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Abstract

Mechanisms (especially on the Internet) have be-
gun allowing people or organizations to express
richer preferences in order to provide for greater
levels of overall satisfaction. In this paper, we de-
velop an operational methodology for quantifying
the expected gains in economic efficiency associ-
ated with different forms of expressiveness. We
begin by proving that the sponsored search mech-
anism (GSP) used by Google, Yahoo!, MSN, etc.
can be arbitrarily inefficient. We then experimen-
tally compare its efficiency to a slightly more ex-
pressive variant (PGSP), which solicits an extra bid
for a premium class of positions. We generate ran-
dom preference distributions based on published
industry knowledge. We determine ideal strate-
gies for the agents using a custom tree search tech-
nique, and we also benchmark using straightfor-
ward heuristic bidding strategies. The GSP’s effi-
ciency loss is greatest in the practical case where
some advertisers (“brand advertisers”) prefer top
positions while others (“value advertisers”) prefer
middle positions, and that loss can be dramatic. It is
also worst when agents have small profit margins.
While the PGSP is only slightly more expressive
(and thus not much more cumbersome), it removes
almost all of the efficiency loss in all of the settings
we study.

1 Introduction

A key trend on the Internet is a move toward more expressive-
ness in the mechanisms that mediate interactions such as the
allocation of resources, matching of peers, and elicitation of
opinions. Intuitively, one would think that more expressive-
ness leads to higher efficiency (sum of the agents’ utilities) of
the outcome (e.g., due to better matching of supply and de-
mand). Efficiency improvements have indeed been reported
from combinatorial and multi-attribute auctions (e.g., [Sand-
holm, 2007]), as well as expressive ad auction variants
(e.g., [Lahaie et al., 2008; Parkes and Sandholm, 2005;
Even-Dar et al., 2007; Boutilier et al., 2008]). Yet, adding
expressiveness does not always improve the outcome of a
mechanism in practice. It generally increases the overhead

associated with running the mechanism (e.g., time and ef-
fort to collect data, computation requirements) [Martin et
al., 2008]. For some populations, increased expressiveness
can be unnecessary [Abrams et al., 2007] and can give rise
to additional equilibria of poor efficiency [Milgrom, 2007].
It can even confuse (e.g., Herb Simon’s “bounded rational-
ity” [1955]), or aggravate (e.g., Barry Schwartz’s “tyranny of
choice” [2004]) people. What is missing is an operational
methodology to quantify the expected efficiency gains from
increasing expressiveness.

Work on information complexity of mechanisms has a long
history (e.g., [Mount and Reiter, 1974; Hurwicz, 1972]).
Recent theoretical work based on the notion of shattering
from computational learning theory provided the foundations
for studying expressiveness in a domain-independent man-
ner [Benisch et al., 2008]. In this paper we operationalize
that theory with a methodology for comparing mechanisms
with different degrees and forms of expressiveness. We apply
it to sponsored search, or ad auctions conducted online for
placement alongside search results.

The sponsored search industry accounts for tens of billions
of dollars in revenue annually. The most frequent variant of
these auctions, the generalized second price (GSP) mecha-
nism used by Google, Yahoo!, MSN, etc. solicits a single bid
from each advertiser (i.e., agent) for a keyword and assigns
the advertisers to positions on a search result page according
to the bids (roughly speaking, with the first position going to
the highest bidder, the second position to the second highest,
etc.). Since agents cannot offer a separate bid price for each
ad position, the GSP mechanism is fundamentally inexpres-
sive. We will attempt to characterize the loss of economic
efficiency caused by this inexpressiveness, and to explore the
conditions that affect that loss.

We begin by adapting our recent theoretical framework for
studying expressiveness [Benisch et al., 2008] to analyze the
GSP. We find that for some preference distributions the GSP
is arbitrarily inefficient.

In order to measure the inefficiency in practice we must be
able to predict the outcome of the mechanism. The equilib-
rium of the GSP is known when it is assumed that agents have
complete information (i.e., no private information about valu-
ations) and monotonic preferences over positions (i.e., higher
positions are always preferred) [Varian, 2007]; however when
we relax these somewhat restrictive assumptions, the equi-
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librium behavior is unknown. In fact, it is often difficult to
characterize equilibrium behavior in less than fully expressive
mechanisms when agents have complex preferences [Rosen-
thal and Wang, 1996; Wilenius and Andersson, 2007; Szentes
and Rosenthal, 2003]. For that reason, we develop a gen-
eral tree search technique for computing an upper bound on
a mechanism’s expected efficiency, that involves finding so-
cial welfare maximizing strategies for the agents. In the worst
case our search algorithm takes time that is exponential in the
number of agents and types, but it can be applied to any pref-
erence distribution and provides an upper bound that tightens
in an anytime manner.

