is defined to determine when individual strengthen-
ing actions are beneficial. These offline analyses serve to
strengthen the initial schedules in a manageable amount of
time before they are distributed to agents for the execution
phase. On a reference set of multi-agent problems generated
for the DARPA Coordinators program1, we demonstrate, in
simulated execution experiments, that schedules strengthened
in this manner are significantly more robust and earn more
quality during execution than the original schedules.

2 Related Work

At a high level, there are two main approaches that have been
applied to multi-agent problems with domain uncertainty:
reasoning with probabilities during the scheduling process;
and building deterministic schedules that are robust in the
face of executional uncertainty.

2.1 Probabilistic Planning

[Xuan and Lesser, 1999; Wagner et al., 2006] consider a
domain similar to ours, and use contingency planning (i.e.
multiple plan branches based on execution results) in their
scheduling process and to manage the uncertainty between
agents. Contingency planning, however, incurs a signifi-
cant computational overhead for their approach. In con-
trast, conformant planners such as [Smith and Weld, 1998;
Onder et al., 2006] deal with uncertainty by developing
single-path plans that are robust regardless of action out-
comes. Such plans, however, often cannot be found even in
classical planning domains and are ill-suited for our problem
of interest where the goal is to maximize a metric like quality.

Policy-based planners such as MDPs have also been ap-
plied in such domains and recently extended for temporal
reasoning and multiple agents [Younes and Simmons, 2004;
Mausam and Weld, 2006]. There has also been some work
in heuristic policy generation that attemps to overcome scal-
ability limitations [Musliner et al., 2007]. However, the Co-
ordinators program found the problems we are considering to
be beyond the capabilities of an MDP problem solver that it
developed to establish problem benchmarks.

2.2 Robust Scheduling

Partial-order schedules [Policella et al., 2006] flexibly allow
activity execution intervals to drift within a range of feasible
start and end times. This allows the plan to absorb devia-
tions in execution while still maintaining a valid plan. Plans
can also be probabilistically verified [Fox et al., 2006] to in-
crease robustness. Alternately, a plan can be configured to be
dynamically controllable [Morris et al., 2001], which guaran-
tees that a solution strategy exists for an uncertain temporal

1http:/www.darpa.mil/ipto/programs/coor/coor.asp

Figure 1: A simple 3-agent C TAEMS problem.

planning problem. The above approaches in general, how-
ever, are either overly conservative or ignore the extra lever-
age that explicitly considering uncertainty can provide.

3 Domain

We focus on a multi-agent scheduling problem that is con-
cerned with the collaborative execution of a joint mission by
a team of agents in a highly dynamic environment. Missions
are formulated as a network of activities in a version of the
TAEMS language (Task Analysis, Environment Modeling and
Simulation) [Decker, 1996] called C TAEMS [Boddy et al.,
2005]. A simple example of such a hierarchical activity net-
work is shown in Figure 1. The root of the tree is the overall
mission task, called the “taskgroup” (TG), and agents coop-
erate to accrue as much quality at this level as possible. On
successive levels, interior nodes constitute aggregate activi-
ties that can be decomposed into sets of sub-activities and/or
primitive activities (leaf nodes), which are directly executable
in the world. Hereafter we refer to interior nodes as “tasks”
and leaf nodes as “methods”; the term “activity” will be used
to refer to either type of node.

Each method can be executed only by a specified agent
(agent: Name in Figure 1) and each agent can execute at
most one activity at a time. Method durations are specified
as discrete probability distributions, and the exact durations
are known only after they have been executed. Method qual-
ities, (qual: X), are deterministic. Methods may also have a
likelihood of failing (fail: X%), which results in zero quality.

Each task in the activity network has a specified quality
accumulation function (qaf) defining when and how a task
accumulates quality. For example, a sum task accrues quality
when one child accrues positive quality, and its final value is
the total earned quality of all children. Other qafs are max,
which earns the maximum quality of its executed children,
and sum and, which earns the sum of the qualities of its chil-
dren once they all execute with positive quality. For simplic-
ity we omit discussion of additional qafs here.

