Amplifying Side Channels Through Performance
Degradation

Thomas Allan

The University of Adelaide and Data61, CSIRO
tom.allan@student.adelaide.edu.au

Katrina Falkner
The University of Adelaide
katrina.falkner@adelaide.edu.au

Billy Bob Brumley
Tampere University of Technology
billy.brumley@tut.fi

Joop van de Pol
University of Bristol

joop.vandepol.2011@my.bristol.ac.uk

Yuval Yarom
The University of Adelaide and Data61, CSIRO
yval@cs.adelaide.edu.au

ABSTRACT

Interference between processes executing on shared hardware can
be used to mount performance-degradation attacks. However,
in most cases, such attacks offer little benefit for the adversary.
In this paper, we demonstrate that software-based performance-
degradation attacks can be used to amplify side-channel leaks, en-
abling the adversary to increase both the amount and the quality of
information captured.

We identify a new information leak in the OpenSSL implemen-
tation of the ECDSA digital signature algorithm, albeit seemingly
unexploitable due to the limited granularity of previous trace pro-
curement techniques. To overcome this imposing hurdle, we com-
bine the information leak with a microarchitectural performance-
degradation attack that can slow victims down by a factor of over
150. We demonstrate how this combination enables the amplifica-
tion of a side-channel sufficiently to exploit this new information
leak. Using the combined attack, an adversary can break a private
key of the secp256k1 curve, used in the Bitcoin protocol, after ob-
serving only 6 signatures—a four-fold improvement over all previ-
ously described attacks.

1. INTRODUCTION

Executing multiple clients’ workloads on a single hardware plat-
form can help achieve high resource utilisation. A consequence of
this resource sharing is that workloads of different clients can in-
terfere with each other due to shared-resource contention [53, 54].

Malicious clients can exploit this interference to mount
performance-degradation attacks against co-resident clients [13,
17, 33, 43]. Fortunately, such attacks have a limited usability.
In most cases, the attacker does not gain any direct benefit from
the attack. The main benefit an attacker gets from mounting a
performance-degradation attack is harming the victim. An excep-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACSAC ’16 December 05-09, 2016, Los Angeles, CA, USA

(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4771-6/16/12.

DOI: http://dx.doi.org/10.1145/2991079.2991084

tion is the attack of Varadarajan et al. [48], in which the attack
frees resources for the attacker’s use by forcing the victim to wait
on other resources.

In this paper we investigate the use of performance-degradation
attacks to amplify side-channel attacks. Slower encryption pro-
vides the adversary with more opportunities for collecting side-
channel information [50]. Hence, actively slowing the victim down
carries the promise of better side-channel attacks. This concept
has been used in power analysis attacks which reduce the clock
frequency to achieve a better signal acquisition [27, 37]. Gruss
et al. [14] demonstrate that performance-degradation attacks can
slow encryption down and speculate on possible benefits for side-
channel attack. However, they do not demonstrate that the attack
indeed improves the side channel and the benefits for an adver-
sary remain unclear. This work is the first to demonstrate that
performance-degradation attacks can amplify side-channel infor-
mation and provide tangible benefits to the adversary.

More specifically, we identify a new information leak in the
OpenSSL implementation of ECDSA with the secp256k1 curve
and use it to extend the attack of Van de Pol et al. [42]. In a nut-
shell, Van de Pol et al. [42] trace the use of point addition and point
doubling used throughout the scalar multiplication of ECDSA sig-
nature generation. From this sequence, they infer information on
the ephemeral key used for the signature. The long term private
key is then reconstructed from the information collected from mul-
tiple signatures by using a lattice attack.

We identify that tracing point inversions can increase the amount
of information collected on each ephemeral key, potentially reduc-
ing the number of signatures required for breaking the key. How-
ever, tracing point inversions introduces two formidable problems:
(1) due to the high resolution required, there is a high probability of
missing point inversions; (2) adding the trace for point inversions
increases the number of memory locations we trace, limiting the
applicability of the attack.

To overcome these limitations, we apply a performance-
degradation attack against the scalar multiplication code. We re-
peatedly evict parts of the victim’s code from the cache, slowing
elliptic group operations by a factor of over 40, and the scalar mul-
tiplication by a factor of 32, allowing a virtually error-free trace
of the curve operations sequence. By using this technique, we can
break the private key of the secp256k1 curve used in Bitcoin after
observing as few as 6 signatures.

mailto:tom.allan@student.adelaide.edu.au
mailto:billy.brumley@tut.fi
mailto:katrina.falkner@adelaide.edu.au
mailto:joop.vandepol.2011@my.bristol.ac.uk
mailto:yval@cs.adelaide.edu.au
http://dx.doi.org/10.1145/2991079.2991084

To further our understanding of the attack we study the
performance-degradation and the side-channel attacks indepen-
dently of each other. We demonstrate that strategically evicting
code from the cache can slow programs down by a factor of over
150, with a mean slow-down factor of 18 over the integer SPEC
2006 [18] benchmarks and 15 over the floating-point benchmarks.

We also analyse the FLUSH+RELOAD side-channel attack [15,
56]. We demonstrate that the attack has a maximum resolution
which depends on the number of memory locations it attempts to
probe. We further show a relationship between the resolution of
events in the victim and the likelihood of the attacker missing an
event.

The contributions of this paper are:

e We investigate the cache-eviction performance-degradation
attack and demonstrate that it is about 8 times more potent
than previously disclosed attacks. (Section 4)

e We analyse the FLUSH+RELOAD attack, identifying the

tradeoffs between the attack resolution, the number of mem-

ory locations monitored and the probability of missing a

monitored events. (Section 5)

We identify point inversions as a new source of leaked infor-

mation in the implementation of ECDSA over prime fields

in OpenSSL and show how to exploit this information. (Sec-

tion 6)

e We use the performance-degradation attack to amplify the
side channel, allowing an attacker to observe the leaked in-
formation. The combined attack requires roughly a quarter
of observed signatures compared to any prior attack. (Sec-
tion 7)

2. BACKGROUND
2.1 The Memory Hierarchy

The cache is part of the memory hierarchy that exploits the spa-
tial and temporal locality of memory access to bridge the perfor-
mance gap between the fast processor and the slower memory.
Modern processors feature a hierarchy of caches, with higher-level
caches, which are closer to the processor core, being smaller but
faster than lower-level caches, which are closer to the main mem-
ory. In recent Intel architecture, there are, typically, three levels of
cache. Each core has two levels of caches, called the L1 and L2
caches. The cores share access to a larger Last-Level Cache (LLC).

To exploit spatial locality, caches are organised in fixed-size
lines, which are the units of allocation and transfer of data in the
memory hierarchy. When the processor needs to access a memory
address, it first checks if the line containing the address is cached
in the top-level L1 cache. In a cache hit, the data is served from
a copy of the data in the cache. Otherwise, in a cache miss, the
processor repeats the search for the line in the next lower level in
the memory hierarchy. When the line is found, the processor stores
its contents in the cache, reducing the time required for accessing it
in the near future. See [39, Ch. 8] for a good overview of caching
in computer architecture.

Modern caches are typically set associative. A set associative
cache is divided into multiple sets, each consisting of multiple
ways. Each memory line is mapped to a single cache set. The
memory line can only be cached in the set it is mapped to, but
can be cached in any of the ways of the set. Typically, the set a
memory line maps to is determined by a sequence of bits in the
physical address of the memory line. However, the LLC in modern
Intel processor uses a more complex hash function to determine the
mapping [20, 29, 57].

Several cache optimisations result in memory lines being
brought to the cache without the code accessing data in these lines.
In the Intel architecture, the spatial prefetcher pairs consecutive
memory lines and attempts to fetch the pair of a missed line [21].
Another optimisation is to detect sequences of accesses to consec-
utive memory addresses and prefetch memory lines that the pro-
cessor anticipates may be required [21]. A third optimisation is
speculative execution, where the processor attempts to follow both
paths of a conditional branch before the branch condition is evalu-
ated [47], bringing the code of both paths into the cache.

When multiple programs share the same cache, one program’s
use of the cache may evict another program’s data from the cache,
which due to the timing difference between cache hits and cache
misses may create noticeable timing variations in the sharing pro-
grams. These timing variations have been used to mount side-
channel attacks [1, 5, 26, 38, 40, 44, 58].

2.2 The Flush+Reload Attack

FLUSH+RELOAD [56] is a cache-based side-channel attack tech-
nique. Unlike other techniques, which infer the memory lines
the victim accesses based on activity in cache sets, FLUSH+RE-
LOAD positively identifies access to memory lines, giving it high
accuracy, high signal to noise ratio and high resolution. The at-
tack has been used in various settings, including between non-
trusting processes, between isolated containers and across virtual
machines and has been shown to be effective against multiple algo-
rithms [3, 14, 22, 23, 42, 55, 59].