We conclude with a series of experiments comparing the
GSP to our slightly more expressive mechanism, which solic-
its an extra bid for premium ad positions, which we coin Pre-
mium GSP (PGSP). We generate a range of realistic synthetic
preference distributions based on published industry knowl-
edge, and apply our search technique to compare the effi-
ciency bounds achieved by social welfare maximizing strate-
gies in the two mechanisms. We also examine the perfor-
mance of the two mechanisms when agents use a straightfor-
ward heuristic bidding strategy.

While we must be careful not to read too much into ex-
periments on synthetic data, they suggest that the GSP’s ef-
ficiency loss can be dramatic. It is greatest in the practical
case where some agents (“brand advertisers”) prefer top po-
sitions while others (“value advertisers”) prefer middle posi-
tions (since customers who click on ads in middle positions
are more likely to take action, resulting in revenue). The loss
is also worst when agents have small profit margins. Despite
the fact that our PGSP mechanism is only slightly more ex-
pressive (and thus not much more cumbersome), it removes
almost all of the efficiency loss in all of the settings we study.

2 Setting and background results

The setting we study is a one-shot auction for a set of k ad-
vertising positions that are ranked from 1 to k (rank 1 is the
highest rank). In the model there are n agents. Each agent i
has some private information (not known by the mechanism
or any other agent) denoted by a type, ti, (e.g., a vector of
valuations, one for each of the k positions) from the space of
the agent’s possible types, Ti.

Settings where each agent has a utility function, ui(ti, O),
that depends only on its own type and the outcome (matching
of agents to positions), O ∈ O, chosen by the mechanism are
called private values settings. We also discuss more general
interdependent values settings, where ui = ui(t

n, O), i.e., an
agent’s utility depends on the others’ private signals as well
(for example, if one agent’s value for a position depends on
market estimates of the other agents). In both settings, agents
report expressions to the mechanism, denoted θi, based only
on their own types. In the GSP mechanism each agent can
report a single real value indicating his/her bid. A mapping
from types to expressions is called a pure strategy.

Based on these expressions the mechanism computes the
value of an outcome function, f(θn), which chooses an out-
come. In the GSP mechanism the outcome function maps
agents to positions based on the order of their bids (the high-

est bidder is assigned the first position, the second highest
bidder is assigned the second, etc.).1 The mechanism may
also compute the value of a payment function, π(θn), which
determines how much each agent must pay or get paid. In
this paper, we ignore the mechanism’s payment function be-
cause expressiveness is tied directly to a mechanism’s out-
come function.2

We denote by W (tn, o) the social welfare of outcome
o when agents have private types tn, i.e., W (tn, o) =∑

i ui(t
n, o). Assuming that the expression of each agent in

the mechanism’s most efficient Nash equilibrium is given by
a function mi(ti), we can describe the mechanism’s expected
efficiency under that equilibrium, E(f, π), with the following
equation (expectation is taken over the types of the agents,
and their randomized equilibrium expressions).

E [E(f, π)] =

∫
tn

P (tn)

∫
θn

P (m(tn) = θn) W (tn, f(θn)) (1)

2.1 A framework for characterizing expressiveness

The theoretical framework that we developed in our earlier
work [Benisch et al., 2008], provides the foundations for un-
derstanding the impact of making mechanisms more or less
expressive, by providing meaningful, general definitions of a
mechanism’s expressiveness.

In that work, we defined an impact vector to capture the im-
pact of a particular expression by an agent under the different
possible types of the other agents, and an expressiveness con-
cept based on a notion called shattering, which we adapted
from the field of computational learning theory [Vapnik and
Chervonenkis, 1971]. The adapted notion captures an agent’s
ability to distinguish among each of the impact vectors in-
volving a subset of outcomes.

