
Commitment Tracking via the Reactive Event Calculus∗

Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni

DEIS, University of Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

{federico.chesani, paola.mello, marco.montali, paolo.torroni}@unibo.it

Abstract

Runtime commitment verification is an important,
open issue in multiagent research. To address it, we
build on Yolum and Singh’s formalization of com-
mitment operations, on Chittaro and Montanari’s
cached event calculus, and on the SCIFF abductive
logic programming proof-procedure. We propose a
framework consisting of a declarative and compact
language to express the domain knowledge, and a
reactive and complete procedure to track the sta-
tus of commitments effectively, producing provably
sound and irrevocable answers.

1 Introduction

Since the introduction of social semantics of agent interaction
[Singh, 1998], social commitments have become a central no-
tion in multiagent research. One of the main reasons why
they became popular is that they lend themselves to verifica-
tion. Agents are treated as if they were black boxes, which
modify the environment via actions, and send/receive mes-
sages. Interaction protocols are specified outside of agents,
independently of their architecture. Whether agents interact
properly or not, that depends on their external behaviour, but
not on their internal status.

By interacting or by performing actions, agents manipulate
commitments [Singh, 1999], whose status could be inspected
to verify how agents are behaving, or what is expected of
them. This form of verification should ideally be carried out
at runtime, and it is what we call commitment tracking. Be-
ing verifiability one of social semantics’ main motivations,
one would expect that commitment tracking is a routine task
which makes use of well-known procedures: but this is not
the case, and runtime verification is an open issue to date.1

We thus propose a framework for commitment tracking
based on SCIFF and on the Event Calculus. The framework
features a flexible, declarative encoding of the Event Calcu-
lus and of the theory of commitments, which can easily be

∗Work supported by the FIRB RBNE05BFRK project TOCAI.it.
1Notably, two EU projects, FP5’s “SOCS” and FP6’s “CON-

TRACT” are largely concerned with runtime verification.

customized and extended. The commitment theory we im-
plement is mainly based on Yolum and Singh’s formaliza-
tion [2002], but it also has temporal elements in the style of
Mallya and Huhns [2003] since it features an explicit treat-
ment of time. This is necessary for real-world applications,
where temporal constraints and deadlines are ubiquitous.

After giving the necessary background notions, we infor-
mally discuss the requirements of a commitment tracking
framework. We then present our language and procedure, dis-
cuss its formal properties, and show a working example.

2 The Event Calculus

The Event Calculus (EC) was introduced by Kowalski and
Sergot [1986] for representing and reasoning about events
and their effects. Basic concepts are that of event, happen-
ing at a point in time, and property (or fluent), holding during
time intervals. Fluents are initiated/terminated by occurring
events. There are many different axiomatizations of the EC.
A simple one, taken from [Chittaro and Montanari, 2000], is
the one below (P stands for Property, E for Event):

holds at(P, T)← initiates(E, P, TStart)

∧ TStart < T

∧ ¬clipped(TStart, P, T).

(ec1)

clipped(T1, P, T3)← terminates(E, P, T2)

∧ T1 < T2 ∧ T2 < T3.
(ec2)

initiates(E, P, T)← happens(E, T) ∧ holds(P1, T)

∧ ... ∧ holds(PN , T).
(ec3)

terminates(E, P, T)← happens(E, T) ∧ holds(P1, T)

∧ ... ∧ holds(PN , T).
(ec4)

Axioms ec1 and ec2 are the general ones of EC, whereas ec3

and ec4 are used-defined, domain-specific axioms. Some-
times initially(P) is used to define properties that hold at
the beginning of time. Dual axioms and predicates, such as
declipped can be added to define when properties do not hold
and to model actions with duration [Shanahan, 1999].

