
Abstract
Intelligent Tutoring Systems (ITS) is the interdis-
ciplinary field that investigates how to devise edu-
cational systems that provide instruction tailored to 
the needs of individual learners, as many good 
teachers do. Research in this field has successfully 
delivered techniques and systems that provide 
adaptive support  for student problem solving in a 
variety of domains. There are, however, 
other educational activities that can benefit from 
individualized computer-based support, such as 
studying examples, exploring interactive simula-
tions and playing educational games. Providing in-
dividualized support for these activities poses 
unique challenges, because it requires an ITS that 
can model  and adapt  to  student behaviors, skills 
and mental states often not as structured and well-
defined as those involved in traditional problem 
solving. This paper presents  a variety of projects 
that illustrate some of these challenges, our pro-
posed solutions, and future opportunities. 

1 Introduction 
Since the early 1970s, the field of Intelligent Tutoring Sys-
tems (also known as Artificial Intelligence in Education) has 
investigated combining research in Artificial Intelligence, 
Cognitive Science and Education to devise intelligent agents 
that can act as tutors in computer-aided-instruction (CAI). 
Traditional CAI systems support learning by encoding sets 
of exercises and the associated solutions, and by providing 
predefined remediation actions when the students’ answers 
to do not match the encoded solutions. This form of CAI 
can be very useful in supporting well-defined drill-and-
practice activities. However, it is difficult to scale to more 
complex pedagogical activities, because the system designer 
needs to define all relevant problem components, all solu-
tions (correct or incorrect) that the system needs to recog-
nize, and all possible relevant pedagogical actions that the 
tutor may need to take. 
  Research in ITS has been investigating how to make com-
puter-based tutors more flexible, autonomous and adaptive 
to the needs of each student by endowing them with explicit 
knowledge of the relevant components of the teaching 

process and with reasoning capabilities to turn this know-
ledge into intelligent behavior.  There are three types of 
knowledge that an intelligent tutor (human or artificial) 
needs to have to be able to aid student learning: (i) know-
ledge about the target instructional domain, (ii) knowledge 
about the student, and (iii) knowledge about the relevant pe-
dagogical strategies. In addition, an artificial tutor needs to 
have communication knowledge about how to present the 
desired information via  the computer medium given the 
available output channels. These different types of know-
ledge contribute to defining the behavior of a complete in-
telligent tutor for problem solving activities as follows. The 
tutor uses pedagogical knowledge represented in the peda-
gogical model, domain knowledge stored in the domain 
model and knowledge about the current state of the student 
stored in the student model to select a suitable new problem 
for the student. Using the domain knowledge and its com-
munication knowledge, the tutor presents the selected prob-
lem to the student in the format most suitable for the stu-
dent’s abilities and preferences. Then it monitors the stu-
dent’s solution  to the problem and  compares it with its   
known solution (or set of  relevant alternative solutions)   to 
decide whether the student’s  solution  is appropriate or re-
quires pedagogical interventions. A key difference between 
many  intelligent tutors and more traditional CAI systems is 
that in the ITS the relevant solutions against which to com-
pare the student’s input do not need to be predefined by a 
human author. These solutions are generated in real-time by 
the ITS itself, given the problem definition and the know-
ledge in the domain model. The comparison between the 
student’s and the computer’s  solution(s) is used to both up-
date the ITS’s belief regarding the student’s relevant domain 
knowledge and skills (i.e., its student model), and to gener-
ate an adequate tutorial  action (e.g., help with an incorrect 
solution step,  praise for a correct solution). 
   It should be noted that not all ITS include the four compo-
nents mentioned above, and that each component can be 
present at various levels of sophistication. Most ITS, for in-
stance, include fairly rich domain and  student models (e.g., 
Corber and Anderson 1995, Conati et al., 2002), but the pe-
dagogical model may consist of a simple set of heuristics 
with no explicit communication model. Some ITS, on the 
other hand, may have a rich communication model that al-
lows the system to interact with the student by using natural 
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language (e.g. VanLehn et al., 2007). Similarly, ITS vary in 
the type and sophistication of the pedagogical actions they 
can perform. Some ITS provide step-by-step monitoring of 
the student’s solution as it is being generated (e.g., Corber 
and Anderson 1995, Conati et al., 2002), while others pro-
vide feedback on the final solution only (e.g., Mitrovic et
al., 2007). Some ITS select the next activity for the students, 
others let the student select it.  
   ITS research has successfully delivered techniques and 
systems that  provide adaptive support  for student problem 
solving or question-answering activities in a variety of do-
mains (e.g., programming, physics, algebra, geometry,  SQL 
and introductory computer science). Several of these sys-
tems are actively used in real-world settings (e.g., Mitrovic 
et al., 2007, http://www.carnegielearning.com/products.cfm) 
and have even contributed to changing traditional school 
curricula (Koedinger et al., 1995).  
   There are, however, other educational activities that can 
benefit from individualized computer-based support, such as 
learning from examples, exploring interactive simulations, 
playing educational games and learning with a group of 
peers. Providing individualized support for these activities 
poses unique challenges, because it requires an ITS that can 
model  domains as well as  student behaviors and mental 
states that may not be as structured and well-defined as 
those involved in traditional problem solving. For instance, 
an ITS that provides support for exploration-based learning 
must be able to “understand” exploratory activities so that it 
can propose them to students. It also needs to know what it 
means to explore a given concept or domain effectively, so 
that it can monitor the student’s exploration process and 
provide adequate feedback when needed.  In recent years, 
the ITS community has actively taken on these new chal-
lenges, aided by advances in  AI research. The remainder of 
this paper will focus on one specific endeavor to push ITS 
research beyond support for traditional problem solving: de-
vising intelligent tutors that can scaffold meta-cognitive 
skills. 