FLUSH+RELOAD relies on memory sharing between the victim
and the adversary. Such sharing could be achieved via the use of
shared libraries or using page de-duplication [2, 49]. To identify
victim access to a shared memory line, the adversary flushes or
evicts the memory line from the cache, waits a bit and then mea-
sures the time it takes to reload the memory line. If the victim
accesses the line during the wait, the line will be cached and the
reload will retrieve it from the cache. Otherwise, the line will not
be cached and reloading will have to retrieve it from the main mem-
ory. As retrieving the line from the memory takes longer than ac-
cessing a cached copy, the adversary can distinguish between the
two options and identify whether the victim has accessed the line
during the wait.

The FLUSH+RELOAD attack needs processor support for evict-
ing memory lines from the cache. So far, all published reports of
the attack use the c1flush instructions of the x86 and x86-64 in-
struction sets. In those instruction sets, c1f1lush is an unprivileged
instruction, which every process can use.

Gruss et al. [14] suggest a variant of FLUSH+RELOAD, called
EVICT+RELOAD, which does not require a specific instruction for
evicting the memory line. Instead, they evict the victim memory
line by accessing a number of memory lines that map to the same
cache set as the victim line. Evicting the victim memory line using
this technique takes significantly longer than using the c1flush
instruction. (325 cycles compared with 41 for c1flush.) Further-
more, the eviction may fail, resulting in a false positive.

Both FLUSH+RELOAD and EVICT+RELOAD need to evict the
victim cache line from all of the caches that the victim uses. When
the victim and the adversary do not execute on the same core, they
do not share the L1 and L2 caches. In this case, the attack relies
on the inclusion property of the LLC. The contents of an inclu-
sive cache is a superset of the contents of all higher level caches.
To maintain the inclusion property, when a memory line is evicted
from the LLC, the processor also evicts it from all of the L1 and L2
caches above it. All of the published attacks run on Intel processors,
which use inclusive LLCs. Yarom and Falkner [56] report that the

FLUSH+RELOAD attack does not work on AMD processors due to
their non-inclusive LLCs.

2.3 Related Work

Several works have investigated performance-degradation at-
tacks by co-located adversaries. Grunwald and Ghiasi [13] imple-
ment two attacks against Intel HyperThreading (HT), a Simulta-
neous Multithreading (SMT) technique. The first attack uses de-
normalised floating point numbers [12], which flush the instruction
pipeline of the Pentium 4 processor used. The second attack uses
self-modifying code, which results in flushing both the pipeline and
the processor’s trace cache. To test the attack, they use a compute-
bound victim which repeatedly calculates the MDS5 hash. The vic-
tim is slowed by about 120% with the first attack and by a factor of
20 with the second.

Heat stroke [17] is a performance-degradation attack that ex-
ploits the thermal management of the processor chip. Certain com-
ponents of the chip tend to overheat when experiencing high util-
isation, forcing the processor to reduce the utilisation of the hot
components until they cool down. The authors use a simulated
multi-threaded processor to test the attack. The adversary gener-
ates many register accesses causing overheating in the shared reg-
ister file. The processor responds to overheating by slowing access
to the register file. The attack achieves a mean slow down by a
factor of 8 over the SPEC 2000 benchmark suite.

Matthews et al. [28] compare the performance isolation proper-
ties of virtualisation. They implement multiple adversaries, each
attempting to monopolise a system resource. The main finding is
that OS-level virtualisation (e.g. Solaris containers) provides less
isolation than system-level hypervisors such as VMware or Xen.
In particular, it performs poorly under memory or process number
pressure. Other than that, all systems at most experience minor
interference.

Moscibroda and Mutlu [33] note that the scheduling policy of
memory banks favours requests for the currently open DRAM row.
Consequently, an adversary that issues many requests to the same
row can cause memory-access delays for programs that access the
same DRAM bank. These delays can slow the victim down by a
factor of 2.9 for one adversary and up to a factor of 4 for multiple
adversaries. The suggested fix is to change the DRAM scheduling
algorithm.

Woo and Lee [52] investigate attacks against a shared LLC. The
attacks aim to evict entries from the LLC and rely on the LLC in-
clusiveness to also evict data from the victim L1. Two forms of
attack are suggested and are tested using a simulator—no tests on a
real processor are performed. Attacks using load instructions slow
victims down by 50% on average, with a maximum slowdown of
100%. (The amount of degradation is estimated from the graphs
provided due to the absence of exact figures.) The second form of
attack uses atomic instructions which lock access to the bus. The
mean slowdown with this attack is by a factor of 5, with a maxi-
mum slowdown factor of 10.

Another LLC monopolising attack 1is suggested by
Weng et al. [S1] which demonstrate a significant performance
drop in co-resident VMs. The paper does not present exact figures,
but judging from the supplied graphs, the performance seems
to drop by about 30%. As a countermeasure, Weng et al. [51]
suggest not scheduling non-trusting VMs concurrently on the same
processor package.

Cardenas and Boppana [7] also use an adversary that tries to mo-
nopolise the LLC. The attack reduces the performance of the victim
by 50% with a single attacking thread and up to 75% with multiple
threads. Based on the observation that the adversary also suffers

LLC misses, the paper suggests using the performance manage-
ment unit (PMU) to identify the adversary and eventually mitigate
the attack. We note that because our adversary does not suffer cache
misses, this mitigation does not apply to the attack we present.

Richter et al. [43] investigate multiple techniques for degrading
the performance of a shared PCI bus. They show that when 1I/O
virtualisation is used, a malicious VM can cause a drop of 27% in
TCP throughput. With multiple attackers the drop reaches 35%.

Swiper [8] generates adversarial I/O workload to slow a tar-
get application down, achieving a reduction of up to 31% in the
throughput of Web and media servers.

In all the systems described above, the only motivation for adver-
sarial behaviour is the damage it causes to the victim. Performance
degradation attacks are therefore a form of vandalism, whose only
benefit is harming the victim. Varadarajan et al. [48] is the only
prior work to offer direct benefits to the adversary. The resource
freeing attack suggested uses a performance-degradation attack to
slow a victim down. The adversary can then benefit from the vic-
tim slow down by using resources that the victim would otherwise
use. The paper demonstrates how increasing the load on the victim
gives the adversary a 60% performance boost.

Gruss et al. [14] suggest using repeated cache evictions to slow
encryption down. They demonstrate a slowdown of AES encryp-
tion from 320 cycles to up to 20,000 cycles, and speculate that this
may be used to perform a trace-driven attack using FLUSH+RE-
LOAD. No further analysis is provided and given our analysis of
the FLUSH+RELOAD attack (Section 5) it is not clear how much
information an adversary can collect using FLUSH+RELOAD dur-
ing 20,000 cycles.

Walter [50] demonstrates that longer keys are more vulnerable
to side channel attacks than shorter keys because the operations
on longer keys are slower. He does not, however, suggest slowing
encryption to amplify the side channel.

Orsetal. [37] and Mangard et al. [27] reduce the hardware clock
speed to improve the results of power analysis of ASIC-based AES
implementations. To the best of our knowledge, no prior work has
demonstrated the use of software-based performance degradation
to improve side-channel attacks.

Recently, Pereida et al. [41] published an attack on OpenSSL
DSA. They use our performance-degradation technique to amplify
the side-channel information leaked from the OpenSSL implemen-
tation of modular exponentiation. Their work demonstrates that the
utility of our work extends beyond the examples given in this paper.

3. THREAT MODEL

In the attack scenario, the adversary executes code concurrently
with victim code on the same hardware. This scenario is common
in multi-user operating systems and in virtualised environments.
The operating system or the hypervisor prevent the adversary from
accessing the victim’s data.

We assume that the system supports a form of read-only sharing
between the adversary and the victim. This sharing could be based
on file mapping, e.g. shared libraries, or it can be based on coa-
lescing identical contents through memory de-duplication. Mem-
ory de-duplication is known to be vulnerable to side-channel at-
tacks [46], and is one of the requirements for the FLUSH+RELOAD
attack [56]. We show that it also enables performance-degradation
attacks. Like the FLUSH+RELOAD attack, we also assume a shared
inclusive LLC and require an efficient method of evicting memory
lines from the cache.

4. A PERFORMANCE DEGRADATION AT-
TACK

The performance-degradation attack we describe is based on the
observation that programs tend to spend a significant part of their
execution within a small “hot” section of the program code. Under
normal execution, the frequently executed code is in the processor
cache, hence access to it is fast.

If the memory that contains the hot code is shared between the
adversary and the victim, the adversary can evict memory lines that
contain that code from the last-level cache. This forces the victim
to wait until the processor loads the code from the memory, intro-
ducing delays to the victim’s process. Repeatedly evicting the hot
code would negate the performance benefits of the cache, slowing
the victim down.

The amount of slowdown depends primarily on the difference
between the latencies of the cache and the memory. We measure
the time it takes to load data from the L1 cache and from memory
on an HP Elite 8300 running CentOS 6.5. (Intel i5-3470 processor,
running at 3.2 GHz, with 8 GiB of DDR3-1600 CL-11 memory.)
Figure 1 shows the distribution over 100,000 measurements.

100%

) From Memory
90% - From L1 Cache
80% R

70% b
60% [b
50% [b
40% | b
30% b
20% 1
10% i
0% A T T
0 100 200 300
Measured Load Time (cycles)

Percent

Figure 1: Distribution of L1 cache and memory access times.