The EC framework has been extensively used in the litera-
ture to carry out two main reasoning tasks: deductive narra-
tive verification, to check whether a certain fluent holds, given
a narrative (set of events) [Kowalski and Sergot, 1986], and
abductive planning, to simulate a possible narrative which
satisfies some requirements [Shanahan, 2000]. These tasks
take place after or prior to execution, but not during execu-

91

tion. The reason why the EC—in its above formulation—
is not used at runtime is that each time an event occurs, it
enables a straightforward update of the theory (it suffices to
add happens fact), but it incurs a substantial increase of the
query time, since backward reasoning has to be restarted from
scratch. However, runtime reasoning tasks, such as monitor-
ing, would greatly benefit from such a powerful framework.
For this reason, Chittaro and Montanari [1996] proposed a
mechanism to cache the outcome of the inference process ev-
ery time the knowledge base is updated by a new event. The
Cached Event Calculus (CEC) computes and stores the max-
imum validity intervals (MVIs) of fluents, i.e., the maximum
time intervals in which fluents hold, according to the known
events. The set of cached MVIs is then extended/revised as
new events occur or get to be known.

3 Social commitments

Social commitments are commitments made from an agent
to another agent to bring about a certain property. They are a
well-known concept in Multi-Agent Systems (MAS) research
[Castelfranchi, 1995; Singh, 1999]. Representing the com-
mitments that the agents have to one another and specifying
constraints on their interactions in terms of commitments pro-
vides a principled basis for agent interactions [Torroni et al.,
2009]. Commitments also serve as a natural tool to resolve
design ambiguities. Finally, the formal semantics enables
verification of conformance and reasoning about the MAS
specifications to define core interaction patterns and build on
them by reuse, refinement, and composition.

Central to the whole approach is the idea of manipulation
of commitments: their creation, discharge, delegation, as-
signment, cancellation, and release. Commitments are state-
ful objects that change in time as events occur. Time and
events are, therefore, essential elements. Some authors dis-
tinguish between base-level commitments, written C(x, y, p),
and conditional commitments, written CC(x, y, p, q) (x, y
are agents, called debtor and creditor; p, q are properties).
CC(x, y, p, q) signifies that if p is brought out, x will be com-
mitted towards y to bring about q.

The EC is a suitable formalism to specify the effects of
commitment manipulation and reason upon such operations.
Yolum and Singh [2002] have shown how commitments can
be embedded in a logical framework based on the EC. As a
sample fragment of such a formalization, consider a create
operation, whose purpose is to establish a commitment, and
can only be performed by the debtor. To express that an event
e(x) carried out by x at time t creates a commitment c, Yolum
and Singh define the operation create(e(x), C(x, y, p)) in
terms of happens(e(x), t) ∧ initiates(e(x), C(x, y, p), t).

4 Tracking social commitments

Example 1. A customer has signed a service agreement with
a printer supplier: if a printer breaks down, the supplier
guarantees to send a technician on site. The technician must
intervene within three days from the call. Any delay in the
intervention will incur from the supplier’s side an obligation
to pay a $10 penalty per day of delay, as of the fourth day.

The supplier’s contractual obligations could be represented
by commitments. Commitment tracking is the automated pro-

cess of verifying the status of commitments. In the example
above, it can serve to verify that the service agreement is re-
spected and, in case of delays, that the corresponding penalty
is paid. A commitment tracking framework should comprise
a language and a procedure, implemented into a tool.

The language must be expressive enough to define (i) obli-
gations (commitments), (ii) deadlines to be respected, and
(iii) compensations actions, such as those arising from dead-
line expiration.

The procedure keeps track of the obligations at each given
moment. It should lend itself to an efficient implementation,
to enable early detection of expiring deadlines. Most impor-
tantly, it must provide some guarantees. First of all, its output
must be provably sound. Moreover, it should be complete, in
the sense that it should provide all the relevant information
about the relevant commitments. A tool that sometimes “for-
gets” to indicate some duties cannot be trusted. Finally, it
must provide stable, irrevocable answers.

