
 1

Web Services Context Specification 2

3

4

5

6

7
8
9

10

11
12
13
14

15
16
17
18

19
20

21
22
23
24
25

26
27
28
29
30

31
32
33

(WS-Context) Version 1.0
OASIS Standard

2 April 2007

Specification URIs:

This Version:
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.pdf
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.doc

Previous Version:
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/CS01/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/CS01/wsctx.pdf
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/CS01/wsctx.doc

Latest Version:
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.pdf
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.doc

Technical Committee:
OASIS Web Services Composite Application Framework (WS-CAF) TC

Chair(s):
Eric Newcomer (eric.newcomer@iona.com)
Martin Chapman (martin.chapman@oracle.com)
Mark Little (mark.little@jboss.com)

Editor(s):
Mark Little (mark.little@jboss.com)
Eric Newcomer (eric.newcomer@iona.com)
Greg Pavlik (greg.pavlik@oracle.com)

Related work:
This specification is related to:

• WS-Coordination Framework (part of OASIS WS-CAF)

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 1 of 26

http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.pdf
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.doc
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/CS01/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/CS01/wsctx.pdf
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/CS01/wsctx.doc
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.pdf
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.doc
http://www.oasis-open.org/committees/ws-caf/
mailto:eric.newcomer@iona.com
mailto:martin.chapman@oracle.com
mailto:mark.little@jboss.com
mailto:mark.little@jboss.com
mailto:eric.newcomer@iona.com
mailto:greg.pavlik@oracle.com

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 2 of 26

34

35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67

• WS-Transaction Management (part of OASIS WS-CAF)

Declared XML Namespace(s):
http://docs.oasis-open.org/ws-caf/2005/10/wsctx

Status
This document was last revised or approved by the OASIS Web Services Composite Application
Framework (WS-CAF) TC on the above date. The level of approval is also listed above. Check
the current location noted above for possible later revisions of this document. This document is
updated periodically on no particular schedule.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/ws-caf/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/ws-caf/ipr.php).
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/ws-caf/.

Abstract
Web services exchange XML documents with structured payloads. The processing semantics of
an execution endpoint may be influenced by additional information that is defined at layers below
the application protocol. When multiple Web services are used in combination, the ability to
structure execution related data called context becomes important. This information is typically
communicated via SOAP Headers. WS-Context provides a definition, a structuring mechanism,
and service definitions for organizing and sharing context across multiple execution endpoints.
The ability to compose arbitrary units of work is a requirement in a variety of aspects of
distributed applications such as workflow and business-to-business interactions. By composing
work, we mean that it is possible for participants in an activity to be able to determine
unambiguously whether or not they are participating in the same activity.
An activity is the execution of multiple Web services composed using some mechanism external
to this specification, such as an orchestration or choreography. A common mechanism is needed
to capture and manage contextual execution environment data shared, typically persistently,
across execution instances.

http://docs.oasis-open.org/ws-caf/2005/10/wsctx
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/ipr.php
http://www.oasis-open.org/committees/ws-caf/ipr.php
http://www.oasis-open.org/committees/ws-caf/
http://www.oasis-open.org/committees/ws-caf/

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 3 of 26

Notices 68

69
70
71
72
73
74
75
76

77
78
79

80

81
82
83
84
85
86
87
88

89
90

91
92
93
94

95
96
97
98
99

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS® 1993–2007. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The names "OASIS", WS-Context and WS-CAF are trademarks of OASIS, the owner and developer of
this specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 4 of 26

Table of contents 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

1 Note on terminology..6
1.1 Namespace...6

1.1.1 Prefix Namespace ...6
1.2 Referencing Specifications ...6
1.3 Precedence of schema and WSDL ..6

2 Architecture...7
2.1 Invocation of Service Operations..7
2.2 Relationship to WSDL...8
2.3 Referencing and addressing conventions ..8

3 Context..10
3.1 Activities..11
3.2 Context information and SOAP ..12

4 Context Manager ..14
5 Context Service ..16

5.1 Status..16
5.2 Context Service messages...16

begin...17
complete ...18
getStatus ..18
setTimeout..18
getTimeout..19
5.2.1 WS-Context Faults ..19
Unknown Context ...19
Invalid Context..19
No Context..19
Invalid State..20
Invalid Context Structure ..20
Timeout Not Supported ..20
Parent Activity Completed ..20
No Permission ..20
Child Activity Pending...20
Status Unknown ...21
No Statuses Defined...21
Unknown Activity ..21

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 5 of 26

135

136

137

138

139

140

Invalid Protocol ...21
5.2.2 Message exchanges ...21

6 Security Considerations..23
7 Conformance considerations ..24
8 Normative References ..25
Appendix A. Acknowledgements ..26

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 6 of 26

1 Note on terminology 141

142
143
144

145
146

148

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC2119 [2].

Namespace URIs of the general form http://example.org and http://example.com represents some
application-dependent or context-dependent URI as defined in RFC 2396 [3].

1.1 Namespace 147

The XML namespace URI that MUST be used by implementations of this specification is:

http://docs.oasis-open.org/ws-caf/2005/10/wsctx 149

1.1.1 Prefix Namespace 150

Prefix Namespace

wsctx http://docs.oasis-open.org/ws-caf/2005/10/wsctx

ref http://docs.oasis-open.org/wsrm/2004/06/reference-1.1

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

wsrm http://docs.oasis-open.org/wsrm/2004/06/reference-1.1.xsd

soap http://schemas.xmlsoap.org/wsdl/soap/

tns http://docs.oasis-open.org/ws-caf/2005/10/wsctx

1.2 Referencing Specifications 151

One or more other specifications, such as (but not limited to) WS-Coordination Framework may reference
the WS-Context specification. The usage of optional items in WS-Context is typically determined by the
requirements of such as referencing specification.