As we can see, virtually all loads from the L1 cache take 48
cycles. Over 98% of the loads from the memory take between 280
and 290 cycles, with the rest spread over the interval 250-1200
cycles.

In addition to data access latency, the measurements include the
overhead of the measurement code. Due to optimisations, such as
instruction pipelining and reordering, parallel use of multiple func-
tional units and data prefetching, we cannot measure this overhead.
Given that the L1 cache latency is 4 cycles [21], we can conclude
that the memory latency is around 240 cycles.

To measure the effects of the attack, we test it with the SPEC
CPU 2006 [18] benchmark suite. To generate a baseline perfor-
mance measurement, we pin the SPEC benchmarks to one core and
run them on an otherwise idle machine. The measurements follow
the SPEC reporting guidelines. In particular, we use the SPEC ref
workload, and for each benchmark we use the median time of three
runs.

We then measure the performance of the benchmark under the
attack. We measure under two scenarios—with a single attack-
ing thread and with three attacking threads running in parallel. To
avoid affecting the SPEC benchmark through time sharing, we pin
the SPEC benchmarks and the attacking threads, each to a separate
core. As in the baseline case, the machine is otherwise idle.

To apply the attack, we need to identify the hot sections of each
of the SPEC benchmarks. One possible way of doing that is to read
and understand the code of each benchmark and use that under-
standing to identify frequently used code sections. However, due

to the size of the code base, such an approach would require signif-
icant effort and is prone to errors due to limited understanding of
the code [45].

Instead, we use automatic tools for analysing the SPEC bench-
marks. We build the SPEC benchmarks with instrumentation for
collecting code-coverage information. We then use the program
geov to find out which source lines are the most frequently exe-
cuted. Our attack targets this code.

Because the instrumentation skews the performance of the pro-
gram, we do not use the instrumented binaries for the performance
testing. Instead, we build optimised SPEC benchmarks with de-
bugging symbols and use the these debugging symbols to find the
memory addresses corresponding to the lines identified through
code coverage. The result of this process is a list of candidate mem-
ory lines for the attack. We note that debugging symbols are not
loaded into memory when the program executes and do not affect
its performance.

Usually, to achieve an efficient attack, we cannot use all the can-
didate memory lines. The reason being that evicting a line from
the cache takes time. If we try to evict too many memory lines,
we reduce the frequency of evicting each of the lines. Hence lines
stay longer in the cache, allowing the victim to benefit from faster
access to them. With cache eviction taking around 70 cycles and
memory access around 240, we should be able to evict three lines
from memory before the first is reloaded. Hence, in our settings,
evicting more than three cache lines in a single attacking thread
reduces the efficiency of the attack.

To implement an efficient attack we therefore need to select a
small number of the candidate memory lines identified above. A
naive approach is to pick memory lines corresponding to the most
frequently accessed source lines. Such an approach, however, does
not guarantee the most efficient attack, mostly due to the effects of
optimisations, both at the compiler level and at the processor level.

Instead of attempting to accurately predict the best memory lines
to use for the attack, we test the efficiency of the attack with sev-
eral different selections of candidate memory lines. The results we
report are for the selection that produced the most effective attack.
We acknowledge that other selections may produce more effective
attacks. Hence the results below may understate the strength of
the attack. These results are visualised in Figure 2 and Figure 3.
Detailed timing for the SPEC benchmarks are shown in Table 1.

x160
Three attackers mm—
x140 One attacker

x120 1
x100 - 1

x80 B

Slowdown

x60 - B

x40 4

x20 ,

Figure 2: SPEC CPU2006 Integer Results.

x160
Three attackers mm—

x140 One attacker |
x120

- x100

2

o

'g x80

o

7]

x60

x40

x20

x0

Figure 3: SPEC CPU2006 Floating Point Results.

Table 1: SPEC CPU 2006 running times (seconds)

One Three

Baseline | attacker | attackers

perlbench 396 3,052 20,922
bzip2 443 1,651 9,538
gce 312 660 1,369
mcf 286 1,145 2,928
gobmk 446 970 2,180
hmmer 432 514 62,507
sjeng 513 2,048 4,288
libquantum 587 5,492 25,395
h264ref 523 7,381 15,482
omnetpp 290 723 2,935
astar 375 3,364 9,792
xalancbmk 219 602 1,990
SpecINT Mean 387 1,574 6,841
bwaves 756 8,004 46,993
gamess 689 12,493 16,367
milc 405 1,846 10,737
zeusmp 387 426 823
gromacs 375 1,050 5,390
cactusADM 660 817 6,408
leslie3d 628 1,426 13,695
namd 397 414 405
dealll 317 2,761 6,723
soplex 320 2,403 3,829
povray 163 1,439 6,759
calculix 780 18,558 121,759
GemsFDTD 674 1,740 4,859
tonto 465 739 2,956
Ibm 370 1,506 8,868
wrf 586 752 2,473
sphinx3 591 11,640 20,225
SpecFP Mean 469 1,989 6,885

As the results show, a single attacking thread reduces the mean
execution speed to about a quarter of the normal speed, whereas
three threads have a mean slowdown by a factor of 15-18. How-
ever, there is a large variance in the effectiveness of the attack. The
effective slowdown with one attacker ranges from 4% (namd) to
2,279% (calculix). For three attackers the range is even bigger.
namd is hardly affected whereas calculix is over 150 times slower
under the attack.

The attack is less effective on namd and zeusmp because both
benchmarks do not have a tight internal loop. Instead, the internal
loops in these benchmarks span a relatively large amount of code.
For example, the main loop in namd contains 256 lines of C++ code,
which span over 93 memory lines. The attack only evicts a small

fraction of this code, so the overall performance hit is very small.

Considering that memory accesses are 60 times slower than
cache accesses, the results for hmmer and calculix are surprising.
The observed slowdowns by factors of 145 and 156, respectively,
are much larger than would be expected from the cache vs. memory
speed difference. We speculate that the reason for this slowdown is
the interaction of instruction fetching with the cache. Under normal
circumstances the processor fetches instructions in batches of up to
five instructions. While each of these fetches takes four cycles, they
execute in parallel, achieving a rate of one batch per cycle [10]. If
the attack is very efficient, the targeted cache line could be evicted
after fetching only one batch, potentially reducing the performance
by a factor of 240.

Unlike previous microarchitectural performance-degradation at-
tacks, which affect all of the programs that use a microarchitectural
component, the attack is very specific. It only targets programs that
use specific code segments.

The rest of this paper describes how we exploit this property of
the attack.

S. LIMITATIONS OF THE FLUSH+RE-
LOAD ATTACK

To better understand why slowing down victims can potentially
allow the adversary to improve side-channel attacks, we first study
the FLUSH+RELOAD attack to see what limits its accuracy and res-
olution. Our focus is on asynchronous attacks, i.e. on attacks in
which the adversary executes concurrently with the victim.

Victim
(A)
Adversary SN [4
Victim
B)
Adversary SN [|
Adversary Victim
M Flush [Wait B Reload @ Access [0 Something else

Figure 4: Timing of FLUSH+RELOAD. (A) No Victim Access
(B) With Victim Access

Typically, the adversary divides time into fixed length slots. At
the start of a time slot, the monitored memory line is flushed from
the cache hierarchy. The adversary, then, waits to allow the victim
time to access the memory line. At the end of the slot, the adversary
reloads the memory line, measuring the time to load it. If the victim
accesses the memory line during the wait, the line will be available
in the cache and the reload operation will take a short time. If, on
the other hand, the victim has not accessed the memory line, the
line will need to be brought from memory and the reload will take
significantly longer. Figure 4 (A) and (B) show the timing of the
attack phases without and with victim access.

The length of the time slot determines the granularity of the at-
tack. The adversary cannot distinguish between multiple victim ac-
cesses to the probed memory line if they all occur within the same
time slot. Consequently, a shorter time slot allows for a higher at-
tack resolution. However, because the flush and reload operations
are not instantaneous, they pose a lower bound on the length of the
slot. This lower bound may be more significant when the adversary
needs to monitor multiple lines, in which case the slot cannot be
shorter than the time required for flushing and reloading all of the
probed memory lines.

Another factor that limits the slot size is the probability of miss-
ing a victim access due to overlap. In an asynchronous attack, the

Table 2: Number of missed accesses out of 10,000 tries for slot length (cycles)

Slot Missed Slot Missed Slot Missed Slot Missed Slot Missed
1,000 5,286 | 7,000 807 | 13,000 379 | 19,000 281 | 45,000 102
2,000 2,637 8,000 660 | 14,000 376 | 20,000 241 | 50,000 98
3,000 1,864 | 9,000 607 | 15,000 364 | 25,000 226 | 55,000 84
4,000 1,364 | 10,000 531 | 16,000 338 | 30,000 150 | 60,000 79
5,000 1,079 | 11,000 589 | 17,000 296 | 35,000 155 | 65,000 93
6,000 913 | 12,000 431 | 18,000 209 | 40,000 150 | 70,000 93

victim operates independently of the adversary. As such, victim ac-
cess to a memory location can occur at the same time the adversary
reloads the location to test if it is cached, depicted in Figure 5 (A).
In such a case, the victim access will not trigger a cache fill. In-
stead, the victim will use the cached data from the reload phase.
Consequently, the adversary will miss the access.