We also introduced a slightly weaker adaptation of shat-
tering, called semi-shattering, for analyzing the more re-
stricted setting where agents have private values. It captures
an agent’s ability to cause each of the unordered pairs of out-
comes (with replacement) to be chosen for every pair of types
of the other agents, but without being able to control the or-
der of the outcomes (i.e., which outcome happens for which
type). We defined a measure of expressiveness based on the
size of the largest outcome space that an agent can shatter or
semi-shatter. It is called the (semi-)shatterable outcome di-
mension.

In addition to defining the expressiveness notions, we tied
those notions to an upper bound on the expected efficiency
of a mechanism’s most efficient equilibrium. We derived the
bound by making the optimistic assumption that the agents
play strategies which, taken together, attempt to maximize
social welfare. The bound is given by the following equation

1In practice the bids are adjusted by predicted click-through rates
(CTR) before conducting the ranking. For simplicity, we do not
weight by CTR. However, our formulation can be easily extended to
account for this by multiplying each agent’s original bid by its CTR.

2Since the efficiency bound that we study does not directly de-
pend on equilibrium behavior, this is without loss of generality, as
long as agents do not care about each others’ payments.
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(the max is taken over all possible joint pure strategies).

E [E(f)]
+

= max
ĥ(·)

∫
tn

P (tn) W
(
tn, f(ĥ(tn))

)
(2)

Our earlier work provided several results relating this
bound to a mechanism’s expressiveness. For the purposes of
this paper the following result will prove useful.

Theorem 1 (reworded from [Benisch et al., 2008]). For any
setting, there exists a distribution over agent preferences such
that the upper bound on expected efficiency for the best out-
come function where agent i has semi-shatterable outcome
dimension di < |O| is arbitrarily lower than that of the best
outcome function where agent i has semi-shatterable outcome
dimension di + 1.

3 Expressiveness in ad auctions

In order to study the expressiveness properties of the GSP’s
outcome function, we first derive a mathematical represen-
tation of the function. Let R(i, o) be the rank of the posi-
tion given to the i’th agent in the matching of agents to po-
sitions denoted by outcome o. For analysis purposes we will
assume, without loss of generality, that each agent’s bid, θi,
is restricted to be between 0 and 1 (this is not a limiting as-
sumption due to the fact that we can losslessly map from any
real valued space to this interval). Under this assumption,
the following is functionally equivalent to the GSP’s outcome
function.

f(θn) = argmax
o∈O

n∑
i=1

(
θi 10−R(i,o)

)
(3)

Each bid in the sum is weighted by 10 raised to the nega-
tive power of the corresponding agent’s rank under the chosen
outcome. Thus, agents with higher bids will contribute sig-
nificantly more to the overall sum when they are placed in the
first position.

We will now show that the outcome function of the GSP
mechanism is inexpressive according to the notion of out-
come semi-shattering introduced in the previous section.3

Theorem 2. Consider a set of outcomes, {A, B, C, D}, un-
der which agent i is assigned different positions. In the GSP
mechanism, agent i cannot semi-shatter both pairs of out-
comes {A, B} and {C, D} if the other agents have more than
one joint type and the ranks satisfy R(i, A) < R(i, C) <
R(i, D) < R(i, B).

This result, in conjunction with Theorem 1, implies that
under some preference distributions the efficiency bound for
the GSP is arbitrarily inefficient, and since it is an upper
bound, the inefficiency exists under any strategy profile.

Corollary 1. For any setting there exists a distribution over
agent preferences such that the upper bound on expected effi-
ciency (Equation 2) for the GSP mechanism’s outcome func-
tion is arbitrarily less than fully efficient.

3Proof of Theorem 2 can be found in this paper’s appendix.

4 Premium GSP mechanism

To address GSP’s inexpressiveness without making the mech-
anism much more cumbersome, we introduce a new mecha-
nism that only slightly increases the expressiveness. Later we
show that this slight increase is extremely important in that it
removes most of the efficiency loss entailed by GSP’s inex-
pressiveness.

The new mechanism separates the positions into two
classes: premium and standard, and each agent can submit
a separate bid for each class. We call this the premium gener-
alized second price (PGSP) mechanism. The premium class
might contain, for example, only the top position—as in our
experiments.

The premium position(s) are assigned as if a traditional
GSP were run on the premium bids (the top premium posi-
tion goes to the agent with the highest premium bid, etc.).
The standard positions are then assigned among the remain-
ing agents according the traditional GSP mechanism run on
their standard bids.

