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Abstract

Sensors provide computer systems with a window
to the outside world. Activity recognition “sees”
what is in the window to predict the locations, tra-
jectories, actions, goals and plans of humans and
objects. Building an activity recognition system
requires a full range of interaction from statisti-
cal inference on lower level sensor data to sym-
bolic AI at higher levels, where prediction results
and acquired knowledge are passed up each level
to form a knowledge food chain. In this article, I
will give an overview of some of the current activity
recognition research works and explore a life-cycle
of learning and inference that allows the lowest-
level radio-frequency signals to be transformed into
symbolic logical representations for AI planning,
which in turn controls the robots or guides human
users through a sensor network, thus completing a
full life cycle of knowledge.

1 Introduction

One of the most important technological innovations in to-
day’s world is the arrival of cheap and easy-to-use elec-
tronic sensors. With the growing maturity of sensor and
sensor-network technologies, advanced applications are gain-
ing speed in areas such as pervasive computing, medical as-
sistive technologies, security and environmental monitoring,
gaming, sensor-based farming and coal-mine-safety tech-
nologies and many others. Like many previous technolog-
ical innovations, sensor technology also helps usher a new
era for artificial intelligence research, with far-reaching im-
plications. With the help of accurate activity recognition,
researchers are now capable of providing various personal-
ized support for many real-world applications. For exam-
ple, [Pollack et al., 2003] used activity recognition to help
the elders recognize and deal with cognitive decline asso-
ciated with sickness and aging by sending personalized ac-
tivity reminders. [Liao et al., 2004; Patterson et al., 2004;
Zheng et al., 2008c] employed activity recognition to predict
transportation modes. [Yin et al., 2007] showed how to detect
abnormal human activity for security monitoring.

With the arrival of sensor technology, we now have an un-
precedented opportunity to advance the science of artificial

intelligence (AI), by linking sensors at the low levels of ab-
straction with high-level knowledge representation, reason-
ing, learning and inference. In a way, achieving this link-
age is an ultimate goal of AI, which is to provide a closed-
loop feedback-control system to embody all aspects of intel-
ligence. Through sensor-based activity recognition systems,
we can envision a healthy life-cycle in which a positive feed-
back loop is in place to allow experience to be continuously
acquired and fed into a high-level machinery for creating
knowledge bases for AI. A major impetus of this computa-
tional machinery will be the ever-widening range of applica-
tions, which help provide the much needed raw data for the
science of AI to go forward.

In this article, I will summarize recent works on sensor-
based activity recognition, including those of my research
group at Hong Kong University of Science and Technology.
I will argue for activity recognition to be a bridge that links
low-level sensors and high-level intelligence.

2 Overview

What is activity recognition? In a Forbes article, [Huang,
2003] gave this description:

Eric Dishman is making a cup of tea and his kitchen
knows it. At Intel’s Proactive Health Research
lab in Hillsboro, OR, tiny sensors monitor the re-
searcher’s every move. Radio frequency identifica-
tion tags and magnetic sensors discreetly affixed to
mugs, a tea jar, and a kettle, plus switches that tell
when cabinet doors are open or closed, track each
tea-making step. A nearby computer makes sense
of these signals; if Dishman pauses for too long,
video clips on a television prompt him with what to
do next.

This vivid description highlights several key aspects of activ-
ity recognition, which aims to interpret the sensor readings of
humans or moving things (such as a truck) and tell us in high-
level, human understandable terms what is going on. First,
activity recognition requires sensors, which can generate and
receive signals to be read by a computer program. Second,
there should be a software program that can interpret the sen-
sor readings. Most of these sensor readings are also uncertain
data. Finally, activity recognition involves looking at the past,
so that the computer program should be able to learn from
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experience. At the same time, it helps project into the future
through inferences.