5 The Reactive Event Calculus

The EC can be elegantly formalized using logic program-
ming, but as we mentioned above, that would be suitable for
top-down, backward computation, and not for runtime moni-
toring. For this reason, we resort to a framework which recon-
ciles backward with forward reasoning: the SCIFF language
and proof-procedure [Alberti et al., 2008].

SCIFF is an extension of Fung an Kowalski’s IFF proof-
procedure for abductive logic programming [1997], in which
abduction is adopted to enable forward reasoning via in-
tegrity constraints. SCIFF has two primitive notions: events
(mapped as H atoms) and expectations (mapped as E/EN
atoms). H(E, T) means that an event E has occurred at time
T , and it is a ground atom. Atoms E(E, T) and EN(E, T) in-
stead are not necessarily ground. They can contain variables
with domains and be associated with constraint logic pro-
gramming (CLP) constraints. E(E, T) denotes that an event
unifying with E is expected to occur at some time in the range
of T . EN(E, T) denotes that all events unifying with E are
expected to not occur, at all times in the range of T .

SCIFF accommodates existential and universal variable
quantification and quantifier restriction, CLP constraints, dy-
namic update of event narrative and it has a built-in runtime
protocol verification procedure. The verification features of
SCIFF are discussed in relation with alternative temporal
logic-based approaches by Montali et al. [2008].

A SCIFF specification is composed of a knowledge base
P , a set of ICs (integrity constraints) IC, a set of abducible
expectations A, and a goal G. P consists of backward rules
head ← body (see ax1 below), whereas the ICs in IC are
forward implications body → head (see ax2). ICs are in-
terpreted in a reactive manner; the intuition is that when the
body of an IC becomes true (i.e., the events in its body occur),
then the rule fires, and the expectations in the head are gen-
erated by abduction. For example, H(a, T) → EN(b, T ′)
defines a relation between events a and b, saying that if a oc-
curs at time T , b should not occur at any time; H(a, T) →
E(b, T ′) ∧ T ′ ≤ T + 300 says that if a occurs, then an event
b should occur no later than 300 time units after a.

To exhibit a correct behavior, given a goal G and a triplet
〈P,A, IC〉, a set of abduced expectations must be fulfilled

92

by corresponding events. The SCIFF semantics [Alberti et
al., 2008] is given for a given specification and a narrative,
denoted by H, i.e., a set of H atoms. Intuitively, it states
that P , together with the abduced expectations, must entail
G ∧ IC, E expectations must have a corresponding matching
happened event, and EN expectations must not have a corre-
sponding matching event. The distinguishing feature of our
SCIFF implementation of the EC is that, thanks to SCIFF, it
is not goal-directed but event-driven, thus reactive. Thus its
name, reactive event calculus (REC). The status of fluents
is updated at runtime as events occur. In this sense, we draw
inspiration from Chittaro and Montanari’s idea of MVIs.

The basic predicates of the calculus are presented below
(Axioms ax1 through ax7). Events and fluents are terms and
times are integer (CLP) variables, 0 being the “initial” time.
REC uses the abduction mechanism to generate MVIs and
define their persistence. As opposed to CEC, which is im-
plemented by a special-purpose algorithm, REC has a fully
declarative axiomatization, and thanks to the SCIFF frame-
work no ad-hoc implementation is needed. REC uses two
special internal events (clip/declip) to model that a a fluent is
initiated/can be terminated. The expressive power of REC is
the same as the one of CEC, specifically it enables the defini-
tion of a context. A use case will be shown later below.

Axiom 1. A fluent F holds at time T if an MVI containing T
has been abduced for F :2

holds at(F, T) ← mvi(F, [Ts, Te])∧T > Ts∧T ≤ Te. (ax1)

Axiom 2. If (Ts, Te] is an MVI for F , then F must be de-
clipped at time Ts and clipped at time Te, and no further de-
clipping/clipping must occur in between:

mvi(F, [Ts, Te])
→E(declip(F), Ts) ∧ E(clip(F), Te)

∧ EN(declip(F), Td) ∧ Td > Ts ∧ Td ≤ Te

∧ EN(clip(F), Tc) ∧ Tc ≥ Ts ∧ Tc < Te.