5 Computing the efficiency bound

The results in Section 3 prove that there exist distributions
over agent preferences for which the GSP is arbitrarily in-
efficient. However, in order to measure the inefficiency in
practice we must be able to compute the value of the effi-
ciency bound for any particular distribution over agent pref-
erences. In this section we describe two general techniques
for doing that. They take as input a distribution over agent
preferences with a finite number of types (this distribution
could be learned from data or approximated by a domain ex-
pert) and provide the value of the upper bound on the mech-
anism’s most efficient equilibrium. Although we present our
techniques in the context of ad auctions, they can easily be
generalized for use in other domains.

5.1 Integer programming formulation

First we will describe an integer programming formulation
for computing the bound. The program includes a binary de-
cision variable, zt

o, for each outcome and each joint type of
the agents. A value of 1 for zt

o denotes that outcome o will
be chosen by the mechanism when the agents have the joint
type t, a value of 0 indicates that the outcome will not be cho-
sen under t. The program also includes continuous variables
representing the agents’ expressions (bids in the context of
sponsored search) under each of their types, θti

i . (We limit
these expressions to be between 0 and 1, without loss of gen-
erality.) The following objective function is used to maximize
the expected efficiency of the mechanism.

max
zt

o,θ
ti
i

∑
t∈T n

P (t)
∑
o∈O

zt
o W (t, o) (4)

The first set of constraints enforces that exactly one outcome
is chosen for each joint type. There are |T n| such constraints.

s.t. (∀t ∈ T n)
∑
o∈O

zt
o = 1 (5)

The next set of constraints ensures that for each zt
o variable

that is set to 1, the agents’ expressions under type t do indeed
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cause the outcome function to choose outcome o. This set
includes one constraint for each joint type and each pair of
distinct outcomes. Thus there are |T n| × (|O|2 − |O|) such
inequality constraints.4 These constraints depend on the out-
come function of the mechanism we are studying. For GSP’s
outcome function, the constraints are as follows (we use M
to denote a sufficiently large number such that the sum of all
the agents’ expressions cannot exceed it):

(∀t, ∀o, ∀o′ �= o)
∑

i

(
θti

i 10−R(i,o)
)

>∑
i

(
θti

i 10−R(i,o′)
)
− (1 − zt

o)M (6)

Finally, we have constraints on the decision variables:

(∀t, ∀o) zt
o ∈ {0, 1}, (∀i,∀ti) 0 ≤ θti

i ≤ 1 (7)

An ad auction with k positions and n agents with two types
each has n!

(n−k)! distinct outcomes and 2n joint types. The in-

teger program has |O|× |T n| binary decision variables, mak-
ing it prohibitively large for general purpose integer program
solvers, such as CPLEX, for mechanisms with more than 3
agents. These solvers do not explicitly take advantage of cer-
tain aspects of the problem structure, for example the fact that
only one outcome can be chosen for each joint type.

5.2 Tree search for computing the bound

To address this problem, we developed a general tree search
technique based on A* for computing the bound. We have
applied the technique to GSP and PGSP on instances with
up to five agents to find provable inefficiency. (In this paper
we only report results with four agents in order to provide a
larger number of experiments.)

Each level of the search tree corresponds to a different joint
type. Each branch corresponds to the assignment of an out-
come to the joint type. The tree has maximum depth |T n| and
branching factor |O|. Figure 1 illustrates the search tree.

At any node j a partial assignment of outcomes to joint
types can be constructed by traversing the edges from j to the
root. We will denote the set of all joint types in the partial
assignment at node j as T n

j . For each type tnj ∈ T n
j we will

denote the outcome it is assigned under the partial assignment
at node j as otj

. In addition, for each joint type tn we will
denote any one of the outcomes that maximize social welfare
as o∗t (i.e., o∗t = argmaxo W (tn, o)).

As usual, our search orders the nodes in its open queue
according to an admissible (i.e., optimistic) heuristic. The
heuristic approximates the expected efficiency of the best as-
signment originating from a particular node under the as-
sumption that any unassigned types will be assigned opti-

mally.5 The priority of a node j, f̃(j), is given by the ex-
pected welfare of its current partial assignment plus the ex-
pected welfare of the optimal assignment for any unassigned
types:

f̃(j) =
∑

tj∈T n
j

P (tj)W (tj , otj
) +

∑
t/∈T n

j

P (t)W (t, o∗t ) (8)

4In practice we ensure that these inequality constraints are strict
by adding a small ε term to one side.