Victim

Adversary SN

(A)

Victim
Adversary NI
Adversary Victim

M Flush [Wait [l Reload E Access

(B)

\ [
I
[
.

[Something else

Figure 5: Overlap in FLUSH+RELOAD. (A) Total overlap (B)
Partial overlap

A similar scenario occurs when the reload operation partially
overlaps the victim access. In this case, depicted in Figure 5 (B),
the reload phase starts while the victim is waiting for the data. The
reload benefits from the victim access and terminates faster than if
the data has to be loaded from memory. However, the timing may
still be longer than a load from the cache. Whether the adversary
recognises a partial overlap as a read from the cache or from mem-
ory depends on the time difference between the start of the victim
access and the start of the adversary reload.

As we can see, there is a short overlap period that starts a bit
before the adversary probe and ends when the adversary evicts the
monitored line from the cache. Victim accesses to the monitored
cache line during the overlap period are missed by the adversary.
Because the victim access time is independent of the adversary
probe, we can expect that the probability of a miss would be the
ratio between the length of the overlap period and the interval be-
tween adversary probes.

To validate this expectation we measure the miss rate with dif-
ferent slot sizes. We run an adversary program that monitors a
memory line at a fixed rate. In parallel, we run a victim program
that accesses the monitored memory line 10,000 times, and count
how many of these 10,000 accesses our adversary misses. Table 2
summarises the results.

We can now multiply the miss rate by the length of the slot to
estimate the length of the overlap period. Figure 6 shows the esti-
mated overlap period for each slot length. We can see that with a
few outliers, due to noise, the estimated period is fairly stable. The
average estimated period is 530 cycles. Figure 7 shows the over-
lap probability for each slot length along with the calculated value
(530/slot).

A further aspect that affects the attack accuracy is operating sys-
tem activity. The operating system may suspend the adversary exe-
cution to handle some system activity, such as a network or a timer
interrupt. If the interruption is short enough to be wholly contained

700 T T T T T T
- 600 | 4
g
& 500 4
g
é 400 b
© 300} B
3
g 200} R
£
400 | 1
o ‘ ‘ ‘ ‘ ‘ ‘
0 10000 20000 30000 40000 50000 60000 70000
Wait interval (cycles)
Figure 6: Estimated length of the overlap period
Meastred x
z
£]
8
<)
g]
&
E 4
o

. X
0 10000 20000 30000 40000 50000 60000 70000
Slot Length (cycles)

Figure 7: Slot length and overlap probability

within a time slot, it will not affect the attack. If, however, the ad-
versary is interrupted for a longer period, the adversary loses the
ability to distinguish between and to order multiple events occur-
ring during the interruption.

In our experience, shorter interruptions of about 5,000 cycles are
quite common, occurring, on average, about 1,000 times per sec-
ond. Longer interruptions of about 30,000 cycles or 9 us occur at
a rate of 50 per second. Significantly longer interruptions are pos-
sible when the operating system suspends the adversary in order to
time-share the processor.

In summary, to achieve a high attack resolution, the adversary
needs to use a short time slot. However, the length of the probe
and the number of required probes present a lower limit on the
slot length and, consequently, an upper limit on the attack reso-
lution. Furthermore, the higher the attack resolution is the higher
the probability of an error due to missing a victim access or being
interrupted by the operating system is.

Several methods to overcome the large miss probability with
short time slots have been suggested. Yarom and Falkner [56] mon-
itor lines that are accessed in a loop. Their attack cannot distinguish
between multiple consecutive accesses to the same line, but it can
distinguish between periods of access and periods of no access to
the line. Benger et al. [3] and Van de Pol et al. [42] monitor mem-
ory lines that contain a call instruction. Such lines are accessed
twice, once before the call and once upon return. Depending on the
execution time of the called function, this approach can ensure that
at most one of the two accesses is missed.

While these techniques can reduce or eliminate the probability
of missing a victim access, they are not always applicable. In such
scenarios, slowing the victim down can increase the interval be-
tween victim accesses and allow reducing the miss probability by
using longer time slots. We describe such a scenario in the follow-
ing sections.

6. ATTACKING OPENSSL

6.1 ECDSA

The ElGamal Signature Scheme [9] is the basis of the US 1994
NIST standard, Digital Signature Algorithm (DSA). The ECDSA
is the adaptation of one step of the algorithm from the multiplica-
tive group of a finite field to the group of points on an elliptic curve.
The main benefit of using this group as opposed to the multiplica-
tive group of a finite field is that smaller parameters can be used
to achieve the same security level [24, 30] due to the fact that the
current best known algorithms to solve the discrete logarithm prob-
lem in the finite field are sub-exponential and those used to solve
the ECDLP are exponential — see Galbraith and Gaudry [11] and
Koblitz and Menezes [25, Sec. 2-3] for an overview of recent EC-
DLP developments.

Parameters: An elliptic curve E defined over a finite field Fy; a
point G € E of a large prime order n (generator of the group of
points of order n). Parameters chosen as such are generally be-
lieved to offer a security level of y/n given current knowledge and
technologies. Parameters are recommended to be generated follow-
ing the Digital Signature Standard [36]. The field size g is usually
taken to be a large odd prime or a power of 2. The implementation
of OpenSSL uses both prime fields and ¢ = 2™; the results in this
paper relate to the former case.

Public-Private Key pairs: The private key is an integer d, 1 < d <
n — 1 and the public key is the point Q = dG. Calculating the
private key from the public key requires solving the ECDLP, which
is known to be hard in practice for correctly chosen parameters.
Signing: Suppose Bob, with private-public key pair {dg, QB }, wi-
shes to send a signed message m to Alice. He follows the following
steps:

1. Using an approved hash algorithm, compute e = Hash(m),
take € to be the leftmost £ bits of e (where £ = min(log,(q),
bitlength of the hash)).

Randomly select 1 < k < n — 1.

Compute the point (z,y) = kG € E.

Take r = = mod n; if » = 0 then return to Step 2.

Compute s = k™' (€ + rdp) mod n; if s = 0 then return to
Step 2.

6. Bob sends (m, 7, s) to Alice.

DAE i

Verifying: The message m is not necessarily encrypted, the con-
tents may not be secret, but a valid signature gives Alice strong
evidence that the message was indeed sent by Bob. She verifies
that the message came from Bob by:

1. Checking that all received parameters are correct, that r, s €
[1,n — 1] and that Bob’s public key is valid, thatis @z # O
and Qp € F is of order n.

2. Using the same hash function and method as above, compute
e.

3. Compute 5 = s~ mod n.

4. Find the point (z,y) = e5G + r3Q 5.

5. Verify that » = z mod n otherwise reject the signature.

Step 2 of the signing algorithm is of vital importance — inap-
propriate reuse of the random integer led to the highly publicised

Input: Integer £ > 1, width w
Output: mNAF,, (k)

1+ 0

while k£ > 1 do

if k is odd then k; < k mods 2%, k < k — k;
else k; < 0

k<« k/2,i+i+1

end

ifk;_1 =1and k;—1_,, < O then
Kici—w ¢ kimi—w +2¥71
ki1 0,kio+1,1+1—1

end
return (k;—1,...,ko)

Figure 8: Generating modified Non-Adjacent Form for scalars.
Here mods takes residues from —(2*~* — 1) to 2%~ ! — 1.

breaking of Sony PS3 implementation of ECDSA'. Knowledge of
the random value k, a.k.a. the ephemeral key or the nonce, leads to
knowledge of the secret key. All values (m, r, s) can be observed
by an eavesdropper, & can be found from m, 7~ mod n can be
easily computed from n and 7, and if & is discovered then an ad-
versary can find Bob’s secret key through the simple calculation

dp = (sk —e)r "

Our attack targets Step 3 of OpenSSL’s ECDSA signing algo-
rithm.

6.2 ECC in OpenSSL

For ECDSA signing, the performance-critical component is
scalar multiplication (Step 3) that, for an ¢-bit integer k£ computes

£—1
kP = Z k:2'P
1=0

where k; denotes bit ¢ of k. Two key avenues for improving the
performance of this operation are using a low-weight representation
for the scalar, coupled with a scalar multiplication algorithm that
interleaves elliptic curve additions and doublings, both with a goal
of reducing the number of group operations. What follows is a
description of how OpenSSL carries out this computation.