(ax2)

Axiom 3. If a fluent initially holds, a corresponding declip-
ping event is generated at time 0:

initially(F) → H(declip(F), 0). (ax3)

Axiom 4. If an event E initiating a fluent F occurs at time T ,
either F already holds or it is declipped:

H(event(E), T) ∧ initiates at(E, F, T)
→H(declip(F), T)

∨ E(declip(F), Td) ∧ Td < T

∧ EN(clip(F), Tc) ∧ Tc > Td ∧ Tc < T.

(ax4)

Note that (ax4) does not use the holds at predicate and it
does not incur a new MVI.

Axiom 5. The happening of a declip(F) event causes fluent
F to start holding:

H(declip(F), Ts) → mvi(F, [Ts, Te]) ∧ Te > Ts. (ax5)

2A fluent F does not hold at the time it is declipped but it holds
at the time it is clipped, i.e., MVIs are left-open and right-closed.

Axiom 6. If an event E terminates a fluent F , F is clipped:3

H(event(E), T) ∧ terminates at(E, F, T)
→H(clip(F), T).

(ax6)

Axiom 7. A (special) complete event terminates all fluents:

terminates(complete, F). (ax7)

6 Formal properties of REC
REC is implemented on top of SCIFF, it thus inherits its
soundness and completeness results of the declarative seman-
tics with respect to the SCIFF’s operational semantics.
Theorem 1 (Soundndess and completeness of REC). REC
is sound and complete. Specifically, the SCIFF proof-
procedure will derive all and only the answers defined by its
declarative semantics, augmented with the REC axioms ax1–
ax7.

These are important results. The REC operational be-
haviour of is faithful to its specifications, i.e., it returns all
and only correct answers with respect to the EC axiomatiza-
tion given in Section 5. We are unaware of other reactive
implementations of the EC that provide such a guarantee.

The next results concern uniqueness and irrevocability, and
they are especially significant for the commitment tracking
application. We thus need to introduce some information
about the operational behaviour of SCIFF.

6.1 Open, closed and semi-open reasoning

SCIFF features two main forms of derivation, called open
and closed. Given a specification S and two narratives Hi

and Hf ⊇ Hi, if there exists an open successful derivation
[Chesani, 2007] for a goal G that leads from Hi to Hf we
write SHi∼Hf

Δ G, where Δ is the computed abductive expla-
nation.4 If S is a REC specification, Δ includes the abduced
MVIs. When SCIFF executes an open derivation, it assumes
that the acquired execution trace is partial. Thus E atoms
without a matching H atom are not considered to be vio-
lated but only pending: further events may still occur to fulfill
them. EN atoms can instead be evaluated, because they must
never have a matching H atom. This approach is used when
SCIFF is used for runtime verification, with events occuring
dynamically, and the narrative is incomplete. SCIFF can also
perform closed derivations, to reason upon narratives known
to be complete, or to close the reasoning process when the
flow of events comes to an end. In that case, both E and
EN atoms are evaluated: a closed world assumption is made
about the collected execution trace, and pending expectations
are considered to be violated, because no further event will
occur to fulfill them.

SCIFF is sound and complete independently of the order
in which it acquires and processes events. However, there
are many important domains in which we can safely assume
that events are acquired in increasing order of time. In that
case, reasoning is partially open: open on the future, when
events may still occur, but closed on the past. Expectations

3Although (ax6) could be defined symmetrically to (ax4), the
present (equivalent) formulation produces a better performance.

4Below we omitHi sinceHf ⊇ Hi and Δ only depends onHf .

93

on the past can thus be evaluated immediately. This form of
semi-open reasoning is achieved by a rule, inside the SCIFF
proof-procedure, which states that if an execution trace has
reached time t, then all pending expectations must be fulfilled
by some time t′ ≥ t. Semi-open derivation is denoted by ∼.