5We need only calculate o* once at the beginning of the search.
It can be reused later by removing outcomes that are assigned.

A B C D

A B C D

A B C D

[A, C,C]

tn
2

tn
3

tn
1

Figure 1: Part of the search tree for a distribution with 3
types, [tn1 , tn2 , tn3 ], and 4 outcomes [A, B, C, D]. Circles rep-
resent internal nodes and squares represent leaf nodes. The
dashed nodes are not expanded, but they would be consid-
ered by the algorithm. The expanded path corresponds to the
assignment of [A, C, C] to types tn1 , tn2 , and tn3 , respectively.

The f̃(j) approximation is guaranteed to be greater than or
equal to the true optimal value of any feasible assignment that
descends from node j. It may overestimate this value if the
optimal assignment is not achievable due to inexpressiveness,
but it has the benefit of serving as a valid upper bound on the
expected efficiency achievable by the mechanism. By using
the A* node selection strategy, our search ensures that any

node that it visits has a lower (or equal) f̃ value than any

previously visited node. Thus, the f̃ value of the current node
is a continually tightening upper bound on the mechanism’s
expected efficiency, and it can be provided at any time during
the search.

Whenever a node is popped off the front of the open queue,
its feasibility is checked. In both types of ad auction mech-
anisms we study, this check involves solving a linear feasi-
bility problem (LFP). The LFP involves a set of constraints
similar to those described in Equation 6, however the assign-
ment of outcomes to types is fixed and there are no binary
decision variables. If the node is not feasible, its children are
not placed on the open queue.

6 Experiments

In this section we discuss the results of experiments using our
search technique to compute the upper bound for the GSP
mechanism and the slightly more expressive PGSP mecha-
nism.

In order to gain additional insight, we also discuss the
performance of the two mechanisms when agents use the
straightforward strategy of always bidding their valuation for
the top position (in the PGSP they bid their valuation for the
top premium position and the top non-premium position as
their two bids). We call the resulting efficiency GSP heuristic
and PGSP heuristic, respectively.

Our experiments consist of collections of runs, each involv-
ing randomly generated instances with different parameter
settings. The parameters are chosen to investigate circum-
stances under which the inexpressiveness of the GSP mecha-
nism is costly (i.e., when the upper bound is low) and when
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it is not. Each instance in one of our experiments represents
a single auction for a single keyword with four agents.

Based on recent work examining different advertising atti-
tudes on the Internet, in our experiments each agent is either
a brand advertiser (with probability pB) or a value advertiser
(with probability 1 − pB) [Baye and Morgan, 2005]. Brand
advertisers always prefer higher positions over lower ones.
A value advertiser generally does not prefer the highest posi-
tions because middle positions tend to have higher conversion
rates (e.g., the user’s probability of buying something condi-
tional on having clicked is higher). Figure 2 illustrates pro-
totypical brand and value preferences over different positions
based on their rank.

Figure 2: Example of prototypical valuations for brand and
value advertisers. The brand advertiser shown has μ = 1 and
the value advertiser has μ = 0.5. Valuations are shown in ex-
pectation, not per-click. Rank 0% means the bottom position
and Rank 100% means the top position.

We now describe how we generate preferences for brand
and value advertisers. Let “clk” denote the event that the ad is
clicked, and “cnv” denote that the click results in a conversion
(e.g., a sale or user registration). Let Ci denote the amortized
cost per click of running agent i’s web site, and Vi(cnv) be the
expected value of a conversion to agent i. Then, the expected
value to agent i of having an ad in position ranked R is

E[Vi(R)] = P (clk|R, i) [P (cnv|clk, R, i)Vi(cnv) − Ci] (9)

In order to keep the experiments simple and to focus
on the impact of expressiveness, we assume that agents in
the same instance are relatively similar. For one, we as-
sume that the marginal cost of a click Ci = C = $1
for all agents. Unless otherwise specified, we assume that
Vi(cnv) = V (cnv) = $50 for all agents. We assume that
P (cnv|clk, i) = P (cnv|clk) = 10% for all agents. We also
assume that click-through rates conditional on the rank of an
ad’s position are the same for all agents. The specific rates are
given in Table 1, along with the default values for all param-
eters. These click-through rates are from an Atlas Institute
Digital Marketing publication [Brooks, 2007]. They were
also used by Even-Dar et al. in their experiments [Even-Dar
et al., 2007].

