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Abstract

Ecosystem Informatics brings together mathemat-
ical and computational tools to address scientific
and policy challenges in the ecosystem sciences.
These challenges include novel sensors for col-
lecting data, algorithms for automated data clean-
ing, learning methods for building statistical mod-
els from data and for fitting mechanistic models to
data, and algorithms for designing optimal policies
for biosphere management. This presentation dis-
cusses these challenges and then describes recent
work on the first two of these—new methods for
automated arthropod population counting and lin-
ear Gaussian DBNs for automated cleaning of sen-
sor network data.

1 Introduction

Computer science has had a revolutionary impact in molec-
ular biology and genetics. This impact was not merely the
result of automating existing ways of doing science. In-
stead, novel computer science methods, when coupled with
novel instruments (e.g., shotgun sequencing of the genome,
DNA arrays) transformed the scientific enterprise. In place
of hypothesis-driven experiments examining a particular sub-
system or pathway, computational methods supported data-
driven science in which massive amounts of data were col-
lected first, and then subjected to computational analysis to
suggest hypotheses and fit statistical and causal models.

This change was initially controversial. Scientists and
funding agencies were concerned that data collected without
any prior hypothesis would be useless. But whole genome se-
quencing has turned out to be hugely important for address-
ing a wide range of questions in molecular and cell biology
as well as evolution and population biology.

The ecosystem sciences (ecosystem ecology, community
ecology, landscape ecology, hydrology, etc.) are today where
molecular biology was in the mid-1990s. Most research
projects formulate hypotheses and perform manipulative ex-
periments to refine and test them. Consequently, progress is
slow, and many of the most important management questions
(e.g., preventing species extinctions, limiting the spread of in-
vasive species and diseases, restoring ecosystems to healthy
function, mitigating the effects of climate change) cannot be

answered by the current state of scientific knowledge. There
is broad agreement that the ecosystem sciences are data-
limited, and there are several efforts under way to collect
observational data on a much larger scale than in the past
(e.g., the National Ecological Observatory Network (NEON;
www.neoninc.org). As ecology becomes a data-driven
science, there is a great need for computer scientists to help
with the entire data pipeline from instruments, to data man-
agement, to model fitting, to policy making. Figure 1 shows
the data pipeline. Sensors capture data to create datasets.
These are then analyzed to produced models that can sup-
port the design of policies. Models also guide the formation
of hypotheses which can then be tested by designing and ex-
ecuting experiments. There are many opportunities to apply
advanced computer science and artificial intelligence meth-
ods in this pipeline.

• Sensor Algorithms. Many sensors incorporate complex
algorithms to transform the raw signals into meaningful
data. For example, in Section 2 below, I will describe
the application of computer vision methods to classify and
count arthropod specimens.

• Data Cleaning. Sensors fail, particularly when they are
placed in challenging environments (glaciers, mountain
tops, the seafloor). When data is collected at large scale,
it is no longer feasible for people to manually detect and
diagnose sensor failures. Automated data cleaning meth-
ods are needed that can detect and correct sensor failures
in real time.

• Model Fitting. Once datasets are constructed, models
can be fit to them. The two primary kinds of models—
predictive models and causal models—are both needed for
ecological science and ecosystem management. A chal-
lenging aspect of ecological models is that many different
kinds of data, at many different spatial and temporal scales,
need to be considered simultaneously. An example of pre-
dictive models are species distribution models [Elith et al.,
2006]. These attempt to predict the spatio-temporal distri-
bution of plant and animal species as a function of climate
and habitat. A particular challenge is to jointly predict the
distribution of thousands of plant and animal species in or-
der to guide the design of conservation policies.

• Optimization. The development of optimal policies for
ecosystem management usually involves solving optimiza-
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Figure 1: The Ecosystem Informatics Pipeline

tion problems constrained by causal or predictive mod-
els. In ecological settings, the objective function typically
incorporates both biological goals (e.g., species survival,
biodiversity) and economic goals (e.g., ecosystem services
such as water filtration, pollination, timber, agriculture).
An important issue is to take into account the uncertainty
resulting from the previous steps in the pipeline.