Today, we have a variety of sensors and sensory devices
that are available to us at a low cost. Some of them are:

RFID Radio-frequency identification (RFID) uses an
integrated circuit for storing and sending radio-frequency
(RF) signal. A RFID reader device can both send and
receive signals. Passive RFID tags can read generate signals
when triggered by RF waves sent by the readers, whereas
battery-powered active tags can generate and receive signals
by themselves. The range of RFID tags is within several
meters. RFID has been widely used in product tracking and
identification, especially in logistics operations. In Hong
Kong, RFID technology is daily used by millions of people
in a subway and debit card known as the Octopus Card.

GPS The Global Positioning System (GPS) is a global
system based on between 24 and 32 satellites which send
RF signals. Receivers can determine their current loca-
tions based on the time-of-flight information carried by
the RF signals. In an outdoor environment, based on the
location sequences, high-level inference can be done to
ascertain an agent’s transportation modes, goals and inten-
tions, as done in [Liao et al., 2004; Patterson et al., 2004;
Zheng et al., 2008c].

WiFi Most notebook computers, PDAs and some mo-
bile phones today are equipped with WiFi device that can
communicate through an IEEE 802.11b/g wireless network
in the 2.4GHz frequency bandwidth. In an indoor or even
outdoor area, one or more access points (APs) can send
and receive RF signals from other APs or notebooks. WiFi
devices are especially useful for locating a user and tracking
his/her movement in an indoor environment where GPS is
often no longer available. Cities such as Hong Kong are
being equipped with WiFi citywide.

Mobile Phones The mobile phones nowadays have ad-
vanced sensors for measuring some predefined activity of
the mobile user, such as turning directions. They are known
as the Inertial Navigation System (INS), which are motion
sensors such as gyroscope, accelerometer and compass.

A common feature of these sensors is that they are very
widely available in our everyday lives, as opposed to some
specialized and expensive sensors such as ultrasonic sensors.
In addition, computer vision based on cameras can be con-
sidered as a type sensor, but we do not have enough space to
discuss them in this article.

Taking the sensor-reading data as well as some labels (la-
bels are location coordinates or activity names) as input, we
wish to develop a model in the form of a computer program.
The input to the model is a sequence of sensor reading vectors
and the output is a set of meaningful activity terms that reflect
the observed actions of humans or moving objects, or the final
intentions (i.e., goals). For example, a user holding a mobile
phone equipped with wireless LAN (WLAN) cards can per-
form various actions, such as Walk-in-Hallway, Enter-Office
and Make-Photocopies, in an office WiFi environment. The

mobile device periodically (e.g. per second) records signal-
strength measurements sent by various access points (APs).
For example, an observation may be o =< 48; 83; 57 >, con-
sisting of radio signal strength (RSS) values from three avail-
able APs. A user’s behavior can be understood as a sequence
of actions taken to achieve high-level goals such as Seminar-
in-Room2 and Print-in-Room3. A user’s signal trace is often
represented as a sequence of radio-signal strength (RSS) vec-
tors such as < o1; o2; . . . ; ot > , where each oi is a signal
vector at some time.

Early systems for activity recognition treat the inputs as
a sequence of high-level symbolic observations. They typi-
cally output symbolic goal descriptions at a higher level of
abstraction [Kautz and Allen, 1986; Lesh and Etzioni, 1995].
The fact that the input actions are mostly defined at the sym-
bolic level is partly due to the unavailability of the low-level
sensor data several decades ago. These systems are mostly
deterministic in nature. Their input consists of a plan library
that describes the logical models of actions and their relation-
ship in the form of an action taxonomy and associated logical
axioms. Given a sequence of symbolic action descriptions
as input, the task of plan recognition can be accomplished
by searching in a space of possible goal hypotheses for can-
didate plans and goals that are consistent with the observed
action sequences. Many of these methods relied on set cov-
ering [Kautz and Allen, 1986], inductive logic programming
and natural language parsing.

3 From Sensors to Locations

If we have an RFID-based sensor network, we can easily
detect user locations based on RFID readings. If we have
other networks such as WiFi, we might get an RSS vector
like o =< 25, 98, . . . , 40 >. In this case, we naturally won-
der: where is the user located? Knowing the location of a
user can help determine activities of a user, because it helps
set up a context for user actions. Location sequences are also
important evidence for actions.