6.2 Irrevocability of REC
The commitment tracking domain enables semi-open deriva-
tion. It would be desirable that MVIs once generated are
never retracted. If that is the case, the inference process is
said to be irrevocable.

We restrict ourselves to cases in which tracking makes
sense. To this end, we define “well-formed” theories, which
capture the notion of causality (today’s events have no impact
on yesterday’s status of fluents). We then show that semi-
open reasoning from such theories is irrevocable.
Definition 1 (Well-formed REC theory). A well-formed
REC theory T is a set of clauses5

initiates(E, F, T) ← body.

terminates(E, F, T) ← body.

which satisfies the following properties:
1. negation is not applied to holds at predicates;
2. for initiates/3 clauses, fluent F must always be resolved

with a ground substitution.
3. ∀holds at(F2, T2) predicate used in body, T2 ≤ T .

Definition 2 (REC specification). Given a well-formed REC
theory T , the corresponding REC specification RT is defined
as the following SCIFF specification:6

RT ≡ 〈KBREC ∪ T , {E,EN, mvi}, ICREC〉 (1)

where KBREC = {(ax1), (ax7)}, {E,EN, mvi} is the set of
all possible expectations and MVIs, and ICREC = {(ax2),
(ax3), (ax4), (ax5), (ax6)}.

The following three lemmas establish some interesting
properties of REC, defining the link between MVIs and the
internal events used to clip and declip them.
Lemma 1. For each well-formed REC theory T and execu-
tion trace H, given the goal true, the abduced MVIs always
have a ground starting time, i.e.,

∀ Δ, S ∼H
Δtrue ⇒ ∀ mvi(F, [Ts, Te]) ∈ Δ, Ts ∈ N.

Lemma 2. The expectation about the clipping of an MVI can
be fullfilled by exactly one happened event, in particular the
nearest one occurring after the declipping of the MVI.
Lemma 3. In order for a fluent to be declipped by two distinct
events, at least one clipping event must occur in between.

We are now ready to state the following:
Theorem 2 (Uniqueness of derivation). For each well-
formed REC theory T and for each execution trace H, there
exists exactly one successful semi-open derivation computed
by SCIFF for the goal true, i.e. ∃1Δ s.t. S ∼H

Δtrue.

5The body can be omitted when true.
6Below,R denotes a genericREC specification. For brevity, we

will say that aREC specification is well-formed when its theory is.

Theorem 2 ensures that exactly one Δ is produced by a
semi-open derivation of SCIFF; this, in turn, means that there
exists exactly one “configuration” for the MVIs of each flu-
ent. We give a precise definition of this notion of state, which
is the one of interest when evaluating the irrevocability of the
reasoning process, and define the notion of progressive exten-
sion between states, which formally defines irrevocability.
Definition 3 (Current time). The current time of an execu-
tion trace H, ct(H), is the latest time of its events:

ct(H) ≡ max(t | H(event(), t) ∈ H).

Definition 4 (MVI State). Given a REC specification R and
an execution trace H, the MVI state at time ct(H) is defined
as the set of mvi abducibles contained in the computed ex-
planation generated by SCIFF with goal true:

MVI(RH) ≡ { mvi(F, [Ts, Te]) ∈ Δ}, where R ∼H
Δtrue.

Definition 5 (State sub-sets). Given a REC specification R
and a (partial) execution trace H, the current state MVI(RH)
is split into two sub-sets:

• MVI (RH), is the set of MVIs whose termination is a
ground time (closed MVIs):

MVI (RH) = { mvi(F, [s, e]) ∈ MVI(RH) | s, e ∈ N};
• MVI (RH), is the set of MVIs whose termination is a

variable time (open MVIs):

MVI (RH) = { mvi(F, [s, T]) ∈ MVI(RH) | s ∈ N}.
Definition 6 (Trace extension). Given two execution traces
H1 and H2, H2 is an extension of H1, written H1 ≺ H2, iff

∀ H(e, t) ∈ H2/H1, t > ct(H1).