Rather than generating arbitrary values of P (cnv|clk, R, i),
we assume that the probability of a conversion coming from
a particular rank, P (R|cnv, i), is normally distributed. The
mean, μ, of this distribution is randomly chosen from [0, 1]

Parameter Value
P (clk|R = 1) 10%
P (clk|R = 2) 7.74%
P (clk|R = 3) 6.66%
P (clk|R = 4) 5.74%
P (cnv|clk) 10%

pB 50%

Parameter Value
C(clk) $1

Brand μ ∼ Uniform[.8, 1]
Brand σ 25% of μ
Value μ ∼ Uniform[.4, .6]
Value σ 25% of μ
Vi(cnv) $35 to $150

Table 1: Default settings for each parameter in our instance
generation model.

for each agent, once for the case where she is a brand adver-
tiser and once for the case where she is a value advertiser.
(We also normalize the value of R to be between 0 and 1,
so that, for example, the third position out of four has rank
0.25.) Values of μ closer to 1 indicate that the agent’s con-
versions tend to come from higher ranked ads, those closer to
0 indicate that conversions tend to come from lower ranked
ads. The values of μ for the brand and value advertisers are
given in Table 1, unless otherwise specified.

We transform P (R|cnv, i) into P (cnv|clk, R, i) using
Bayes’ rule (and the observation that the cnv event implies
the clk event):

P (cnv|clk, R, i) ∝ P (R|cnv, i)P (cnv|clk, i) (10)

Each data point in each figure below is the average over 50
instances.6 The confidence intervals represent standard error.
(They are often so tight that they are barely visible.)

6.1 Experiment 1: Varying agents’ profit margin

In our first set of results we vary the expected value of a con-
version, V (cnv), between $35 and $150 (i.e., 35 to 150 times
the cost per click of running the site), Figure 3.

Figure 3: The value of the upper bound on expected efficiency
and the efficiency of the heuristic bidding strategy for the GSP
and PGSP mechanisms.

These results demonstrate that when conversions generate
relatively low profits, the efficiency loss due to inexpressive-
ness in the GSP mechanism, as measured by the upper bound,
is more than 30%. As the profit margin of the agents in-
creases, this loss decreases to around 10%.

6On occasion the search does not find the optimal value within
our time limit of 20 minutes; this occurred on approximately 25%
of the instances evenly distributed between mechanisms. For those

instances we use the lowest f̃ value discovered prior to termination.
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Additionally, the results show that the efficiency bound
for the slightly more expressive PGSP mechanism is nearly
100% in all cases. This suggests that the added expressive-
ness in the PGSP is well suited to capture all the different
types of preferences we generated.

We also see that the efficiency of the heuristic bidding strat-
egy follows a similar qualitative pattern to the upper bound,
which lends additional support to our findings. Specifically,
this suggests that 1) the bound is meaningful in describing
the efficiency of the mechanism, and 2) the conclusions apply
more broadly than for fully rational game-theoretic agents.

6.2 Experiment 2: Varying agent diversity

The second experiment examines how the loss due to inex-
pressiveness depends on how similar value advertisers are
to brand advertisers. Specifically, we vary the position that
generates the most value for value advertisers. (Brand adver-
tisers still always prefer the highest position the most.) In
each run the mean of P (R|cnv, i) for each value advertiser
is drawn uniformly from an interval of size 0.2 (i.e., μ ∼
Uniform[a, a + 0.2]). The results are shown in Figure 4. The
x-axis indicates the mid-point of the interval used in each run,
which is also the expected value of μ for each value adver-
tiser.

Figure 4: The value of our upper bound on expected efficiency
and the efficiency of the heuristic bidding strategy for the GSP
and PGSP mechanisms. Large values of E[μ] correspond to
runs in which higher ranking positions are more valuable for
the value advertisers and vice versa.

These results demonstrate that the need for additional ex-
pressiveness is greatest when the value advertisers prefer mid-
dle ranking positions, as is typically the case in practice. For
example, when those agents prefer the middle rank, the GSP
can achieve at most 85% efficiency (with the heuristic bid-
ding strategy achieving less than 75%) on average, whereas
the PGSP can achieve over 95% (with the heuristic bidding
strategy achieving about 85%). The expressiveness is less
necessary when the value advertisers become more like the
brand advertisers (i.e., large E[μ]) or when they are drasti-
cally different than the brand advertisers (i.e., small E[μ]).