One approach is multilateration, which consists of two
main steps. It first transforms the sensor readings into a dis-
tance measure. It then recovers the coordinates in terms of
relative distance to the beacon nodes. This approach relies
on an ideal signal propagation model and extensive hardware
support. However, it suffers from low accuracy because RSS
signals do not follow ideal propagation patterns. Special-
ized methods such as [Bahl et al., 2000] have been devel-
oped to accurately track the mobile nodes using ultrasonic
signals. However, these methods require special hardware
devices such as ultrasonic transceivers.

A complementary localization method is through machine
learning. Many localization systems operate in two phases:
an offline or training phase and an online localization phase.

If we model the location-estimation problem as a classifi-
cation problem in machine learning, the area of interest can
be modeled as a finite location space L = {l1, . . . , ln}. If
we consider the location coordinates as continuous values,
then we can use a regression model. Advantages of machine-
learning methods are that the locations of APs are not neces-
sarily known and that uncertainty can be dealt with naturally.
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In an offline phase, signal-strength measurements are col-
lected at each location li. We can build a conditional proba-
bility P (sk|li), which is the probability that the kth AP has a
signal-strength value of sk at location li. By making the inde-
pendence assumption among signals from different APs, we
multiply all these probabilities to obtain the conditional prob-
ability of receiving a particular observation vector oj at the
location li as P (oj |li) =

∏p

k=1
P (sk|li), based on P (sk|li).

In the online phase, when a real-time signal-strength vector
o′ is observed, a posterior distribution over all the locations is
computed using Bayes’ rule:

P (li|o
′) =

P (o′|li)P (li)∑n

i=1
P (o′|li)P (li)

, (1)

where P (li) encodes prior knowledge about where a user
might be. Based on this equation, the estimated location
is the one with a maximum posterior probability l∗ =
arg maxli P (li|o

′). The advantage of the above machine-
learning based method is that it captures the noise in signal
propagation through conditional probabilities. Therefore, it
can preserve information carried by the signals for localiza-
tion. However, there are several limitations as we pointed out
above. One issue is that the above method assumes that the lo-
cation labels are available, which is often not the case. To get
the labels often requires expensive human effort. Several re-
cent approaches have been proposed for reducing the calibra-
tion effort of learning localization models offline. [Ferris et
al., 2007] presented a WiFi-SLAM (Simultaneous Localiza-
tion And Mapping) method by applying Gaussian-Process-
Latent-Variable models to construct an RSS map under an
unsupervised learning framework. [Pan et al., 2006] applied
a semi-supervised learning framework in WiFi-based location
estimation that can take advantage of a small amount of la-
beled data and a large amount of unlabeled data.

Another major assumption is that the signal space does not
change, which is often wrong due to the dynamic characteris-
tics of signal propagation and the environment. Signal distri-
bution can be vastly different when we move across the floors
of a building, and when we switch between different sensor
devices when one device is used to collect the training data
and another device is used for location estimation. On this
issue, previous solutions have been proposed. The LEASE
system [Krishnan et al., 2004] utilizes different hardware sys-
tems to solve this problem. LEASE employs a number of sta-
tionary emitters and sniffers to obtain up-to-date RSS values
for updating the maps. The localization accuracy can only be
guaranteed when these additional hardware systems are de-
ployed. Yin et al. [Yin et al., 2005] placed several reference
points in an office environment to help provide up to date
signal and location information, which provides the current
labeled data to help calibrate a past model.

Recent research works have considered the dynamic-data
problem as a transfer learning problem. Transfer learning is
a machine learning framework that adapts learned models in
target domains by making use of the knowledge and data in
source domains [Caruana, 1997]. When the user trace infor-
mation is available online, the parameters of a hidden Markov
model can be transferred by adapting the parameters of model
from one time period to another [Zheng et al., 2008b]. A

manifold co-regularization based solution is proposed when
the trace information is not available online [Pan et al., 2007].