Definition 7 (State progressive extension). Given a well-
formed REC specification R and two execution traces H1

and H2, the state of RH2 is a progessive extension of the
state of RH1 , written MVI(RH1) � MVI(RH2), iff

1. the set of closed MVIs is maintained in the new state:
MVI (RH1) ⊆ MVI (RH2);

2. if the set of MVIs is extended with new elements, these
are declipped after ct(H1):
∀ mvi(f, [s, t]) ∈ MVI(RH2)\MVI(RH1), s > ct(H1)

3. ∀ mvi(f, [s, Te]) ∈ MVI (RH1), either
(a) it remains untouched in the new state:

mvi(f, [s, Te]) ∈ MVI (RH2), or
(b) it is clipped after ct(H1):

mvi(f, [s, e]) ∈ MVI (RH2), e > ct(H1).
Progressive extensions capture the intuitive notion that a

state extends another one if it keeps the already computed
closed MVIs as they are, and it affects only the status that
fluents assume after the latest time of the first state. The ex-
tension is determined by adding new MVIs and by clipping
fluents which used to hold at the previous state. We can state
the main result related to irrevocability: extending a trace re-
sults in a progressive extension of the state of MVIs.
Lemma 4. Given a well-formed REC specification R and
two execution traces H1 and H2,

H1 ≺ H2 ⇒ MVI(RH1) � MVI(RH2).

94

Theorem 3 (Irrevocability of REC). Given a well-formed
REC specification with goal true and a temporally ordered
narrative, each time a new event is processed by SCIFF, the
new MVI state is a progressive extension of the previous one.

Therefore REC, used in combination with a theory of com-
mitments, fulfills all the requirements identified in Section 4.
The language offers a declarative, intuitive language for rep-
resenting obligations, deadlines, and compensation actions.
The inference procedure provides sound, complete and irre-
vocable answers at runtime.

7 Commitment tracking via REC
We demonstrate the features of REC using the example in-
troduced in Section 4. We adopt the formalization of com-
mitments in EC given by Yolum and Singh [2002]. The re-
sulting framework accommodates conditional commitments,
although for lack of space we do not illustrate them. We focus
instead on deadlines and compensations. To enable runtime
monitoring, we assume that an external clock is available, and
that special tic events signal the passing of time.

7.1 Detecting deadline expiration

To illustrate flexibility and expressiveness, we extend the
commitments theory—twice: by adding temporal constraints,
and by introducing a finer-grained notion of violation. This
notion distinguishes between a “partial” violation (a deadline
has expired but there may be a belated make-up action) and a
“full” violation (too late). We consider a very common tem-
poral constraint: a relative deadline about the discharging of
the commitment. The idea is that the user can specify that a
certain commitment must be fulfilled within a certain inter-
val TD, as of the time the commitment has been established.
The user specifies TD, and if the commitment has been estab-
lished at (absolute) time T , then it should be satisfied within
the (absolute) time (T + TD).

We first introduce the fluents representing the status of
commitments.

For each c(X, Y, P), a fluent waiting(c(X, Y, P)) holds if
c(X, Y, P) has been established, and the deadline has not ex-
pired yet. An commitment discharging event has two effects:
it terminates the waiting(c(X, Y, P)) fluent, and it instanti-
ates a new satisfied(c(X,Y, P)) fluent, meaning that the com-
mitment has been successfully discharged.

initiates(E, waiting(c(X, Y, P)), T)
← create(E,X, c(X,Y, P)). (ex1)

terminates(E, waiting(c(X, Y, P)), T)
← holds at(waiting(c(X, Y, P)), T),

discharge(E, X, c(X,Y, P)). (ex2)
initiates(E, satisfied(c(X, Y, P)), T)

← holds at(waiting(c(X, Y, P)), T),
discharge(E, X, c(X,Y, P)). (ex3)

We then introduce a fluent d check(F, TD), meaning that a
commitment F should be satisfied by TD.