2 Intelligent tutors that scaffold meta-
cognition 

Meta-cognition refers to “one’s knowledge concerning one’s 
own cognitive processes and products or anything related to 
them” (Flavell 1976); more informally, meta-cognition has 
been referred to as “thinking about thinking”. Meta-
cognitive skills are therefore domain-independent abilities 
that are an important aspect of knowing how to learn in gen-
eral. Examples include, among others, the ability to monitor 
one’s learning progress (self-monitoring), the tendency to 
explain instructional material to oneself in terms of the un-
derlying domain knowledge (self-explanation),  the ability 
to learn from examples (analogical reasoning), the ability to 
appropriately seek tutoring help.  Individuals vary signifi-
cantly in these abilities, and thus several ITS researchers 
have been investigating how to devise tutors  that can help 
students acquire the relevant meta-cognitive skills. While 
some researchers have focused on creating  tools that can 

scaffold meta-cognition by design (e.g., Luckin and Ham-
merton 2002,  Aleven and Koedinger 2002), others have 
been investigating how to capture a user’s need for  meta-
cognitive support in real-time during interaction, to enable 
the ITS to respond accordingly. Roll et al., for instance, 
have devised a model that enables an ITS to track and scaf-
fold a student’s tendency to effectively use the available 
help facilities [Roll et al., 2007]. In our work, we have fo-
cused on modeling and scaffolding students’ cognitive skills 
related to learning from examples, as well as skills related to 
learning effectively from exploration. Arguably, the higher 
the level of the user states to be captured, the more difficult 
they are to assess unobtrusively from simple interaction 
events. The next two sections briefly describe our progress 
in this direction. 