Similarly, the problem of adapting models across space can
be considered as a transfer learning problem for spatial trans-
fer. [Pan et al., 2008] presented a solution by exploiting the
data collected in one area and propagate them to the rest of
the environment. Domain knowledge of an indoor environ-
ment is first extracted from the labeled data collected in one
area. Then, the extracted domain knowledge is adapted in a
model to propagate the label information to unlabeled data
collected in the rest of the environment. The learning prob-
lem was formulated as a quadratically constrained quadratic
program optimization problem to discover an underlying se-
mantic manifold of the WiFi signal data. This semantic man-
ifold acts as a bridge that propagates the common knowledge
across different areas.

[Zheng et al., 2008a] considered transfer learning across
sensor devices for a two-dimensional WiFi-based indoor-
localization problem. In this approach, a multi-device local-
ization problem can be formulated as a multi-task learning
problem by exploiting an often-satisfied assumption that the
models learned in a latent feature space from the multiple de-
vices are often similar. In this latent space, a new device can
benefit from learning from the data collected by other devices
to train a localization model.

A collection of location estimation benchmark data
is available at http://www.cse.ust.hk/∼qyang/ICDMDMC07,
and an IEEE ICDM competition based on the data is de-
scribed in [Yang et al., 2008].

4 From Locations to Activities

In the next level up, we will infer activities and goals from
location sequences. Here the concept of a location is under-
stood in a general sense, where it can either be a physical 3-D
location, or it can be a virtual location in a multi-dimensional
space spanned by all available sensors (such as RFID sensors
attached to a pen or a door knob).

I now highlight a recent location-based activity-recognition
model (LAR) [Yin et al., 2004]. This model transforms se-
quences of sensor readings and inferred locations from the
last step (see last section) to user activities and goals. The
LAR model relies on a sensor model for location estimation
at the lowest level (see Figure 1), which shows two time slices
that are numbered t and t − 1, respectively. In the figure,
the shaded nodes SS represent the RSS variables of signals
received from the sensor beacons (e.g., APs in a Wireless
LAN), which can be directly observed. All other variables
are hidden, including the physical location L of the user, the
action A and the goal G.

Based on the sensor model, the LAR model can learn a dy-
namic Bayesian network (DBN) model from a collection of
training traces D. The model parameters are estimated using
an expectation maximization (EM) algorithm. After learn-
ing the DBN model, we can infer the most probable action
sequence A1, A2, . . . , At from the sensor readings and in-
ferred location sequences. We can then infer goals from the
actions. Given an inferred sequence of actions obtained so
far A1, A2, . . . , At, we can find the most likely goal set G∗
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Figure 1: Location-based Activity Recognition Model (LAR)
from [Yin et al. 2004]

as follows:

G∗ = argmax
Gk

P (Gk|A1, A2, . . . , At) (2)

By applying the Bayesian Rule, we then have

G∗ = arg max
Gk

P (A1:t|Gk)P (Gk)

P (A1:t)
(3)

Actions and goals do not have to be inferred from locations,
instead they can be predicted from trends of sensor signals in
a period of time. In [Yin et al., 2008], an alternative proba-
bilistic approach for activity recognition, which is referred to
as Segmentation-based Activity Recognition (SAR), was pro-
posed. Intuitively, a large class of a person’s activities ex-
ists where each activity is more or less rough-grained, in that
the precise location information is not needed, or impossible
to obtain. Instead, a rough idea of the general trends of a
user’s movements is sufficient for activity recognition. These
trends correspond to some segments of sensor readings along
the time dimension, which can be obtained through image-
segmentation algorithms. An advantage of this view is that
we can treat the patterns of an activity as a whole rather than
each individual values. For example, on seeing that a certain
sensor’s signal reading is gradually increasing while another,
far away sensor’s reading is gradually decreasing, we can rec-
ognize that an agent is moving towards the first sensor, with-
out having to know the precise location of the agent at each
moment.

When GPS data are available, location sequences are rel-
atively easier to obtain, and a major research focus is to
infer user activities in terms of their transportation modes.
For example, [Liao et al., 2004; Patterson et al., 2004;
Zheng et al., 2008c] employed probabilistic techniques to in-
fer whether a user is taking a bus or walking based on the
GPS readings.