A common structural feature of these task networks is to
have max tasks as the direct parents of several leaf node meth-
ods. These sibling methods are typically of different dura-
tions and qualities, and often belong to different agents. For
example, a search and rescue domain might have “Restore
Power” modeled as a max task, with the option of fully restor-
ing power to a town (higher quality and longer duration) or
only restoring power to priority buildings (lower quality and

176



shorter duration). Hereafter we refer to max tasks that are
parents of methods as “max-leafs.” They play a key role in
the schedule strengthening strategies described below.

Inter-dependencies between activities can be modeled via
non-local effects (NLEs). NLEs express causal precondi-
tions: for example, the enables NLE in Figure 1 stipulates
that the target activity m3 cannot be executed until T1 accu-
mulates positive quality. C TAEMS includes other types of
NLEs but for simplicity we omit discussion of these here.

Additional constraints in the network include a release
(earliest start) time and a deadline (denoted by rel: X and
dead: X respectively in Figure 1) that can be specified for any
node. Each descendant of a task inherits these constraints
from its ancestors, and its effective execution window is de-
fined by the tightest of these constraints. An executed activity
earns zero quality if any of these constraints are violated.

During execution, agents receive a copy of their portion of
the initial schedule and limited local views of the task hierar-
chy. Agents send commands to a simulator to begin method
execution, and receive back execution results based on the
stochastics of the problem description as they become known.
Agents also communicate relevant status information to other
agents asynchronously.

4 Approach

While deterministic planners have the benefit of being more
scalable than probabilistic schedulers, they make strong and
often inaccurate assumptions on how execution will unfold.
In oversubscribed domains such as ours, if the timeline is
tightly packed and even one method exceeds its scheduled
duration, there is a high risk that a later activity will violate
one of its constraints (e.g. a deadline).

Rescheduling during execution can effectively respond to
such unexpected dynamics, as long as dependencies allow
sufficient time for one or more agent schedulers to recover
from problems that arise. Our interest is in making determin-
istic schedules more robust in order to minimize the number
of unrecoverable problems. To do so, we augment determin-
istic schedulers with a schedule strengthening step, which
is focused by probabilistic analysis. In this paper we use a
centralized analysis to target areas of an initial schedule that
are likely to earn less than their projected quality, and fortify
these areas to increase the schedule’s expected quality, mak-
ing the schedule more robust during distributed execution.

4.1 Core Scheduler

Our scheduling approach is rooted in an incremental flexible-
times scheduling framework [Smith et al., 2007]. We adopt
a partial-order schedule (POS) representation where the ex-
ecution intervals associated with scheduled activities are al-
lowed to float within imposed time and activity sequencing
constraints. Its underlying implementation as a Simple Tem-
poral Network (STN) model provides efficient updating and
consistency enforcement mechanisms.

To produce an initial deterministic schedule, we compute
and assume expected duration values for methods in the input
problem’s activity network and focus on producing a POS
for the set of agents that maximizes overall problem qual-
ity. Given the complexity of solving this problem optimally

and our interest in scalability, we adopt a heuristic approach.
Specifically, a schedule is developed via an iterative two-
phase process. In the first phase a relaxed version of the prob-
lem is solved optimally to determine the set of “contributor”
methods, or methods that would maximize overall quality if
there were no capacity constraints. In the second phase, an at-
tempt is made to sequentially allocate these methods to agent
timelines. If a contributor being allocated depends on one or
more enabling activities that are not already scheduled, these
are scheduled first. Should a method fail to be inserted at any
point (due to capacity constraints), the first step is re-invoked
with the problematic method excluded. More detail on this
can be found in [Smith et al., 2007]).

4.2 Schedule Strengthening Tactics

To date, we have investigated three strengthening tactics:

1. “Backfilling” - Scheduling redundant methods under a
max-leaf task to improve the task’s likelihood of earning
quality (recall that max tasks accrue only the quality of
the highest quality child that executes successfully).

2. “Swapping” - Replacing a method with a sibling method
that has either a lower failure likelihood or a shorter du-
ration (to increase schedule slack).

3. “Pruning” - Unscheduling a method from the timeline
to increase schedule slack, thereby increasing the likeli-
hood that remaining methods earn quality.