Scalar representation: The fact that group element inversion is
cheap for elliptic curves makes signed representations for scalars
a viable option: “subtraction of points on an elliptic curve is
just as efficient as addition” [16, p. 98]. Generally, signed rep-
resentations reduce the amount of needed precomputation by a
factor of 2. A popular choice for ECC is Non-Adjacent Form
(NAF) that, with a window width w represents k using digit set
{0,41,43,...,4(2¥"* — 1)} with the property that all non-zero
digits are separated by at least w — 1 zeros, leading to lower av-
erage weight than other representations (e.g. binary). The mod-
ified version mNAF,, is otherwise the same but allows the most
significant digit to violate the non-adjacent property if doing so
decreases the length but keeps the same weight [32, Sec. 4.1]. It
does so by applying the map 10“7'§ 01025 if 6 < 0
where 6 = § + 2°~ in the most significant digits. Figure 8 illus-
trates the mNAF,, algorithm. See function bn_compute_wNAF in
crypto/bn/bn_intern.c for OpenSSL’s implementation of this

'http://arstechnica.com/gaming/2010/12/
ps3-hacked-through-poor-implementation-of-cryptography/

http://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/
http://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/

Input: Integer k > 1, P € E(F,), width w
Output: kP
(kg,1 e ko) <+ mNAF,, (k)
Precompute j P forall odd 0 < j < 2¥~*
Q < kg_lp
fori <+ {—2to0do
Q + 2Q
ifk; #0thenQ < Q + k; P
end
return

Figure 9: Left-to-right double-and-add scalar multiplication
with mNAF,, signed representation

procedure. Lastly, it is worth noting that the most significant digit
in NAF and mNAF,, for £ > 1 is guaranteed to be positive.
Scalar multiplication: In the absence of any curve-specific rou-
tines, for curves over [F,, OpenSSL implements interleaved scalar
multiplication by Méller [31, Sec. 3.2] — see scalar multiplication
function ec_wNAF_mul in crypto/ec/ec_mult.c for OpenSSL’s
implementation. While there are many paths through the code de-
pending on inputs [4, Sec. 2.2], this work assumes the case of a
single scalar input where no a priori precomputation structure is
available. For this case, the function execution simplifies to a text-
book left-to-right, double-and-add scalar multiplication routine —
see e.g. Hankerson et al. [16, p. 100]. Figure 9 illustrates the algo-
rithm that will perform ¢ point doublings and a number of point ad-
ditions equaling the number of non-zero digits (minus the first point
addition and plus the 2 =2 — 1 point additions for ad hoc precom-
putation). Since point) accumulates the partial scalar multiple, @
is termed the accumulator.

6.3 Attacking ECDSA

As mentioned, an attacker who knows the ephemeral key & used
for a single signature (m,r, s) can obtain the secret key dp from
a simple calculation. It turns out that knowing a few bits of the
nonces for sufficiently many signatures allows an attacker to obtain
the secret key as well. One option is to embed the information for
various signatures into a lattice such that the solution to a geometric
lattice problem corresponds to the secret key [19, 34, 35].

But how does the attacker obtain any information on the
ephemeral keys? As these keys are only used during the com-
putation, a natural approach is to obtain this information through
a side-channel attack. Unfortunately, using the side-channel de-
scribed above to attack the wNAF implementation of the scalar
multiplication does not directly reveal a fixed number of bits of
every ephemeral key. This is due to the fact that the side-channel
only reveals when the relevant operations take place, but in the case
of an addition it does not show which value is being added. Pre-
vious works obtain information on the ephemeral key &k from the
double and add chains in different ways.

L1 dcache targeting fixed lower bits: Brumley and Hakala [5] use
the fact that the number of doubles after the last addition in the
trace reveals an equal number of least significant bits of k: “From
the side channel perspective, consecutive doublings allow inference
of zero coefficients, and more than w point doublings reveals non-
trivial zero coefficients” [5, Sec. 3.2]. They target signatures and
traces that indicate a minimum of six zeros in the LSBs, in total
requiring 2600 signatures and corresponding traces to recover the
private key for curve secp160r1 with a lattice attack [5, Sec. 6].

LLC targeting variable lower bits: The numerous drawbacks of the

previous attack include (1) discarding on average 1 — 2% percent
of the traces; (2) limiting to SMT architectures like Intel’s HT; (3)
rather noisy traces from the L1 data cache. Benger et al. [3] tackle
all of these issues, while at the same time targeting the substantially
larger and relevant curve secp256k1: “Prior work fixes a minimum
value of [LSBs] and utilizes this single value in all equations ...If
we do this we would need to throw away [the majority] of the exe-
cutions obtained. By maintaining full generality ...we are able to
utilize all information at our disposal” [3, Sec. 4]. As each trace re-
veals a different number of LSBs of the ephemeral key, they adjust
the lattice problem accordingly and recover the private key with as
little as 200 signatures and corresponding traces. However, to re-
cover the private key with probability greater than 0.5, they require
approximately 300 signatures.

LLC targeting full traces: Subsequently, Van de Pol et al. [42] show
how to use roughly half of the double and add chain for group or-
ders of a special form, i.e., ¢ = 2" + & where |¢] < 2P forp < n.
It relies on the fact that the positions of adds in the chain reveal the
positions of non-zero wNAF digits in the representation of k. Two
adds are separated by at least w doubles, and every additional dou-
ble reveals that the corresponding bits of k are repeating. However,
a single bit of information is lost for every pair of consecutive non-
zero wNAF digits, because these repeating bits of & are either zero
or one depending on whether the second wNAF digit was positive
or negative. Note that this method requires perfect traces, because
each double is required to determine the bit position of the various
additions. Therefore, whenever a double is missed, the whole trace
preceding the missed double will produce inaccurate information,
causing the subsequent lattice attack to fail.

6.4 Point Inversion: A New Leak

An implementation of scalar multiplication in Figure 9 requires
accompanying control logic — in particular, to handle negative k;
digits. We observe the following trends in open source elliptic cu-
rve libraries for inverting points.

Invert on-the-fly: While the cost of elliptic curve point inversion
can vary depending on the coordinate system choice, for many
systems [, curves require only a finite field negation, i.e. flip-
ping the sign of the y-coordinate. In these cases, since point in-
version is so light many implementations opt for on-the-fly in-
version. That is, when k; < 0 compute Q = Q + —(kiP)
inverting k; P to a temporary variable immediately preceding the
point addition function call. For example, this is the approach
taken by Bitcoin’s libsecp256k1®. Scalar multiplication func-
tion secp256kl_ecmult in src/ecmult_impl.h calls macro
ECMULT_TABLE_GET_GE which, in the case of a negative digit, calls
secp256kl_ge_neg in src/group_impl.h to negate the point
operand. The advantage to this approach is that it requires marginal
additional storage overhead, and the disadvantage is that the algo-
rithm will eventually end up inverting the same point more than
once — duplicating a previously computed value.

Precompute inversions: As written, the precomputation table in
Figure 9 requires storing 2% ~2 points. Another strategy is to dou-
ble the size of the table and additionally store the inverses of the re-
quired points. Then for negative digits, compute @ := Q + (IQI)P
where k; is the table index for —k;. Normally this will be han-
dled in the NAF coding itself by yielding e.g. indices (0, 1,2, 3)
corresponding to digits (1,3,—3,—1). For example, this is the
approach taken by NSS® — see scalar multiplication function

Zhttps://github.com/bitcoin/secp256k1
*https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
NSS

https://github.com/bitcoin/secp256k1
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

ec_GFp_pt_mul_jm_wNAF in 1lib/freebl/ecl/ecp_jm.c. The
advantage of this approach is that each point is only inverted a sin-
gle time, and the disadvantage is that the required storage for the
precomputation table doubles.

Invert the accumulator: Similar to the invert on-the-fly approach
but without requiring a temporary point, another strategy is to track
the sign of the accumulator in a variable and invert the accumu-
lator as needed preceding point additions. That is, if the sign of
the accumulator matches the sign of the digit k; # 0, compute

Q = Q + |k;|P; otherwise Q := —Q + |k;| P, inverting the
accumulator before the point addition function call. Finally, af-
ter all digits are processed set () := —Q if the accumulator is

in the inverted state. For example, this is the approach taken by
OpenSSL — see scalar multiplication function ec_wNAF_mul in
crypto/ec/ec_mult.c that calls EC_POINT_invert if precisely
one of the following statements is true:

o the current (non-zero) digit is negative (variable is_neg);
e the accumulator is inverted (variable r_is_inverted).

All of the above approaches have potential side-channel issues
— e.g. point inversion function calls dependent on secret sign bits
or using secret digits as indices in memory-resident tables. We
focus on the invert the accumulator approach since OpenSSL im-
plements it. From the side-channel perspective, if we capture the
sequence of elliptic curve point doublings, additions, and inver-
sions for a particular £ we can recover the signs of all non-zero k;
digits as follows. Denote the n inversions by /5 ... I, forn > 1.
Note that n is always even since the accumulator (Q)) always starts
and ends in the non-inverted state, and (for completeness) that if
n = 0 then all digits are positive. The accumulator toggles to the
inverted state at /1, then back to the non-inverted state at I, and so
on — i.e. the accumulator enters the inverted state at I; for odd j
and non-inverted state for even j. Hence:

1. All the additions before I; correspond to positive digits.

2. For odd j, all the additions between /; and I; 1 correspond
to negative digits. This is due to the fact that the sign of the
accumulator agrees with the sign of the current digit for such
additions.