One of the key features of real-world human activities is
that multiple goals are often achieved together and in a so-
phisticated way. [Hu et al., 2008] analyzed the MIT PlaceLab
House n PLIA1 (“PlaceLab Intensive Activity Test Dataset
1”) [Intille et al., 2006] in detail for illustrating the taxonomic
nature of multiple goals. This dataset was recorded on Friday
March 4, 2005 from 9 AM to 12 noon with a volunteer famil-
iar with Placelab. [Hu et al., 2008] manually constructed a

goal hierarchy from this dataset. The lowest level, where the
activities are extracted from the original data, includes activ-
ities such as “sweeping”, “washing-ingredients”, etc. Rele-
vant activities are combined into more general activities that
form the medium level, with activities such as “preparing in-
gredients”, “Dealing-with-clothes”, etc. These activities are
grouped into 9 categories, comprising the highest level to
include: cleaning indoor, yard-work, laundry, dishwashing,
meal-preparation, hygiene, grooming, personal and informa-
tion/leisure. The higher-level goals are more coarse-grained,
whereas the lower-level ones are detailed. Through this tax-
onomy and the collected real-world activity sequences, it is
observed that interleaving goals, where one goal may pause
for a period of time while the human agent pursues another,
often occurs. Furthermore, the likelihood increases as we
move up the taxonomy. Similarly, concurrent goals, which
are goals being pursued together, are more often observed as
one moves down the goal taxonomy.

Multiple, concurrent and interleaving activities and goals
(which corresponds to a whole sequence of activities) are dif-
ficult to recognize due to their inherent complexity. By ex-
ploiting a Conditional Random Field (CRF) model for these
activities, [Hu and Yang, 2008] applied CRF in a two-level
probabilistic framework that deals with both concurrent and
interleaving goals from observed sensor-reading sequences.
CRF has been previously used by several other researchers as
well [Vail et al., 2007; Liao et al., 2007]. To further consider
the correlation between goals, a correlation graph is designed
to represent the correlation between different goals, which
can be learned at the upper level of the system architecture.
The goal graph is learned from the training data, consisting of
sequences of sensor readings and activity labels, to allow the
inference of goals in a collective-classification manner. Ex-
perimental results using several real wireless sensor network
data sets demonstrate that the recognition algorithm, known
as CIGAR, is both efficient and accurate.

5 From Activities to Action Models

Above I have described some recent works on how to gener-
ate sequences of actions from observed sensor readings. In
this section, I will describe how to generate logical, gener-
ative models of actions that allow autonomous planning to
function, once sequences of user activities and some domain
conditions are known. I will only give an overview in this
section, and leave some of the details in [Yang et al., 2007].

Automatic planning systems today take as input the for-
mal definitions of actions, an initial state and a goal state de-
scription in logical forms, and produce symbolic plans, which
are sequences of activity terms, for execution. To achieve
goals, automatic planning systems produce sequences of ac-
tions from the given action models that are provided as in-
put [Ghallab et al., 2004]. A typical way to describe ac-
tion models is to use action languages such as the Planning
Domain Definition Language (PDDL) [Fox and Long, 2003;
Ghallab et al., 2004]. In the past, the task of building action
models has been accomplished manually, which can be time
consuming and error-prone. In a way, the lack of real-world
data has greatly hampered the progress of AI planning in its
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practical applications, as action models have become a bot-
tleneck in this important field. Thus, it is desirable to be able
to automatically learn action models from sensory observa-
tions, so that these actions can be taken as inputs to planning
systems. This is a crucial step in the whole knowledge life-
cycle that I describe in this article.

In this section, I describe an algorithm known as ARMS (
Action-Relation Modeling System [Yang et al., 2007]) for au-
tomatically acquiring action models. The input to the ARMS
system is a collection of observed activity traces that are rec-
ognized through an activity recognition system such as LAR
or SAR described earlier. It first applies a frequent itemset-
mining algorithm to these traces to find a collection of fre-
quent action-sets. It then encodes these sets as constraints on
the candidate action models. These constraints then become
input to another modeling system for solving the weighted
MAX-SAT [Kautz and Selman, 1996], whose solution cor-
responds to the learned action models in terms of their pre
and post conditions. The output of ARMS is a set of rela-
tional actions that can be further edited by human editors to
generate plans, thus reducing the burden of humans in cre-
ating the planning domains. Because the preliminary forms
of the actions have been encoded in logical forms, they can
also be accepted directly by autonomous planning systems to
produce plans.