All three tactics have an associated trade-off with their use:
backfilling decreases schedule slack, potentially increasing
the risk that other methods will miss their deadline; swap-
ping can lower quality when it replaces methods with lower-
quality siblings; and pruning can also lead to quality loss
since activities go unexecuted. Although this limits the use-
fullness of these tactics separately, their different properties
can also have synergistic effects (e.g. swapping can increase
schedule slack, making room for backfilling).

When performing schedule robustification on an initial
centralized schedule, we first identify parts of the schedule
that need strengthening, such as a method likely to miss its
deadline, and try to use a tactic to strengthen it. We have
previously shown that targeting areas of the schedule in this
way is a very effective way to strengthen schedules [Hiatt et
al., 2008]. Next we calculate the change in overall expected
quality of the schedule, and commit to actions that increase
the schedule’s expected quality, ensuring that the strengthen-
ing is helpful overall. The next sections describe this process.

4.3 Probabilistic Analysis of Deterministic
Schedules

We developed an algorithm that performs a Probabilistic
Analysis of Deterministic Schedules (PADS). This algorithm
propagates probability information through the task hierar-
chy, yielding a probability profile for each activity a which
includes its finish time distribution FT (a), its probability
of earning quality PQ(a), and its expected quality EQ(a).
Probability profiles are stored with each activity, and are read-
ily updated if the information associated with upstream activ-
ities changes.

177



Methods can earn zero quality for three reasons: (1) their
execution results in a failure outcome; (2) one of their en-
ablers earns zero quality; or (3) they miss their deadline. As
the second and third conditions depend on the probability pro-
files of upstream activities such as predecessors and enablers,
there is a natural order in which the PADS algorithm calcu-
lates probability profiles: only after a method’s predecessor’s
and enablers’ probability profiles are known can its own pro-
file can be determined.

A method m’s finish time distribution FT (m) is a function
of its release time, its predecessor’s end time distribution, its
enablers’ end time distributions, and its duration distribution.
When FT (m) is known, PQ(m) can be calculated: starting
with a value of 1, it is discounted if the method has a failure
outcome, if the method has an enabler that might earn zero
quality, and if there is a possible finish time past the method’s
deadline. Finally, the method’s expected quality is calculated,
EQ(m) = PQ(m) · qual(m), and its probability profile is
passed on to downstream activities, as well as up to its parent.

Tasks combine their children’s probability profiles accord-
ing to their qaf. The simplest example is a sum task. A sum
task’s probability of earning quality equals the probability
that at least one child does, 1 − ∏

i (1 − PQ (childi)), and
its finish time distribution is the distribution of the time that
the first child earns quality. Its expected quality is the sum of
the expected qualities of its children.

A final useful number is expected quality loss, which acts
as a measure of the importance of an activity and is used
to prioritize activities for strengthening. The expected qual-
ity loss of an activity, EQL(a), compares the schedule’s
expected quality given the activity earns its full scheduled
positive quality, EQ(TG | PQ(a) = 1), with the sched-
ule’s expected quality should that activity earn zero quality,
EQ(TG | PQ(a) = 0). We calculate these values by set-
ting the PQ(a) to 1 and 0, respectively, and propagating this
through the task tree. Then, EQL(a) = EQ(TG | PQ(a) =
1) − EQ(TG|PQ(a) = 0). While loss of an important ac-
tivity would greatly reduce taskgroup quality, an unimportant
activity that earns no quality may have little impact.

4.4 Probabilistic Schedule Strengthening

Schedule strengthening employs the above probabilistic
framework to focus improvement on the most vulnerable por-
tions of the initial schedule.

As mentioned above, we consider three tactics when ro-
bustifying schedules: backfilling, swapping and pruning.
The backfilling step begins by sorting max-leaf tasks with
PQ(t) < 1 by their expected quality loss. Each task is se-
quentially considered for backfilling until a single valid back-
fill is found. A backfill is valid if (1) it is successful (i.e. a
child method is successfully scheduled) and (2) it raises the
schedule’s expected quality. When a valid backfill is found
the backfilling step commits to this scheduling action and re-
turns (without trying to backfill further). The backfill step
will also return if all max-leaf tasks have been considered but
no valid backfill is found.