The fluent can be instantiated as follows:

initiates(E, d check(c(X, Y, P), When), T)
← create(E,X, c(X, Y, P)),

deadlines(c(X, Y, P), Delay),
When is T + Delay.

(ex4)

where deadlines(c(X, Y, P), Delay) is a user-defined fact
stating that commitment c should be satisfied within Delay
time units from its instantiation.

If the deadline expires and the commitment is still waiting,
the status of the commitment becomes partially violated:
partially, because the deadline has expired, but something
discharging the commitment could still happen. A fluent
p viol(c(X, Y, P), When) indicates that a deadline for c has
expired, while c should have been satisfied by time When.

initiates(tic, p viol(c(X, Y, P), When), T)
← holds at(d check(c(X, Y, P), When), T),

holds at(waiting(c(X, Y, P)), T).
(ex5)

Axioms ex1–ex5 represent this new “theory of deadlines” for
social commitments. It is a fully customizable theory, which
a user can define and apply to many problems.

A domain-specific knowledge base specifying the example
discussed in Section 4 is instead specified as follow:

create(printer broken, shop, c(shop, us, repair)). (ex6)
deadlines(c(shop, A, repair), 3). (ex7)
fulfills(work on printer, repair). (ex8)

ex6 states that the event printer broken establish the commit-
ment of the supplier, towards us, to repair the printer; ex7

adds the information that such type of commitment should
fulfilled within 3 days form the commitment establishment;
finally, ex8 specifies that the event work on printer satisfies
any commitment about the repair action.

7.2 Compensation

Users can also define compensation axioms. Compensation
mechanisms come in hand when commitments are violated.
They are important to tackle undesired situations, and to add
robustness to the overall system. In our example, a compen-
sation consists of a new commitment for the supplier to pay a
penalty fee, whose amount depends on how many days have
passed since the deadline expired at the time the printer is
repaired. Note that until the technician is on site, it is not pos-
sible to correctly evaluate the extent of the new commitment.
Such a situation is captured by the following axiom:

initiates(E, c(shop, Y, pay penalty(M)), T)
← holds at(p viol(c(shop, Y, repair), When), T),

discharge(E, shop, c(shop, Y, repair)),
M1 is When − T, M is M1 ∗ 10.

(ex9)

where the new commitment pay penalty is instantiated by
any event E discharging the repair commitment, if such a re-
pair commitment has a deadline expired at time When. The
penalty is calculated based on a difference between two vari-
ables.

95

Figure 1: Output of the REC-based tool

7.3 Running a monitoring process

Let the following events be observed at runtime:

h(event(printer broken), 12) h(event(work on printer), 19)
h(event(tic), 16) h(event(end monitoring), 22)
h(event(tic), 18)

In this narrative, the printer breaks down, and the techni-
cian arrives on site seven days later. Our example includes a
penalty for each day passed after the third one. We then ex-
pect the printer supplier to be charged $40 as a compensation.

Figure 1 shows the runtime output of REC+SCIFF. At
time 12 the printer breaks down (printer broken). Three flu-
ents are thus instantiated: c(shop, us, repair), meaning that
the shop gets committed to repair the printer, following ex6;
waiting(c(. . .)), meaning that the commitment is waiting to
be satisfied (ex1); and d check(c(. . .), 15), meaning that the
commitment c must be satisfied by time 15 (ex4).

Nothing happens until the clock signals time 16 (tic), when
the deadline check fluent is clipped (it stops holding), because
of the deadline expiring (the axiom about such fluent’s termi-
nation has not been reported here). At the same time the fluent
p viol(c(. . .), 15) is initiated (and waiting terminated), mean-
ing that commitment c(shop, us, repair) has been partially vi-
olated, i.e., it has not been discharged within the deadline
(following ex5). Note that the commitment is not clipped.
That is an arbitrary choice we made in this example, and im-
plementing a different behaviour could be achieved by simply
adding a termination axiom.