• Experiment Design. Although the primary (upper)
pipeline focuses on observational data, there is still a need
for hypothesis-driven data collection. Methods for experi-
ment design can help scientists construct experiments that
are inexpensive and maximize the scientific value of the
information that is collected.

• Sensor Placement. A special case of experiment design is
to determine where to place sensors (and possibly, where
to move them) to maximize their scientific effectiveness
[Krause et al., 2008].

Over the past decade at Oregon State University, we have
launched research and education efforts to address these com-
putational challenges. In the remainder of this presentation,
I will discuss two of our current activities: (a) rapid through-
put arthropod identification and (b) automated data cleaning
for sensor networks. This talk is an invitation to join us in
addressing these important and challenging problems.

2 Rapid Throughput Arthropod Identification

The arthropods (insects, arachnids, crustaceans, millipedes,
and centipedes) form a huge branch of the tree of life. Arthro-
pods are found in virtually all environments on earth includ-
ing lakes, streams, soils, oceans, and on animals. In typi-
cal food webs, arthropods consume the primary producers
(bacteria and plants) and in turn are consumed by “higher”
animals such as birds and mammals. Consequently, arthro-
pods are very good indicators of ecosystem functioning. They
provide convenient measures of biodiversity and ecosystem

Figure 2: Sample images from our STONEFLY9 dataset. The
top and bottom rows show two distinct stonefly species, diffi-
cult to classify even for trained human experts.

health, so they are important dependent variables for under-
standing and restoring ecosystems.

Arthropods are very easy to collect. Unfortunately, while
some arthropods are easy to distinguish, many species are
only subtly different from one another. Hence, the effective
exploitation of arthropod data is limited by the number of (ex-
pensive) experts available to manually classify and count the
specimens.

To address this problem, we launched the BugID project
whose goal is to develop robotic devices and associated com-
puter vision algorithms for automatically manipulating, pho-
tographing, classifying, and separating arthropod specimens.
The first problem that we focused on was identifying stonefly
larvae. Stoneflies live in the substrate of freshwater streams,
and they are sensitive indicators of pollution. Figure 2 shows
example images for two stonefly species. These were col-
lected using a robotic apparatus that manipulates the speci-
mens into the field of view of a microscope via pumps and
alcohol jets and captures images via a computer-controlled
camera [Larios et al., 2008].

We formulated the problem of classifying these insect im-
ages as a problem of generic object recognition. Much recent
research in computer vision and machine learning has stud-
ied this problem. The state-of-the-art approach is based on
the following sequence of steps:

• Detection. Apply one or more interest detectors to the im-
age to find interest regions. Detectors include the Harris
and Hessian detectors [Mikolajczyk and Schmid, 2002],
our own PCBR detector [Deng et al., 2007], and the Kadir-
Brady salient region detector [Kadir and Brady, 2001].
These are regions of the image of various sizes.

• Description. Describe each interest region by a descrip-
tor vector. The 128-dimensional SIFT descriptor [Lowe,
2004] is by far the most popular. Each image i is now
represented by a bag Bi = {xi,1, . . . , xi,Ni

} of descriptor
vectors. The key machine learning challenge is to develop
a classifier architecture that can handle these bags of de-
scriptors.

• Dictionary Learning. The dominant architecture is to take
all of the descriptor vectors in a training set of images and
cluster them (e.g., via k-means clustering) into D clusters.
In our work, we form a separate dictionary for each class
(e.g., species). Let wj,k be cluster j for class k. These are

9



often referred to as keywords.

• Conversion to Histograms. Convert the bag Bi into a his-
togram Hi such that Hi,j,k is the number of elements in Bi

that were assigned to cluster wj,k. Note that each descrip-
tor vector xi,l is mapped to one cluster in each of the D
dictionaries.