2.1 An intelligent tutor for example-based learn-
ing

Research in cognitive science has provided extensive evi-
dence of the utility of  worked-out example solutions as 
learning aids. (e.g., Anderson et al., 1984,  VanLehn 1996). 
However, this research also indicates that  there is great 
variation in how effectively different students learn from 
examples, because of individual differences in the meta-
cognitive skills relevant to succeeding in this activity. Two 
of these meta-cognitive skills are self-explanation and min-
analogy. Self-explanation involves elaborating and clarify-
ing available instructional material to oneself (Chi 2000). 
Min-analogy involves transferring from an example only the 
minimum amount of information necessary to enable suc-
cessful problem solving, as opposed to copying indiscrimi-
nately from the example (Vanlehn 1998). We have devised 
ExBL, an  ITS that  takes into account individual differences 
in these cognitive skills to provide user-adaptive  support to 
example-based learning (Conati et al., 2006). ExBL  com-
plements Andes, an ITS designed to support physics prob-
lem solving at the college level (Conati et al 2002), and in-
cludes  two components. The first component, known as the 
SE (Self-Explanation)-Coach, supports example studying 
prior to problem solving. The second component, known as 
the EA (Example-Analogy)-Coach, supports the effecive 
use of examples during problem solving (i.e., analogical 
problem solving, or APS from now on).  

In order to tailor its scaffolding to a student’s needs, 
ExBL must be capable of monitoring and assessing each 
student’s performance with respect to the target pedagogical 
tasks. Thus, the framework needs an internal representation 
of these tasks, against which to compare the student’s prob-
lem-solving and example-studying behaviours. It also needs 
to encode in a student model  its assessment of the student’s 
domain knowledge and relevant meta-cognitive skills. 

The above requirements are implemented in the archi-
tecture shown in Figure 1. The  user interface component 
provides interactive tools for students to study examples 
(SE-Coach) and to use examples during problem solving 
(EA-Coach). All student interface actions are monitored and 
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assessed against the system’s internal representation of the 
relevant problem/example solutions. This internal represen-
tation, known as the solution graph, is automatically built 
before run-time by the component labelled as problem 
solver in Figure 1 (left) starting from: (i) a knowledge base 
of physics and planning rules (Domain and planning rules
in Figure 1) and (ii) a formal description of the initial situa-
tion for the examples/problems involved in each task (Prob-
lem definition in Figure 1) (Conati and VanLehn 2000). 
Each solution graph is a dependency network that represents 
how each solution step derives from previous steps and 
physics knowledge. 

Before run-time

Problem definition
(givens and goals)

Domain and planning rules

Problem 
Solver

Solution graph(s) 

  User Interface Long-term 
student model

Before run-time

Short-term 
student model 

(Bayesian network)

SE-Coach

EA-Coach

Figure 1: ExBL architecture 

Both SE-Coach and EA-Coach use the solution graph 
to provide feedback on students’ performance during exam-
ple studying and analogical problem solving, by matching 
students’ interface actions to elements in the solution graph. 
In addition to serving as the basis for the ExBL’s ability to 
provide feedback, the solution graph is used to build its stu-
dent models. Each time a student opens a new exercise, the 
corresponding solution graph provides the structure for a 
Bayesian network  that forms the short-term student model 
for the currently active Coach (see right side of Figure 1). 
The Bayesian network uses information on the student’s in-
terface actions to generate a probabilistic assessment of the 
student’s knowledge and relevant meta-cognitive tendencies 
at any given point during the interaction. This procedure al-
lows the system to generate tailored interventions to foster 
effective meta-cognitive skills when the model assesses the 
student as having knowledge gaps or requiring improvement 
in her meta-cognitive behaviours. The prior probabilities to 
initialise the rule nodes in the Bayesian network come from 
the long-term student model (see Figure 1), which contains 
a probabilistic assessment of a student’s knowledge of each 
rule in the ExBL’s knowledge base at the time when a new 
exercise is started, given the student’s performance in all the 
exercises solved up to that point.   

The SE-Coach uses the architecture described above to 
help  a student better understand a given  example, based on 
its current assessment of the student’s knowledge, the stu-
dent’s reading patterns (tracked via an interface artefact, see 
Conati and Vanlehn 2000 for details) and possible student 
explanations on the example that the student can generate 
via dedicated interface tools. Based on this assessment, the 
SE-Coach guides the student to more carefully explain parts 

of the example that may not be fully understood. The SE-
Coach also includes a component that automatically gener-
ates example solutions at different levels of detail and helps 
students generate the missing solution steps, in order to sup-
port the student in the transition from example-studying to 
pure problem solving (Conati and Carenini 2001).  