For the swapping and pruning steps, chains of methods are
first identified where methods are scheduled consecutively,
threatening to cause a method to miss its deadline. Meth-

ods within the chain are sorted by expected quality loss, as
are the chains themselves. The swapping (pruning) step it-
erates through the chains, attempting to swap (prune) each
method in the current chain in turn. Swapping also considers
exchanging methods which have a failure likelihood. As with
backfilling, the swapping (pruning) step returns either when
a valid action (i.e. a successful swap or prune that raises the
schedule’s expected quality) is found and committed to, or
when all possible swaps (prunes) have been ruled out. Note
that for all three tactics, a step may or may not result in an
actual backfill, swap or prune; if none of the three steps result
in a modification, we know that no more steps are possible.

Given these three independent steps, the full exhaustive al-
gorithm that finds the best possible combination of these ac-
tions considers each possible order of backfilling, swapping
and pruning steps, finds the schedule expected quality that re-
sults from each ordering, and returns the sequence of steps
which results in the highest expected quality. This algorithm,
however, can take an unmanageable amount of time as it is
exponential in the number of possible strengthening actions.

Therefore, we instead use a variant of a round-robin strat-
egy, which performs one backfilling step, one swapping step
and one pruning step, repeating until no more steps are pos-
sible. Two additional heuristics are incorporated. The first
prevents swapping methods for lower-quality methods while
backfilling the parent max-leaf task (and preserving a higher
quality option) is still possible. The second prevents pruning
methods, and thus entire branches of the taskgroup, when a
backfill or swap is still possible and would better preserve the
existing task structure.

We also experimented with a greedy heuristic variant
which performs one ‘trial’ step of each tactic, and commits to
the step which raises the expected quality the most, repeating
until no more steps are possible. It did not, however, perform
as well as the round-robin strategy in our preliminary testing.

5 Experiments and Results

In our experiments we used a test suite of 20 problems, taken
from the Phase II evaluation test problem suite of the DARPA
Coordinators program. Fifteen of the problems involved 20
agents, 3 involved 10 agents, and 2 involved 25 agents. Five
of the problems had under 200 methods, 8 had between 200
and 300 methods, 5 between 300 and 400 methods, and 2 had
greater than 400 methods.

5.1 Strengthening Multi-Agent Schedules

We compared the effectiveness of different strengthening
strategies by strengthening initial schedules for the 20 prob-
lems in 6 ways: pruning only; swapping only; backfilling
only; the round-robin strategy; the greedy strategy; and the
exhaustive strategy. We used a 3.6 GHz Intel computer with
2GB RAM. For 8 of the 20 problems the exhaustive algorithm
did not finish by 36 hours; for these cases we considered the
run time to be 36 hours and the quality earned to be the best
found when it was stopped. The resulting average expected
quality after schedule strengthening, as well as the average
running time for each of the algorithms, is shown in Table 1.

Clearly the round-robin strategy outperforms each of the
individual strategies it employs at a modest run-time cost. It

178



Table 1: A comparison of strengthening strategies

avg expected quality avg running time
(% of max) (in seconds)

initial 74.5 –
prune 77.2 6.7
swap 85.1 32.9

backfill 92.8 68.5
round-robin 99.5 262.0

greedy 98.5 354.5
exhaustive 100 32624.3

is interesting to see how the round-robin strategy outperforms
the greedy strategy. We attribute this to the round-robin strat-
egy prioritizing the tactics in order of effectiveness (i.e. back-
filling, swapping, then pruning). Round-robin is almost as ef-
fective as the exhaustive approach and, with a run-time that is
over two orders of magnitude faster, is the preferred choice.

5.2 Executing Strengthened Schedules

We performed an experiment in a multi-agent simulation en-
vironment to compare quality earned when executing initial
deterministic schedules with quality earned when executing
strengthened versions of the schedules. Agents are given a
limited, local view of the task hierarchy and their portion of
the initial schedule and are responsible for managing the ex-
ecution of their own schedule. They communicate method
start commands with a simulator and receive back execution
results (based on the stochastics of the problem) as they be-
come known, and share status information asynchronously.
All agents and the simulator run on their own processor and
communicate via message passing. We assume communica-
tion is perfect and sufficient bandwidth is available.