• Classifier Training and Testing. Each training example
is now represented by a fixed length histogram feature vec-
tor Hi (containing D × K elements, where D is the num-
ber of clusters in each dictionary and K is the number of
classes). Hence, any standard machine learning classifica-
tion method can be applied.

In practice, the available data is split into three parts: clus-
tering, training, and testing. The clustering data is used only
for learning the dictionary. The training data is then re-
represented as histograms using the learned dictionary. And
the testing data is employed to evaluate performance.

Our entomology collaborators collected specimens for
9 taxa of stoneflies from streams in Oregon. These
were photographed using our apparatus, and good dor-
sal views were selected. The result is our STONE-
FLY9 dataset, which is available for download from
web.engr.oregonstate.edu/˜tgd/bugid/.

We applied the standard dictionary approach outlined
above to STONEFLY9. However, the results were mediocre:
16.1% error. We hypothesize that there are at least two rea-
sons for this poor performance. First, the dictionaries are
learned using purely unsupervised methods—they do not take
into account the performance task. Second, information is
lost when each descriptor vector is mapped to a dictionary
entry. Mapping a SIFT vector to a 2700-word dictionary
retains at most 12 bits of information, whereas the original
SIFT vector contains 1024 bits. To address the first problem,
several researchers including ourselves have developed quasi-
supervised methods for creating visual dictionaries [Moos-
mann et al., 2007; Winn et al., 2005; Yang et al., 2008;
Zhang and Dietterich, 2008] However, we have recently de-
veloped two methods that both yield very big increases in per-
formance by using simpler methods. We now describe these
two methods.

The first method is called stacked random forests
[Martı́nez-Muñoz et al., 2009]. Given a set of training bags
of the form (Bi, yi), where Bi is the bag of SIFT vectors
and yi is the class label, we generate labeled instances by
pushing the training labels down to the individual descrip-
tor vectors: (xi,l, yi). Next, for each type of detector (Har-
ris, Hessian, PCBR, Kadir-Brady), we train a random forest
[Breiman, 2001] to predict the class of the image from indi-
vidual detections. We modify the random forest algorithm in
two ways. First, we constrain each decision tree so that every
leaf contains at least 20 training examples. Second, we store
in each leaf � a histogram h� whose kth entry is the number
of training examples from class k that reached this leaf. We
call h� the evidence histogram for leaf �.

To classify a new image (represented as a bag B of de-
scriptor vectors), we take each descriptor vector and “drop”
it through all of these random forests. We then take the vec-
tor sum of the leaf evidence histograms to create a K-element
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Figure 3: Stacked Random Forest Architecture

histogram, which is then normalized to form a probability dis-
tribution. A separate K-element histogram is obtained from
each random forest. These are then concatenated and fed to
the second-level “stacked” classifier to make the final deci-
sion.

To train this stacked classifier, we use the “out-of-bag”
strategy. Recall that when tree τ in the random forest is con-
structed, it is learned from a bootstrap sample of the original
training data. This means that for each tree τ , there is a set
of training images that were not used to build that tree (aka
“out of bag”). To construct a stacking example for image i,
we process the descriptor vectors in Bi through each tree τ
for which image i was out-of-bag. We form the evidence his-
tograms, normalize them, and concatenate them. After the
stacking examples are formed, we apply C4.5 with 200 iter-
ations of Adaboost [Freund and Schapire, 1997] to learn the
stacking classifier. This process is summarized in Figure 3.