3. Similarly for even j, all the additions between I; and I
correspond to positive digits.

6.5 Exploiting the new leak

The improved side-channel described in this work allows us to
determine whether the wNAF digits are positive or negative. This
immediately gives one extra bit of information for each pair of con-
secutive adds in the top half of the double and add chain. Using the
notation of Van de Pol et al. [42], if there are two consecutive adds
at positions m and m + [for p < m < n — [we can write

l{: —a- 2m+l+1 + b . 2m+w + c,

where 0 < a < 2771 om=l < ¢ < ogmtw _ 9m=1 apd
b = 2!=% if the second wNAF digit is positive or b = 2/ =% — 1 if
it is negative.

Now, if we define t = (r/s) - 2" ™ "' mod q and u =
(b+1/2) - 2"t~ _(B/s) - 2"~ ™7 =1 mod g, it follows that
ldg -t — ulg < q/2'7**2, where |.|, is reduction mod ¢ into
the range [—q/2,¢q/2). Writing z = | — w + 1, each such triple
(t,u, z) provides z bits of information about the secret key d s, but
conversely increases the dimension of the closest vector problem in
the lattice by one.

Given d triples (¢;,ui, z;) such that v; = |dp - t; — wilq <
q/2% T, the secret key dp can now be obtained by constructing

the following lattice problem: define a basis

251tl g 271t 4y

22d+.1 “tq
1

2zd+1 . q

where the columns give rise to a lattice L. Now consider the vector
u = (2°11y;, ..., 2%y, 0) and how close it lies to this lattice
L. One lattice vector that is potentially close to u is Bx, where
x = (A1,...,Ad,dB), which means the difference vector is given
by

v=Bx—u
= (22 (dp - t1 — u1 + \1q),
27 (dp - tq — ua + Aaq), dB).

It is now possible to choose the coefficients A; such that the
ith element of the vector v has its elements within the range
[-2%1q,2% q), which implies that the difference vector is then
given by v = (2°1 "1y, ... 27Ty, dp). Due to the bounds
on the v; coefficients, the norm of this difference vector can be
b?;m%ed b)y g\/ d + 1, whereas the volume of the lattice is given by
old+o.; Zi)gd

From the above argument we expect that, as » ; i increases, the
vector Bx becomes more and more likely to be the closest lattice
vector to our target vector u. As a result, solving the closest vector
problem on L with target vector u reveals the vectors v and x,
both of which contain the key dp as its final coefficient. This can
be either solved through the embedding technique using a Shortest
Vector Problem (SVP) approximation algorithm or by solving the
Closest Vector Problem (CVP) directly with a CVP solver. For
more information, see Van de Pol et al. [42].

To balance the hardness of the lattice problem with the informa-
tion provided by the triples, we only used the 75 triples with the
highest z-values which results in a lattice dimension of 76.

Table 3 shows the result of this attack for a varying number of
signatures. It was implemented using the £p111 library* and exe-
cuted on a single core of an Intel E5620 processor. Thus, given six
error-free traces on different signatures allows an attacker to obtain
the secret key in more than half the cases.

Table 3: Attack results for a given number of signatures

Signatures | Time (s) [Prob
4 15.08 | 0.005
5 13.94 | 0.165
6 12.51 | 0.545
7 11.50 | 0.735
8 9.69 | 0.840

7. AMPLIFICATION ATTACK

In the previous section, we identified a new leak in the OpenSSL
implementation of ECDSA signing and analysed the leak under the
assumption that the adversary can obtain a perfect trace of the vic-
tim’s operations. In this section, we investigate the practical issues
of obtaining perfect traces. We first look at why error-free traces
are required for the attack. We proceed with describing how past
research used the FLUSH+RELOAD attack to achieve a high proba-
bility of obtaining perfect traces. We then explain why these tech-
niques are not sufficient when we want to capture inversions. We

“http://perso.ens-lyon.fr/damien.stehle

http://perso.ens-lyon.fr/damien.stehle

show that amplification allows us to overcome the limitations and
demonstrate how to use it to obtain perfect traces.

7.1 The need for perfect traces

Suppose that the adversary manages to obtain an almost-perfect
trace. That is, she knows the sequence of operations taken by the
victim with the exception of a single error that causes it to either
miss a double operation or add a spurious one. When inferring
the positions of the non-zero wNAF digits, the error will propagate
through the representation of the scalar, changing the position of
all digits to the left of the error, which are the positions we use for
the lattice attack. Consequently, the lattice attack will receive an
erroneous input and will fail to find the key. Similarly, if the trace
misses an inversion or contains a spurious one, the signs of any
digit above the error locations are incorrect.

Even if the adversary knows or suspects that an error has oc-
curred, correcting the error poses problems. If, for example, the
adversary notes that the time between two operations in the trace is
longer than expected, the adversary can suspect an error. However,
because the victim may have been suspended while the processor
executed some system function, the adversary cannot be certain that
an error occurred.

The adversary could try to use known properties of perfect traces
to identify and possibly correct errors in captured traces. However,
there is very little information that the adversary can use. In par-
ticular, the adversary does not know for certain the number and po-
sition of point addition operations. She can detect, but not correct,
errors like: (1) the number of point inversions must be even; (2)
at least w point doublings must separate point additions. Finally,
even though all the scalars used in the multiplication have the same
bit length (due to a timing attack [6] resulting in CVE-2011-1945),
the length of the wNAF representation may vary. For example, we
look at the numbers 228 and 229. The binary representations of
these is 11100100 and 11100101, i.e. both are 8 bit numbers. The
4-NAF representation of 228 is 1,0,0,0,0,0,—7,0,0. That is,
228 = 1-2% — 7. 22, The representation of 229 is 7,0,0,0,0,5
— 229 = 7.2 4+ 5. Hence, while the bit length of both num-
bers is 8, the length of their 4-NAF representations are 9 and 6.
Consequently, the number of double operations in the trace is not
fixed.

As we can see, the effects of errors in the trace are not localised,
errors are hard to detect, and are almost impossible to correct.
Combined with the sensitivity of the lattice attack to errors, every
small error in the captured trace significantly reduces the proba-
bility of attack success. In particular, unless the adversary can get
enough error free traces, she will not be able to apply the attack.

7.2 Obtaining perfect traces

Van de Pol et al. [42] attack the same implementation that we tar-
get. Unlike us, they do not try to trace the accumulator inversions,
focusing instead on add and double operations. They divide time
into slots of 1,200 cycles and probe memory lines within the func-
tions that implement the group add and group double operations.
As Section 5 demonstrates, with slots of 1,200 cycles the expected
miss rate is around 44%.

To reduce the miss probability, they choose memory lines that
contain a call to a field multiplication operation. As discussed
above, the victim accesses memory lines that contain a call twice;
once when executing the call and once when the call returns. Be-
cause these two accesses are related, their times are not indepen-
dent and the probability of missing each is not independent of each
other. Consequently, they manage to reduce the number of capture
errors to 1 in 1,000 group operations. With around 300 operations

in trace, the probability of capturing an error-free trace is 58%.

For our attack, we need to further trace accumulator inversions
along with group addition and double. While the group inversion
code contains a call instruction, we cannot probe the memory line
that contains it. The reason is that due to speculative execution, all
of the code up to the call instruction is prefetched into the cache,
even if the execution does not take the path. As a result, moni-
toring these memory lines would result in a large number of false
positives. Therefore, we have to monitor memory lines that follow
the call to the field negation, which do not contain additional call
instructions.

In our environment (OpenSSL 1.0.2a running on an HP Elite
8300 running CentOS 6.5 64 bit), add operations take on average
3,223 cycles and double operations take 3,427 cycles. As Benger
et al. [3] discuss, the maximum slot length we can use is about half
the length of the operations, or 1,600 cycles. With these time slots,
the probability of missing the victim access to the memory line in
the inversion code is about 33%. With such an error probability, and
an expected number of 25 inversions in each scalar multiplication,
the probability of capturing a perfect trace is less than 1/25,000,
which is way too low for a practical attack.

One possibility of reducing the miss probability when trac-
ing accumulator inversions is to monitor two memory lines
within the code. The scalar multiplication code in OpenSSL
invokes the generic elliptic curve point inversion function
EC_POINT_invert. The function invokes the curve-specific point
inversion function, which in the case of the secp256k1 curve is
ec_GFp_simple_invert. Said function invokes field subtraction
(BN_usub) to negate the y component of the point. By probing
the memory lines following the return of BN_usub and the return
of ec_GFp_simple_invert we get the same effect as probing a
memory line that contains a call instruction, with the adversary
missing at most one of these accesses.

While this approach guarantees that the adversary does not miss
accumulator inversions, it requires the adversary to monitor four
memory lines: one in each of the double and add functions and
two in the inversion functions. Each probe takes about 450 cycles,
so probing four memory lines takes 1,800 cycles. When we set
the slot size to 1,800 cycles, the traces loses accuracy because we
can no longer determine the order of some of the operations in the
sequence.

Increasing the slot length would allow us to consistently trace all
accumulator inversions, however the speed of calculating the group
addition and doubling limits the maximum slot length. To increase
the limit, we can try slowing the group operations down.