At time 19, a technician arrives on site and repairs the
printer, which terminates c(shop, us, repair). A repair flu-
ent is initiated and indicates that such a property has been
achieved. The waiting fluent is instead terminated. Since the
commitment to repair the printer was partially violated, a new
commitment about paying the fee is created (ex9). Note that
since the technician arrived at time 19, while he was supposed
to intervene by time 15, shop must pay a four-day, $40 fee.

8 Conclusions

We identified the problem of commitment tracking in multi-
agent systems. We observed that there is no solution to it in
the state of the art. Specifically, we are not aware of any other

work directly related to commitment tracking which satisfies
some fundamental requirements of the language and of the
formal implement. Related work on runtime verification of
commitments and contracts mainly consist of ad-hoc, tailored
procedures that are not easily modifiable and whose formal
properties are not easy to determine. We therefore provided
the first formal and operational approach to the problem. We
showed that in order to address it one can use a REC imple-
mentation in SCIFF. Future work will focus on performance
evaluation and on the integration of REC with the other forms
of reasoning enabled by SCIFF, mainly with abduction.

References

[Alberti et al., 2008] M. Alberti, F. Chesani. M. Gavanelli,
E. Lamma, P. Mello, and P. Torroni. Verifiable Agent In-
teraction in Abductive Logic Programming: The SCIFF
framework. ACM Trans. Comp. Log., 9(4):1–43, 2008.

[Castelfranchi, 1995] C. Castelfranchi. Commitments: From
individual intentions to groups and organizations. In
Proc. 1st ICMAS:41–48. The MIT Press, 1995.

[Chesani, 2007] F. Chesani. Specification, execution and ve-
rification of interaction protocols. PhD dissertation, Uni-
versity of Bologna, Italy, 2007.

[Chittaro and Montanari, 1996] L. Chittaro and A. Monta-
nari. Efficient temporal reasoning in the cached event cal-
culus. Comp. Int., 12:359–382, 1996.

[Chittaro and Montanari, 2000] L. Chittaro and A. Monta-
nari. Temporal representation and reasoning in AI: Issues
and approaches. Ann. Math. & AI, 28(1-4):47–106, 2000.

[Fung and Kowalski, 1997] T. Fung and R. Kowalski. The
IFF proof procedure for abductive logic programming. J.
Log. Prog., 33(2):151–165, Nov. 1997.

[Kowalski and Sergot, 1986] R. Kowalski and M. Sergot. A
logic-based calculus of events. NGC, 4(1):67–95, 1986.

[Mallya and Huhns, 2003] A. Mallya and M. Huhns. Com-
mitments among agents.IEEE Int.Comp.7(4):90–93, 2003.

[Montali et al., 2008] M. Montali et al. Verification from
declarative specifications using logic programming. In
Proc. 24th ICLP, LNCS 5366:440–454. Springer, 2008.

[Shanahan, 1999] M. Shanahan. The event calculus ex-
plained. In AI Today, LNAI 1600:409–430. Springer, 1999.

[Shanahan, 2000] M. Shanahan. An abductive event calculus
planner. J. Log. Prog., 44(1-3):207–240, 2000.

[Singh, 1998] M. Singh. Agent communication language:
rethinking the principles. IEEE Comp.:40–47, Dec 1998.

[Singh, 1999] M. Singh. An ontology for commitments in
multiagent systems. AI & Law, 7:97–113, 1999.

[Torroni et al., 2009] P. Torroni, P. Yolum, M. Singh, M. Al-
berti, F. Chesani. M. Gavanelli, E. Lamma, and P. Mello
Modelling interactions via commitments and expectations.
In Handbook of Research on MAS: Semantics and Dynam-
ics of Organizational Models, Chap. XI. IGI Global, 2009.

[Yolum and Singh, 2002] P. Yolum and M. Singh. Flexible
protocol specification and execution. Proc. AAMAS, 2002.

96