The second method that we developed is even simpler.
The basic idea is just to apply boosting to the classic dictio-
nary method [Zhang et al., 2009]. Specifically, we do the
following. We employ 3 detectors (Hessian, Kadir-Brady,
and PCBR). The outer loop consists of 30 iterations of Ad-
aboost. We employ boosting by sampling, so after updating
the weights of the images via the standard Adaboost method,
we sample only 20% of the data set (with replacement) using
a slight modification of weighted sampling known as Quasi-
Random Weighted Sampling [Kalal et al., 2008]. Once a
sample of images is drawn, the descriptor vectors in the im-
age are used to learn one D = 100 cluster dictionary for each
detector via k-means clustering. Unlike the class-specific dic-
tionaries described above, these dictionaries are learned from
all detections of all classes. After learning the dictionary,
we map each training image into a histogram of word oc-
currences as described above. We then reweight those his-
tograms according to the TF-IDF measure [Salton and Buck-
ley, 1988]. This reduces the weight on very common key-
words. To learn each so-called weak classifier, we perform
50 iterations of bagging using C4.5.

Table 1 shows the results of these two methods and the
standard dictionary method as measured by 3-fold cross-
validation on the STONEFLY9 dataset. The results show that
both the stacked random forest architecture and the boosted
dictionary architecture achieve much better results than the
standard dictionary method. A shortcoming of the stacked
random forests is that the classifier cannot require multiple
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Table 1: Error rates of 3 classification architectures on the
STONEFLY9 data set

Method Error rate

Class-specific dictionaries + Adaboost 16.1
Stacked random forests 6.4
Boosted dictionaries 4.9

kinds of detections (e.g., both eyes and characteristic spots
on the back). All detections just contribute to the total evi-
dence for the classes, and the stacked classifier then finds an
appropriate way to weigh the total evidence to make the final
decision. In contrast, the dictionary methods are able to re-
quire multiple kinds of detections, as long as they correspond
to multiple dictionary entries. Clearly, the boosted dictionary
method is able to do a better job of this, because in the second
and subsequent iterations, it is able to learn dictionaries that
focus on the “hard” cases. One direction for future work is
to combine boosting with the stacked random forests, as this
may also allow the final classifier to require multiple kinds of
detections in order to make a decision.

3 Automated Data Cleaning for Sensor

Network Data

The second step in the Ecosystem Informatics pipeline is data
cleaning. Ecology is one of the prime beneficiaries of the
emerging technology of wireless sensor networks. We have

been collaborating with the SensorScope project at the École
Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.
SensorScope is a low-cost wireless platform for environ-
mental sensor networks. In place of few, expensive perma-
nent monitoring stations deployed sparsely over a large area,
SensorScope allows field scientists to deploy many light-
weight, inexpensive stations at a much higher spatial resolu-
tion. While SensorScope can support many different sensors,
in our collaboration so far, we have studied only temperature
sensors.

Although wireless sensor networks can be much less ex-
pensive than traditional, permanent sensors, they are also sub-
ject to much more frequent failures. These can be caused by
failure of the sensor, failure of the local network, or failure
of the uplink from the field network to the research lab. The
goal of our research is to develop automated data cleaning
methods that can detect failures in real time and also fill in
(impute) missing values to make the resulting data set more
useful.

To achieve both of these functions, our approach is to learn
a joint probability distribution over the outputs of all of the
sensors. An advantage of these wireless sensor networks is
that the larger number of sensors can provide redundancy that
allows us to infer the true sensor value when a sensor fails.

Figure 4 shows a SensorScope deployment known as Fish-
Net, where the variables {Xi} indicate the true sensor values
indexed by sensor i. Given a few weeks of sensor readings
from this network, we assume that all sensors were working
properly and learn a joint dynamic Bayesian network model
that consists of three components. First, as shown in Fig-

Figure 4: Left: Top-down view of the FishNet Deployment.
Right: Learned dependency relationships between the six
sensor stations at the deployment.

ure 4(right), we learn the structure and parameters of a joint
linear Gaussian model of the sensor readings. This network
captures the correlations among the sensors at each time step.
This becomes the “time slice” for the second component—
a first-order dynamic Bayesian network in which there is a
first-order linear Gaussian dependency between each variable
in the network at time t and its value at time t − 1. Finally,
we introduce an observation model into the DBN such that
the observed sensor value Oi depends on the true value Xi

and a hidden sensor state variable Si (where Si = 1 means
the sensor is working properly, in which case Oi = Xi plus a
small amount of Gaussian noise and where Si = 0 means the
sensor is broken, in which case Oi = Xi but with a very large
amount of Gaussian noise). All parameters of the model, ex-
cept for the observation Gaussian noise, are learned from the
data in the training period.