Consider an example input and output of our algorithm in
a typical problem domain from an AI planning competition
[Fox and Long, 2003]. The actions to be learned are listed
in the form of activity names along with their likely param-
eters which are objects that are often associated with the ac-
tions. For example, an action in a logistics domain might be:
drive(?x:truck ?y:place ?z:place) where truck and place are
the types of objects given as input. ?x and ?y are variable pa-
rameters. Relations in the domain should also be given in cur-
rent version of our system, such as (at ?x:locatable ?y:place),
but they can also be learned from sensor readings. As part
of the input, we need activity traces, which are sequences of
activities. As an example, an activity sequence in the depot
domain is: < I1; lift(h1 c0 p1 ds0);load(h1 c0 t0 ds0); . . . ;
drop (h0 c0 p0 dp0); goal=((on c0 p0)>, where I1 = {(at p0
dp0), (clear p0), . . . , (clear c0), (on c0 p1), (available h1), (at
h1 ds0) } is an initial state description. The initial and goal
descriptions can be obtained by converting sensor readings to
propositional literals, or provided by human editors.

From these input, we wish to learn the preconditions,
add and delete lists of all actions, in a STRIPS ac-
tion representation, or more sophisticated forms. ARMS
learns an action model for every action in a problem
domain in order to “explain” all training examples suc-
cessfully. An example output from our learning algo-
rithms for the load(?x ?y ?z ?p) action signature is:

action load(?x:hoist ?y:crate ?z:truck ?p:place)
pre: (at ?x ?p), (at ?z ?p), (lifting ?x ?y)
del: (lifting ?x ?y)
add: (at ?y ?p), (in ?y ?z), (available ?x), (clear ?y)

ARMS was shown in [Yang et al., 2007] to perform similar
inference and learning as a Markov Logic Network [Richard-
son and Domingos, 2006]. It works even when partially
observed states are available. Further extensions have been

made to allow ARMS to generate more expressive action
models that include conditional effects and first-order logic
formulas in preconditions and postconditions of action mod-
els. Another extension was recently made to allow hierarchi-
cal task network (HTN) task models to be learned from action
sequences and partial state observations [Zhuo et al., 2009].

6 Closing the Loop

We have generated some action models for the logistics do-
mains using ARMS based on action sequences generated by
an activity recognition module. These generated action mod-
els are given to a planning system to generate new plans.
We are currently testing a robotic system that can take these
plans and execute them. Preliminary tests have shown that,
because the action models generated by ARMS are imper-
fect, some plans cannot be executed successfully. In such
cases, we can generate feedback to ARMS or to activity
recognition modules for them to learn the action models bet-
ter. Some plans are indeed successful, in which case they
can be passed on to a robotic system for execution. Alterna-
tively, we can send the generated plans as guides for human
users. Researchers have used planning modules to generate
reminders for people in their daily lives [Pollack et al., 2003;
Patterson et al., 2004]. Agents equipped with these reminders
and plans can further help generate more data in a sensor net-
work, creating an opportunity for activity recognition engines
to adapt and evolve. In our ongoing work, we are integrating
how to learn different knowledge at three levels mentioned
above simultaneously, rather than separately.

Several decades have passed since the first inception of ar-
tificial intelligence (AI). As a science and an engineering en-
deavor, AI has achieved much over the years, but it is also
largely fragmented. A lesson that we can learn from other
fields, such as physics, is to develop an empirical subfield of
AI, and to integrate this subfield with the more theoretical
fronts of the discipline. To do this, we have to learn to get
our hands dirty. In building activity recognition systems into
a knowledge food chain, we will hopefully close the loop in
a positive feedback-loop for AI.
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