7.3 A performance-degradation
against OpenSSL

We use the performance-degradation attack to slow the group
operations down. We target the bn_mul_mont function, which im-
plements the field multiplication and square. We use one attacking
thread and check the effect of repeatedly evicting three memory
lines in the main loop of the function. Table 4 summarises the run
time of the add and the double operations under the attack. As we
can see, the attack slows the group add operation by a factor of 53
and the double operation by a factor of 41.

attack

Table 4: secp256k1 group operation times (cycles)

Add Double
No attack 2,892 3,086
Under attack | 153,709 126,282

With group operations taking over 100,000 cycles, we can safely
increase the slot size and monitor the four memory lines required
for obtaining the trace. We set the slot size to 17,000 cycles and
captured 1,000 traces. Comparing the traces to the ground truth we
find that only five of them show errors. Hence, our attack captures
error-free traces almost every time. We can now use these traces
with the lattice attack of Section 6, to break the long-term ECDSA
key of the victim after observing as few as six signatures.

Table 5 compares the results of this work with previous cache-
based attacks on OpenSSL ECDSA. As we can see, the attack re-
quires less than a quarter of the previous best attack. About half
of this improvement is due to exploiting the leak of point inversion
and the other half comes from the increased accuracy of observing
the side-channel. Employing the performance-degradation attack
to amplify the side-channel underpins both these improvements.

Table 5: OpenSSL ECC cache-timing attack results compared

Perfect Signa-
Curve Source traces tures
secp160rl | Brumley and Hakala [5] - 2600
secp256kl | Benger et al. [3] - 300
secp256k1 | Van de Pol et al. [42] 13 25
secp266k1 | This work 6 6

8. OTHER CIPHERS

We have demonstrated the utility of the performance-degradation
attack for amplifying the side-channel information leakage from
the OpenSSL implementation of elliptic curves over prime fields.
To demonstrate that the technique is likely to have more general
applications, we measure the slowdown we achieve with several
public-key ciphers.

Table 6 provides a short summary of the results. More detailed
results are available in Appendix A. As we can see, the attack is
effective in slowing down all of the tested implementations. We can
therefore use the attack to amplify side-channel leaks from these
implementations.

We should note that the performance-degradation attack re-
sults do not imply that the cipher implementations are vulnera-
ble to side-channel attacks. While we believe that most of the
tested implementations may leak information under certain circum-
stances, we do not claim that all of these leaks are exploitable.
Pereida et al. [41] use our performance-degradation technique for
their attack on OpenSSL DSA. We leave exploiting other leaks to
future work.

Table 6: Slowdown of cipher implementations

Library | Algorithm Slowdown
OpenSSL | Exponentiation 7-158
OpenSSL | EC Scalar Multiplication 7-63
libgerypt | Exponentiation 10-21
libgerypt | EC Scalar Multiplication 8-13

9. CONCLUSION

Typical performance-degradation attacks usually do not provide
any direct benefit to the attacker. Their main benefit is derived in-
directly, through the damage they cause to the victim. In this paper
we demonstrate that these attacks can offer tangible benefits to the
attacker—they can be used to amplify a side-channel, allowing the
attacker to receive more information through the channel than was
otherwise possible.

To demonstrate side-channel amplification, we first investigate
using cache evictions as a microarchitectural attack vector, showing
that is over 8 times more potent than previously published attacks.
We further identify a new information leak in the OpenSSL imple-
mentation of the ECDSA signature scheme. Lastly, we show how
using the performance-degradation attack to amplify a cache side
channel allows the attacker to exploit the information leak. Our
combined attack allows the adversary to completely cryptanalyse
the secp256k1 elliptic curve used in Bitcoin after observing the
side channel over only 6 signatures, less than a quarter of any prior
result.

Acknowledgements

We would like to thank Dr Naomi Benger for the useful discus-
sions, advice and support. We would also like to thank Camilla
Beck and Diclehan Erdal for performing some of the experiments
for this work.

Parts of this research were performed under contract to the De-
fence Science and Technology Group, Maritime Division, Aus-
tralia.

This research was supported in part by COST Action IC1306.

The second author was supported in part by TEKES grant
4681/31/2014 INKA EAKR Hardware Rooted Security.

The fourth author was supported in part by EPSRC via grant
EP/103126X.

References

[1] Onur Aciigmez, Billy Bob Brumley, and Philipp Grabher.
New results on instruction cache attacks. In CHES, Santa Bar-
bara, CA, US, 2010.

2

—

Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing
memory density by using KSM. In 2009 Ottawa Linux Symp.,
pages 19-28, Montreal, Quebec, Canada, Jul 2009.

[3

—

Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval
Yarom. “Ooh aah. .., just a little bit”: A small amount of side
channel can go a long way. In CHES, pages 75-92, Busan,
KR, Sep 2014.

[4

—

Billy Bob Brumley. Faster software for fast endomorphisms.
In 6th COSADE, pages 127-140, Berlin, DE, Apr 2015.

[5

—

Billy Bob Brumley and Risto M. Hakala. Cache-timing tem-
plate attacks. In 15th ASIACRYPT, pages 667-684, Tokyo, JP,
Dec 2009.

[6

—_

Billy Bob Brumley and Nicola Tuveri. Remote timing attacks
are still practical. In 16th ESORICS, Leuven, BE, 2011.

[7

—

Carlos Cardenas and Rajendra V Boppana. Detection and mit-
igation of performance attacks in multi-tenant cloud comput-
ing. In Ist International IBM Cloud Academy Conference,
Research Triangle Park, NC, US, 2012.

[8] Ron C. Chiang, Sundaresan Rajasekaran, Nan Zhang, and
H. Howie Huang. Swiper: Exploiting virtual machine vul-
nerability in third-party clouds with competition for I/O re-
sources. Trans. Parall. & Distr. Syst., 26(6):1732-1742, Jun
2015.

[9

—

Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In Advances in Cryp-
tology, Santa Barbara, CA, US, 1985.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Agner Fog. The microarchitecture of Intel, AMD and
VIA CPUs: An optimization guide for assembly program-
mers and compiler makers. http://www.agner.org/optimize/
microarchitecture.pdf, Aug 2014.

Steven D. Galbraith and Pierrick Gaudry. Recent progress on
the elliptic curve discrete logarithm problem. DCC, 78(1),
Jan 2016.

David Goldberg. What every computer scientist should know
about floating-point arithmetic. Comput. Surveys, 23(1):6-48,
Mar 1991.

Dirk Grunwald and Soraya Ghiasi. Microarchitectural denial
of service: Insuring microarchitectural fairness. In 35th MI-
CRO, pages 409418, Istanbul, TR, Nov 2002.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache
template attacks: Automating attacks on inclusive last-level
caches. In 24th USENIX Security, pages 897-912, Washing-
ton, DC, US, Aug 2015.

David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
games — bringing access-based cache attacks on AES to prac-
tice. In S&P, pages 490-505, Oakland, CA, US, 2011.

Darrel Hankerson, Alfred Menezes, and Scott Vanstone.
Guide to elliptic curve cryptography. Springer Professional
Computing. 2004.

Jahangir Hasan, Ankit Jalote, T. N. Vijaykumar, and Carla E.
Brodley. Heat stroke: Power-density-based denial of service
in SMT. In /i1th HPCA, pages 166—177, San Francisco, CA,
US, Feb 2005.

J.L. Henning. SPEC CPU2006 benchmark descriptions.
Comp. Arch. News, 34(4), Sep 2006.

Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks
on digital signature schemes. DCC, 23(3):283-290, Aug
2001.

Mehmet Sinan Inci, Berk Giilmezoglu, Gorka Irazoqui,
Thomas Eisenbarth, and Berk Sunar. Seriously, get off my
cloud! Cross-VM RSA key recovery in a public cloud. IACR
Cryptology ePrint Archive, Report 2015/898, Sep 2015.

Intel 64 & IA-32 AORM. Intel 64 and IA-32 Architectures
Optimization Reference Manual. Intel Corporation, Apr 2012.

Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. Wait a minute! a fast, cross-VM attack on AES.
In RAID, pages 299-319, Gothenburg, Sweden, Sep 2014.

Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. Lucky 13 strikes back. In ASIA CCS, pages
85-96, Singapore, Apr 2015.

Neal Koblitz. Elliptic curve cryptosystems. Mathematics

Comput., 48(177):203-209, Jan 1987.

Neal Koblitz and Alfred Menezes. A riddle wrapped in an
enigma. IACR Cryptology ePrint Archive, Report 2015/1018,
Nov 2015.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are practi-
cal. In S&P, pages 605-622, San Jose, CA, US, May 2015.

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald.
Successfully attacking masked AES hardware implementa-
tions. In CHES, pages 157-171, Edinburgh, UK, Aug 2005.

Jeanna Neefe Matthews, Wenjin Hu, Madhujith Ha-
puarachchi, Todd Deshane, Demetrius Dimatos, Gary Hamil-
ton, Michael McCabe, and James Owens. Quantifying the
performance isolation of virtualization systems. In WS Ex-
perimental Comp. Sci., San Diego, CA, US, Jun 2007.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neu-
mann, Olivier Heen, and Aurélien Francillon. Reverse engi-
neering Intel last-level cache complex addressing using per-
formance counters. In RAID, Kyoto, Japan, Nov 2015.