Again the efficiency of the heuristic bidding strategy fol-
lows a similar qualitative pattern to the upper bound.

7 Conclusions and future research

A key trend on the Internet is a move toward more expres-
siveness in mechanisms. Yet, adding expressiveness does not

always improve the outcome of a mechanism in practice. In
this paper we operationalized a recent theoretical framework
for studying expressiveness with a methodology for compar-
ing mechanisms with different degrees and forms of expres-
siveness, and applied it to sponsored search.

We began by proving that for some preference distributions
the most commonly used sponsored search mechanism, GSP,
is arbitrarily inefficient. In order to measure the inefficiency
in practice we developed a general tree search technique for
computing an upper bound on a mechanism’s expected effi-
ciency. We concluded with a series of experiments comparing
the GSP to our slightly more expressive mechanism, PGSP,
which solicits an extra bid for premium ad positions. We gen-
erated a range of realistic preference distributions based on
published industry knowledge, and applied our search tech-
nique to compare the efficiency bounds in the two mecha-
nisms. We also examined the performance of the mechanisms
when agents use a straightforward heuristic bidding strategy.

Our results suggest that the GSP’s efficiency loss due to
inexpressiveness can be dramatic. It is greatest in the practi-
cal case where some agents (“brand advertisers”) prefer top
positions while others (“value advertisers”) prefer middle po-
sitions. The loss is also worst when agents have small profit
margins. Despite the fact that our PGSP mechanism is only
slightly more expressive (and thus not much more cumber-
some), it removes almost all of the efficiency loss in all of the
settings we study.

Future research includes using our methodology to study
efficiency in sponsored search with real data. We also plan
to apply our methodology to other domains in order to design
mechanisms that are not unnecessarily expressive yet remove
most of the inefficiency of today’s inexpressive mechanisms.
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9 Appendix

Proof of Theorem 2. We will assume for contradiction that
agent i can semi-shatter both pairs of outcomes, {A, B} and
{C, D}. First we restate the following lemma from our earlier
work.

Lemma 1 (reworded from [Benisch et al., 2008]). Agent
i can (semi-)shatter an outcome space O′ when the agents
other than i have more than one joint type only if there exists

at least one pair of expressions by the other agents, θ
(1)
−i and

θ
(2)
−i , which allows i to (semi-)shatter O′.

This lemma implies that there must be at least one pair of

bids by the agents other than i, θ
(1)
−i and θ

(2)
−i , such that agent

i can cause all four outcomes to happen by changing its own
bid alone.

Let the weighted sum of the bids of the agents other than
i for the first (second) profile under outcome A be a1 (a2),
under outcome B be b1 (b2), and so on. Also, let the weights
on agent i’s bid under outcomes A through D in the the GSP
outcome function be αA through αD . (Note that the predicate
of our theorem implies that αA > αC > αD > αB .)

Let us assume (without loss of generality) that b1 − a1 <

b2 − a2 and that A will happen against θ
(1)
−i and B will hap-

pen against θ
(2)
−i . In order to cause A to happen against the

first opponent profile and B against the second the following
inequalities must hold (we assume that ties are broken con-
sistently so that an agent cannot use them to semi-shatter:

A happens against 1

⎧⎨
⎩

αAθi + a1 > αBθi + b1

αAθi + a1 > αCθi + c1

αAθi + a1 > αDθi + d1

B happens against 2

⎧⎨
⎩

αBθi + b2 > αAθi + a2

αBθi + b2 > αCθi + c2

αBθi + b2 > αDθi + d2

By simplifying the above equations we derive the follow-
ing set of constraints.

c1 − a1

αA − αC
< θi <

b2 − d2

αD − αB

d1 − a1

αA − αD
< θi <

b2 − c2

αC − αB

In order to semi-shatter C and D we have the following in-
equalities generated in the same fashion,

b2 − d2

αD − αB
< θi <

c1 − a1

αA − αC

b2 − c2

αC − αB
< θi <

d1 − a1

αA − αD

Now we can see that our assumption that agent i could semi-
shatter both sets of outcomes when the other agents have
more than a single type leads to a contradiction.
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