As we are interested in comparing relative robustness be-
tween schedules, we constrain the amount of rescheduling
that is allowed during execution. As mentioned above, the
flexible-times representation allows methods to float in re-
sponse to some dynamics. Beyond that the only rescheduling
permitted is the removal of a method that can no longer be
executed due to, for example, loss of an enabling activity or
projected violation of a deadline (detected as a conflict in the
underlying STN). Thus the relative quality earned at the end
of simulation by each different schedule indicates their rela-
tive robustness. We ran simulations comparing three classes
of schedules: (1) the schedule generated by the deterministic,
centralized planner; (2) the schedule generated by backfilling
(the best individual tactic) only; and (3) the schedule gener-
ated by round-robin schedule strengthening.

For each problem in our test suite we ran 25 simulations,
each with its own stochastically chosen durations and out-
comes, but purposefully seeded such that the same set of du-
rations and outcomes were executed by each of the condi-
tions. We numbered the problems from 1 to 20; in general,
as the problem numbers increase the problems become larger
and have more uncertainty.

Figure 2 shows the average quality earned by the three
sets of schedules for each of the 20 problems. The quality

is expressed as the fraction of the best known possible quality
earned during execution. We define the best known possible
quality for a given simulation to be the quality produced by
the deterministic scheduler on an omniscient version of the
problem, where the actual method durations and outcomes
generated by the simulator are given as inputs.

Figure 2: Average quality for each problem earned by the
different strengthening strategies, expressed as the proportion
of the best known quality earned

For problems 1 through 6, round-robin strengthening iden-
tified only backfill steps to be of value, and as a result pro-
duced results identical to the backfilling only strategy. Prob-
lems 7 through 10, while not identical, are on average very
close for these conditions. For individual simulations of these
problems, we see that round-robin strengthening usually per-
forms slightly worse than backfilling alone, but occasionally
far outperforms it. This interesting behavior arises because
round-robin can hedge against method failure by swapping in
a lower quality, shorter duration method for a method with a
small chance of earning zero quality. While for many runs
this tactic sacrifices a few quality points when the original
method succeeds, on average round-robin avoids the big qual-
ity loss that occurs when the method fails.

Note also the interesting performance of round-robin
strengthening for the smaller, more certain problems: it is
already near the best maximum known quality it could earn.
For the larger and more uncertain (higher numbered) prob-
lems, however, further improvement is clearly possible. We
discuss this point further below.

As the figure shows, round-robin schedule strengthening
outperforms backfilling, which in turn outperforms the initial
schedule condition. The differences between the conditions
are significant with p < 0.01, when tested for significance
with a repeated measures ANOVA.

6 Future Work and Conclusions

In this paper, we have described an approach which prob-
abilistically analyzes deterministic schedules to strengthen
them in a targeted way. Our hybrid approach is motivated
by the desire to scalably exploit knowledge about activity

179



duration and outcome uncertainty in large-scale, multi-agent
scheduling contexts. We use backfilling, swapping and prun-
ing steps in a round-robin strategy to strengthen identified
weak portions of an initial deterministic schedule and in-
crease the schedule’s expected quality, taking only a modest
amount of time. On reference multi-agent scheduling prob-
lems, schedules fortified in this way are shown to be signif-
icantly more robust and earn on average 31% more quality
during execution than their corresponding initial schedules.

As mentioned above, for larger, less certain problems, we
would like to improve further on the quality earned by sched-
ule strengthening. We are developing a distributed version
of PADS that enables agents to strengthen their schedules as
execution unfolds. This run-time approach has the additional
benefit of hedging against an agent’s scheduler failing during
execution as the last schedule produced will likely be more
effective in the face of unexpected outcomes.

The distribution of PADS raises interesting issues. The cal-
culation of expected quality loss cannot be performed in the
same way as agents do not have access to the whole tree; in-
stead it is necessary to estimate this value. The strengthening
tactics must also be altered to allow for coordination so that,
for example, multiple agents do not backfill the same max-
leaf task at once. Finally, there are off-setting impacts on the
overhead incurred by PADS: updating probabilities takes less
time for a single update as an agent is only concerned with
its local view; however, communications increase as agents
need to transmit changes to others with which they have de-
pendencies.

Acknowledgments

This work described in this paper has been supported in part
by the Department of Defense Advance Research Projects
Agency (DARPA) under Contract # FA8750-05-C- 0033 and
the CMU Robotics Institute. Any opinions, findings and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of DARPA.