The EA-Coach uses the architecture in Figure 1 to 
support effective analogical problem solving by selecting 
for each student and current problem an example that 
maximises both problem solving success and student learn-
ing. The example-selection process relies on a decision-
theoretic mechanism that, given a problem and a set of ex-
amples, computes for each example the probability that it 
can help the student solve the problem and learn in the proc-
ess, given the current assessment of the student’s physics 
knowledge and meta-cognitive skills. The example with the 
maximum-expected utility in terms of problem-solving suc-
cess and learning is then presented to the student.  

A formal evaluation of the SE-Coach component with 
adaptive support for example studying showed that it can 
help students learn more effectively than a version with no 
adaptive support, when students are in the early stages of 
learning a new topic (Conati et  al., 2006). A formal evalua-
tion of the EA-Coach’s selection process showed that it can 
significantly increase the number of appropriate student ana-
logical problem-solving behaviours compared with an ap-
proach that selects the example most similar to the current 
problem, as done by other ITS that support example-based 
problem solving (Muldner and Conati 2007). These results, 
although obtained in controlled laboratory studies as op-
posed to classroom settings, represent encouraging evidence 
that it is feasible to devise intelligent tutors that can model, 
adapt and support  student meta-cognition and subsequent 
learning.  What remains to be seen is whether the meta-
cognitive skills themselves are learned in the process, i.e., if 
a student can retain them when the ITS support is no longer 
available.

2.2 Supporting user interaction with exploratory 
learning environments.   

This research seeks to provide intelligent support for explo-
ratory learning. The capability to explore effectively is rele-
vant to many tasks involving interactive systems, but not all 
users possess this capability in equal measure (e.g., Shute 
and Glaser 1990). We developed a model of exploratory be-
havior that an ITS can use to improve user exploration via 
interventions tailored to the user’s needs. This task is chal-
lenging because it requires assessing the effectiveness of 
behaviors for which there is no formal definition of correct-
ness. We tackled the challenge with a probabilistic model 
that assesses exploration effectiveness by integrating infor-
mation on user actions, knowledge and whether a user ac-
tually reasons about (self-explains) his/her exploratory ac-
tions. Self-explanation is a well-known meta-cognitive skill 
in Cognitive Science, but this work is the first to model self-
explanation in the context of exploration-based learning.   
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We developed the model in the context of ACE (Adaptive 
Coach for Exploration). ACE is an ITS that supports student 
exploration of mathematical functions via a set of  interac-
tive simulations designed to illustrate function-related con-
cepts, such as the relationship between the input and the 
output of a function, or between a function’s equation and 
its graph. Figure 2 shows the main interaction window for 
ACE’s  Plot Unit, an  activity that allows the learner to  ex-
plore the relationship between a function’s plot and equation 
by moving the plot in the Cartesian plane and observing the 
effects on the equation (displayed below the plot area in 
Figure 2).  

Figure 2: ACE's Plot Unit

The student can also change the equation parameters and see 
how the change affects  the plot. Each function type (e.g., 
constant, linear and power) has an associated set of ‘explo-
ration cases’ that together illustrate the full range of function 
attributes. For example, linear functions are defined by two 
parameters, the function slope and the y-intercept. There-
fore, in order to gain a broad understanding of linear func-
tions, the student should study positive and negative inter-
cepts, and positive, negative and zero slopes.       
   ACE monitors the student’s interaction with its simula-
tions, and generates interventions to improve those beha-
viors deemed to be suboptimal. For instance, it suggests 
which further exploratory actions to perform when a stu-
dent’s exploration of a given activity is incomplete  (Bunt 
and Conati 2003). To judge the effectiveness of a student’s 
exploratory behaviors, ACE relies on a probabilistic student 
model. The first version of the model was a  Dynamic Baye-
sian Network (DBN) that included (i) nodes to represent all 
possible exploration cases; (ii)  nodes to represent student 
understanding of related mathematical concepts; and (iii)  
links representing how exploration of relevant cases relates 
to concept understanding. To assess whether an exercise has 
been explored effectively, this version of the ACE model 
just used evidence from the student’s interface actions.  Ini-
tial studies of this version of the system generated encourag-
ing evidence that it could help students learn better from ex-
ploration (Bunt and Conati 2003). However, these studies 
also showed that ACE sometimes overestimated students’ 