Victor S. Miller. Use of elliptic curves in cryptography. In
CRYPTO’85, pages 417-426, Santa Barbara, CA, US, Aug
1985.

Bodo Moller. Algorithms for multi-exponentiation. In SAC,
pages 165-180, Toronto, ON, CA, Aug 2001.

Bodo Moller. Improved techniques for fast exponentiation. In
Inform. Security & Cryptology, pages 298-302, Seoul, KR,
Nov 2002.

Thomas Moscibroda and Onur Mutlu. Memory performance
attacks: Denial of memory service in multi-core systems. In
16th USENIX Security, Boston, MA, US, 2007.

Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of
the digital signature algorithm with partially known nonces.
J. Cryptology, 15(2):151-176, Jun 2002.

Phong Q. Nguyen and Igor E. Shparlinski. The insecurity
of the elliptic curve digital signature algorithm with partially
known nonces. DCC, 30(2):201-217, Sep 2003.

NIST FIPS PUB 186-4. Digital Signature Standard (DSS).
NIST, 2013.

Siddika Berna Ors, Frank Giirkaynak, Elisabeth Oswald, and
Bart Preneel. Power-analysis attack on an ASIC AES im-
plementation. In ITCC 2004, volume 2, pages 546552, Las
Vegas, NV, US, Apr 2004.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks
and countermeasures: the case of AES. http://www.cs.tau.
ac.il/~tromer/papers/cache.pdf, Nov 2005.

Daniel Page. Practical Introduction to Computer Architec-
ture. Texts in Computer Science. 2009.

Colin Percival. Cache missing for fun and profit. In BSDCan
2005, Ottawa, CA, 2005.

César Pereida, Billy Bob Brumley, and Yuval Yarom. ‘“Make
sure DSA signing exponentiations really are constant-time”.
In 23rd CCS, Vienna, AT, Oct 2016.

Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little
bit more. In 2015 CT-RSA, pages 3-21, San Francisco, CA,
USA, Apr 2015.

Andre Richter, Christian Herber, Holm Rauchfuss, Thomas
Wild, and Andreas Herkersdorf. Performance isolation expo-
sure in virtualized platforms with PCI passthrough I/O shar-
ing. In Architecture of Computing Systems, pages 171-182.
2014.

http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf
http://www.cs.tau.ac.il/~tromer/papers/cache.pdf
http://www.cs.tau.ac.il/~tromer/papers/cache.pdf

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Ste-
fan Savage. Hey, you, get off of my cloud: Exploring infor-
mation leakage in third-party compute clouds. In /6th CCS,
pages 199-212, Chicago, IL, US, 2009.

Vineet Sinha, David Karger, and Rob Miller. Relo: Helping
users manage context during interactive exploratory visual-
ization of large codebases. In OOPSLA Workshop on Eclipse
Technology eXchange (ETX), pages 21-25, San Diego, CA,
US, Oct 2005.

Kuniyasu Suzaki, Kengo lijima, Toshiki Yagi, and Cyrille
Artho. Memory deduplication as a threat to the guest OS.
In 4th European Workshop on System Security, Salzburg, AT,
2011.

Augustus K. Uht and Vijay Sindagi. Disjoint eager execution:
An optimal form of speculative execution. In 28th MICRO,
pages 313-325, Nov 1995.

Venkatanathan Varadarajan, Thawan Kooburat, Benjamin
Farley, Thomas Ristenpart, and Michael M Swift. Resource-
freeing attacks: improve your cloud performance (at your
neighbor’s expense). In 719th CCS, Raleigh, NC, US, 2012.

Carl A. Waldspurger. Memory resource management in
VMware ESX server. In 5th OSDI, Boston, MA, US, 2002.

Colin D. Walter. Longer keys may facilitate side channel at-
tacks. In SAC, pages 42-57, Waterloo, ON, Canda, Aug 2004.

Chuliang Weng, Jianfeng Zhan, and Yuan Luo. TSAC: En-
forcing isolation of virtual machines in clouds. Trans. Com-
puters, 64(5):1470-1482, May 2015.

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

Dong Hyuk Woo and Hsien-Hsin S. Lee. Analyzing perfor-
mance vulnerability due to resource denial of service attack
on chip multiprocessors. In WS Chip Multiprocessor Memory
Syst. & Interconnects, Phoenix, AZ, US, 2007.

Carole-Jean Wu and Margaret Martonosi. Characterization
and dynamic mitigation of intra-application cache interfer-
ence. In Int. Symp. Performance Analysis Syst. & Softw., IS-
PASS 11, Austin, TX, US, 2011.

Tianni Xu, Xiufeng Sui, Zhicheng Yao, Jiuyue Ma, Bao Yun-
gang, and Lixin Zhang. Rethinking virtual machine interfer-
ence in the era of cloud applications. In /5th HPCC, pages
190-197, Zhangjiajie, Hunan, China, Nov 2013.

Yuval Yarom and Naomi Benger. Recovering OpenSSL EC-
DSA nonces using the FLUSH+RELOAD cache side-channel
attack. IACR Cryptology ePrint Archive, Report 2014/140,
Feb 2014.

Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a high
resolution, low noise, L3 cache side-channel attack. In 23rd
USENIX Security, pages 719-732, San Diego, CA, US, 2014.

Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee,
and Gernot Heiser. Mapping the Intel last-level cache.
http://eprint.iacr.org/, Sep 2015.

Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-VM side channels and their use to extract
private keys. In 19th CCS, pages 305-316, Raleigh, NC, US,
Oct 2012.

Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-Tenant side-channel attacks in PaaS clouds.
In 21st CCS, Scottsdale, AZ, US, 2014.

Table 7: Performance-degradation attack on OpenSSL and libgcrypt

Library | Algorithm Details Operation | Normal | Degraded | Slowdown
Constant-time exponentiation 1024 b?ts power-5 7161 128650 18.0
2048 bits power-5 26215 653372 24.9
512 bits Square 391 2773 7.1
512 bits Multiply 437 37182 85.1
Sliding-window exponentiation 1024 bits Square 1181 19284 16.3
1024 bits Multiply 1520 186342 122.6
2048 bits Square 4129 129787 314
2048 bits Multiply 5849 921943 157.6
secpli2ril Double 1905 13917 7.3
secpli2ril Add 1770 18338 10.4
OpenSSL ECC over prime fields secp256k1 Double 3086 | 126282 40.9
secp256k1 Add 2892 153709 53.1
secp521rl Double 6830 428443 62.7
secp521rl Add 8065 579372 71.8
sect113ril Double 1303 26987 20.7
sect113ri Add 1206 22553 18.7
. sect283ril Double 3177 84887 26.7
ECC over binary fields sect283r1 Add 3402 71571 21.0
sect571k1 Double 5096 150070 29.4
sect571kl Add 7353 151913 20.7
512 bits Multiply 1365 28996 21.2
Modular exponentiation 1024 bits Multiply 3813 59568 15.6
2048 bits Multiply 11150 110420 9.9
brainpoolP160r1 | Double 13144 111155 8.5
brainpoolP160r1 | Add 18530 147401 8.0
libgerypt Ed25519 Double 10164 90945 8.9
Elliptic curves Ed25519 Add 14746 143850 9.8
secp256r1 Double 9342 94603 10.1
secp256r1 Add 16401 156736 9.6
secp521rl Double 22797 288595 12.7
secp521ri Add 39737 499954 12.3
APPENDIX tacked and when not attacked.

A. CIPHER SLOWDOWN RESULTS

Table 7 shows the effect of our performance-degradation at-
tack on the core operations in multiple implementations of public-
key primitives. We look at two popular cryptographic libraries:
OpenSSL version 1.0.2h and libgerypt version 1.6.4.

We time the individual operations used during modular exponen-
tiation and during elliptic curves scalar multiplications. For all of
the attacks we used a single attacking thread, evicting code lines
within the inner loops of the targeted operations. For each of the
operations we show the average time to complete both when at-

As the data demonstrates, the attack is effective at slowing the
operations down, achieving a slowdown factor of between 7 and
157. With this level of amplification potential vulnerabilities in the
implementations may become easier to exploit.

We note that in the majority of cases, the larger the security pa-
rameters are, the more effective the performance-degradation at-
tack is. The reason for that is that the time complexity of the tar-
geted code is often quadratic in the size of the input. Consequently,
as the input size increases, the relative proportion of the targeted
code in the operation increases and the slowdown is more notice-
able.

	Introduction
	Background
	The Memory Hierarchy
	The Flush+Reload Attack
	Related Work

	Threat Model
	A Performance Degradation Attack
	Limitations of the Flush+Reload Attack
	Attacking OpenSSL
	ECDSA
	ECC in OpenSSL
	Attacking ECDSA
	Point Inversion: A New Leak
	Exploiting the new leak

	Amplification Attack
	The need for perfect traces
	Obtaining perfect traces
	A performance-degradation attack against OpenSSL

	Other Ciphers
	Conclusion
	Cipher slowdown results