References

[Beck and Wilson, 2007] J. C. Beck and N. Wilson. Proac-
tive algorithms for job shop scheduling with probabilis-
tic durations. Journal of Artificial Intelligence Research,
28:183–232, 2007.

[Boddy et al., 2005] Mark Boddy, Bryan Horling, John
Phelps, Robert Goldman, Regis Vincent, C. Long, and Bob
Kohout. C TAEMS language specification v. 1.06. Octo-
ber 2005.

[Bryce et al., 2008] Daniel Bryce, Mausam, and
Sungwook Yoon. Workshop on a reality check
for planning and scheduling under uncertainty.
http://www.ai.sri.com/b̃ryce/ICAPS08-workshop.html,
April 2008.

[Decker, 1996] Keith Decker. TAEMS: A framework for
environment centered analysis & design of coordination

mechanisms. In G. O’Hare and N. Jennings, editors, Foun-
dations of Distributed Artificial Intelligence, chapter 16,
pages 429–448. Wiley Inter-Science, 1996.

[Fox et al., 2006] Maria Fox, Richard Howey, and Derek
Long. Exploration of the robustness of plans. In Proceed-
ings of AAAI-06, 2006.

[Hiatt et al., 2008] Laura M. Hiatt, Terry L. Zimmerman,
Stephen F. Smith, and Reid Simmons. Reasoning about
executional uncertainty to strengthen schedules. In Pro-
ceedings of the Workshop on A Reality Check for Planning
and Scheduling Under Uncertainty (held in conjunction
with ICAPS-08), 2008.

[Mausam and Weld, 2006] Mausam and Daniel S. Weld.
Probabilisitic temporal planning with uncertain durations.
In Proceedings of AAAI-06, Boston, MA, July 2006.

[McKay et al., 2000] K.N. McKay, T.E. Morton, P. Ram-
nath, and J. Wang. Aversion dynamics’ scheduling when
the system changes. Journal of Scheduling, 3(2), 2000.

[Morris et al., 2001] Paul Morris, Nicola Muscettola, and
Thierry Vidal. Dynamic control of plans with temporal un-
certainty. In Proceedings of IJCAI, pages 494–502, 2001.

[Musliner et al., 2007] David J. Musliner, Jim Carciofini,
Edmund H. Durfee, Jianhui Wu, Robert P. Goldman, and
Mark S. Boddy. Flexibly integrating deliberation and ex-
ecution in decision-theoretic agents. In Proceedings of
the 3rd Workshop on Planning and Plan Execution for
Real-World Systems (held in conjunction with ICAPS-07),
September 2007.

[Onder et al., 2006] Nulifer Onder, Garrett C. Whelan, and
Li Li. Engineering a conformant probabilistic planner.
Journal of Artificial Intelligence Research, 25:1–15, 2006.

[Policella et al., 2006] Nicola Policella, Amedeo Cesta, An-
gela Oddi, and Stephen F. Smith. From precedence con-
straint posting to partial order schedules. a CSP approach
to robust scheduling. AI Communications, 20(3):163–180,
2006.

[Smith and Weld, 1998] Daniel E. Smith and Daniel S.
Weld. Conformant graphplan. In Proceedings of AAAI-
98, Madison, WI, 1998.

[Smith et al., 2007] Stephen F. Smith, Anthony Gallagher,
Terry Zimmerman, Laura Barbulescu, and Zachary Rubin-
stein. Distributed management of flexible times schedules.
In Proceedings of AAMAS-07, May 2007.

[Wagner et al., 2006] Thomas Wagner, Anita Raga, and Vic-
tor Lesser. Modeling uncertainty and its implications to so-
phisticated control in TAEMS agents. Autonomous Agents
and Multi-Agent Systems, 13(3):235–292, 2006.

[Xuan and Lesser, 1999] Ping Xuan and Victor Lesser. In-
corporating uncertainty in agent commitments. In Pro-
ceedings of ATAL-99, 1999.

[Younes and Simmons, 2004] Håkan L. S. Younes and
Reid G. Simmons. Solving generalized semi-markov deci-
sion processes using continuous phase-type distributions.
In Proceedings of AAAI-04, San Jose, CA, 2004.

180