exploratory behavior, because it  considered  interface ac-
tions to be sufficient evidence of good exploration, without 
taking into account whether a student was reasoning, or  
self-explaining the outcome of these actions. For instance, a 
student who quickly moves a function plot around the 
screen, but never  reflects on how these movements change 
the function equation, is performing many exploratory ac-
tions but can hardly learn from them. Still, the first ACE 
student model would likely judge this type of behavior as 
good exploration.  
    To circumvent this problem, we devised a new version of 
the student model that includes assessment of the student’s 
self-explanation behavior during exploration-based learning 
(Conati and Merten 2007). To assess self-explanation, this 
model uses evidence derived from both  the time spent on 
each exploratory action andthe student attention patterns 
monitored via an eye-tracking system. This work was one of 
the first attempts to use eye-tracking information in real-
time to assess complex user mental states. We formally eva-
luated the model using both time and eye-tracking informa-
tion against  (i) a model using only time as a predictor of  
self-explanation and (ii) the earlier ACE model that ignores 
self-explanation and uses only the number of user interface 
actions as a predictor of effective exploration. We found 
that  

The model including both gaze and time  data  provides 
better  assessment of student self-explanation than the  
model using only time. The difference is statistically 
significant.  

Assessing  self-explanation significantly improves the 
assessment of student exploratory behavior, and the ac-
curacy of the latter increases with increased accuracy of 
self-explanation assessment. All improvements are sta-
tistically significant. 

This works shows that it is possible to increase the band-
width of an ITS that needs to capture high-level user mental 
states by using information on user attention. Since eye-
tracking technology is becoming increasingly more precise 
and unobtrusive, this opens many opportunities for devising 
intelligent tutors that can understand and adapt to complex 
user reasoning processes. 

3 Conclusions 
   Given our society’s increasing need for high quality teach-
ing and training, computer-supported education is becoming 
critical  to complementing human tutoring in a large variety 
of fields and settings. Research in Intelligent Tutoring Sys-
tems leverages advances in Artificial Intelligent, Cognitive 
Science and Education to increase the ability of computer-
supported education to autonomously provide learners with 
effective educational experiences tailored to their specific 
needs, as good human tutors do.  
    In this paper, we have provided examples of one current 
direction  of ITS research aimed at extending the reach of 
this technology toward new forms of computer-based in-
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struction beyond traditional problem solving: providing in-
telligent tutoring for meta-cognitive skills. This endeavor is 
only one of several new directions in ITS research. Other 
new forms of intelligent computer-based tutoring that have 
been  actively investigated include, among others: support 
for collaborative learning (e.g., Isotami and Misogici 2008); 
emotionally intelligent tutors that take into account both 
student learning and affect when deciding how to act (e.g., 
Conati and Maclaren 2009, D’Mello et al., 2008); teachable 
agents that can help students learn by acting as peers that 
students can tutor (e.g., Leelawong and Biswas 2008); intel-
ligent support for learning from educational games (e.g., 
Manske and Conati 2005, Johnson 2007); and intelligent tu-
toring for ill-defined domains (e.g., Lynch et al., 2008). 
Providing these forms of intelligent  tutoring, like providing 
intelligent support for meta-cognition, poses unique chal-
lenges, because it requires an ITS that can model  domains 
as well as   student behaviors and mental states often not as 
structured and well-defined as those involved in traditional 
problem solving. Advances in AI techniques for reasoning 
under uncertainty, machine learning, decision-theoretic 
planning, as well as the increasing availability of sensors 
that can help capture the relevant user states, are promising 
means for the field to face these challenges. Success in these 
endeavors has the potential to have great impact on our so-
ciety, and on its ever-increasing need for high quality teach-
ing and training. 
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