To perform data cleaning, we apply standard DBN filter-
ing. At each time step, the observations are made, and we per-
form probabilistic inference to determine the most likely state
of each sensor. We then assert this most likely state to be the
true state, and assimilate the observations into the model to
update the posterior distributions of the Xi variables at time
t. If Si is believed to be 0 at time t, the reading is marked
as “faulty” and the posterior mean of Xi is used to predict
(impute) the value for Xi.

Structure learning is accomplished by hill-climbing in the
BGe metric of Geiger and Heckerman [1994]. Parameter
learning for each conditional linear Gaussian is essentially
linear regression via maximum likelihood.

Figure 5 shows the application of this method to days 22-
41 of a deployment at Grand St. Bernard on the Swiss-Italian
border. We can observe many sensor failures including bad
sensor values (the spikes) and flat lines at −1 degrees, which
are caused by network failures. The model was trained on the
first 21 days of deployment and then applied to the remaining
time. We can see that it is doing a very good job of identifying
faults and imputing missing values.
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Figure 5: Quality Control performance on Grand St. Bernard. Solid line indicates the actual temperature recorded at each
station. Dashed line indicates the posterior prediction made for that station. Red hashes indicate values labeled as “faulty”. The
X axis denotes the day since the deployment began, and the Y axis denotes temperature in degrees.

4 Concluding Remarks

Computer science and artificial intelligence have the potential
to transform the ecosystem sciences much the way they trans-
formed molecular biology. Although many problems in ecol-
ogy are superficially similar to previously-studied problems
(e.g., object recognition, density estimation, model fitting,
optimization), existing solutions are not directly applicable.
This paper has shown one instance of this: standard methods
for generic object recognition did not provide sufficient ac-
curacy for recognizing stoneflies. Similarly, while predicting
the distribution of a single species can be viewed as a Boolean
classification problem, jointly predicting 5000 species poses
a host of novel problems. For example, there are more than 12
million potential interactions among pairs of species. It is not
feasible to estimate all of these interactions, even from large
data sets. Another case arises with finding optimal policies
for the active prevention of wildfires. In principle, these are
just Markov decision problems, and we already have many
methods for solving them. But if we consider a region made
up of 10,000 management units, such that each year, we must

choose 100 units on which to perform fuel reduction treat-
ments, then our existing methods do not scale. This problem
has O(10500) potential actions at each time point!

To prepare students to work in ecosystem informat-
ics, we have created two educational programs. Each
summer, we conduct a 10-week Summer Institute in Eco-
Informatics at the H. J. Andrews Experimental Forest
(eco-informatics.engr.oregonstate.edu. This
provides an opportunity for juniors, seniors, and first-year
graduate students to work in interdisciplinary teams that com-
bine field work with mathematical and computational mod-
eling. We have also established an interdisciplinary graduate
program in Ecosystem Informatics under the NSF IGERT
program (ecoinformatics.oregonstate.edu).
This program trains students to conduct research in teams
that combine mathematics, computer science, and the
ecosystem sciences. Students receive rigorous education in
their core discipline while also obtaining a Ph.D. minor in
Ecosystem Informatics.

I urge everyone to join us in addressing these interesting
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research problems. Given the ecological challenges facing
our planet, there is an urgent need to develop the underly-
ing science that can guide policy making and implementation.
Ecology is poised for a data-driven revolution that can help it
address these needs. But ecologists can’t do this alone. They
need computer scientists to accept the challenge and develop
the novel computational tools that can make this revolution a
reality.
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