152
153
154

155
156
157
158

160
161
162

Referencing specifications are generally used to construct concrete protocols based on WS-Context. Any
application that uses WS-Context must also decide what optional features are required. For the purpose
of this document, the term referencing specification covers both formal specifications and more general
applications that use WS-Context.

1.3 Precedence of schema and WSDL 159

Throughout this specification, WSDL and schema elements may be used for illustrative or convenience
purposes. However, in a situation where those elements within this document differ from the separate
WS-Context WSDL or schema files, it is those files that have precedence and not this specification.

http://example.org/
http://example.com/

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 7 of 26

2 Architecture 163

An activity represents the execution of a series of related interactions with a set of Web Services; these
interactions are related via context. An activity is a conceptual grouping of services cooperating to
perform some work; a context is the concrete manner in which this grouping occurs. The notion of an
activity is used to scope application specific work. The definition of precisely what an activity is and what
services it will require in order to perform that work, will depend upon the execution environment and
application in which it is used.

164
165
166
167
168
169

170
171
172
173
174
175

176
177
178
179
180

181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196

198
199

200
201
202

203
204
205
206

Context contains information about the execution environment of an activity that supplements information
in application payloads. Management of the basic context type is facilitated by services defined in this
specification. The specification also provides service interfaces for managing session-oriented protocols
and representing the corresponding activities with contexts. The overall architecture of the context is
hierarchical and decomposable, e.g., it is possible to use the context structure without reference to any
activity model.

The first element of the WS-Context specification is the context structure. The context structure defines a
normal model for organizing context information. It supports nesting structures (parent-child relationships)
for related contexts, and mechanisms to pass context information by reference or by value. A single
context type is not sufficient for all applications; it must be extensible in a manner specific to a referencing
specification and Web services must be able to augment the context, as they require.

WS-Context defines a Context Service for the management of activity contexts. The Context Service
defines the scope of an activity and how information about it (the context) can be referenced and
propagated in a distributed environment. The Context Service uses context to express basic information
about the activity. The context is identified using a URI. The context contains information necessary for
multiple Web services to be associated with the same activity. This information MAY be augmented when
the context is created (by implementations of referencing specifications), or dynamically by application
services as they send and receive contexts. Activities are represented by the Context Service, which
maintains a repository of shared contexts. Whenever messages are exchanged within the scope of an
activity, the Context Service can supply the associated context that MAY then be propagated with those
messages.

Contexts MAY be passed by value (all of the information required to use the context is present in the data
structure) or MAY be passed by reference (only a subset of the information is present in the data
structure and the rest must be obtained by the receiving service). In order to support pass-by-reference,
WS-Context defines an optional Context Manager Service that can be interrogated by a recipient of a
reference context to obtain the contents of the context. This Context Manager Service MAY be the same
as the Context Service, but there is no requirement for this within WS-Context.

2.1 Invocation of Service Operations 197

How application services are invoked is outside the scope of this specification: they MAY use
synchronous or asynchronous message passing.

Irrespective of how remote invocations occur, context information related to the sender’s activity needs to
be referenced or propagated. This specification determines the format of the context, how it is referenced,
and how a context may be created.

In order to support both synchronous and asynchronous interactions, the components are described in
terms of the behavior and the interactions that occur between them. All interactions are described in
terms of correlated messages, which a referencing specification MAY abstract at a higher level into
request/response pairs.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 8 of 26

207
208
209
210
211
212
213
214

215
216
217
218
219

220
221
222

224
225
226
227

228
229
230
231

232
233

235
236
237
238
239
240
241
242
243
244

Faults and errors that may occur when a service is invoked are communicated back to other Web
services in the activity via SOAP messages that are part of the standard protocol. To achieve this, the
fault mechanism of the underlying SOAP-based transport is used. For example, if an operation fails
because no activity is present when one is required, then the callback interface will receive a SOAP fault
including type of the fault and additional implementation specific information items supported the SOAP
fault definition. WS-Context specific fault types are described for each operation. A fault type is
communicated as an XML QName; the prefix consists of the WS-Context namespace and the local part is
the fault name listed in the operation description.

As long as implementations ensure that the on-the-wire message formats are compliant with those
defined in this specification, how the end-points are implemented and how they expose the various
operations (e.g., via WSDL [1]) is not mandated by this specification. However, a normative WSDL 1.1
binding is provided by default in this specification. A binding to WSDL 2.0 will be considered once that
standard becomes more generally available and supported.

Note, this specification does not assume that a reliable message delivery mechanism has
to be used for message interactions. As such, it MAY be implementation dependant as to
what action is taken if a message is not delivered or no response is received.

2.2 Relationship to WSDL 223

Where WSDL is used in this specification it uses one-way messages with callbacks. This is the normative
style. Other binding styles are possible (perhaps defined by referencing specifications), although they
may have different acknowledgment styles and delivery mechanisms. It is beyond the scope of WS-
Context to define these styles.

Note, conformant implementations MUST conform to the normative WSDL defined in the
specification where those respective components are supported. Conformance with
WSDL for optional components in the specification is REQUIRED only in the cases
where the respective components are supported.

For clarity WSDL is shown in an abbreviated form in the main body of the document: only portTypes are
illustrated; a default binding to SOAP 1.1-over-HTTP is also defined as per [1].

2.3 Referencing and addressing conventions 234

There are multiple mechanisms for addressing messages and referencing Web services currently
proposed by the Web services community. This specification defers the rules for addressing SOAP
messages to existing specifications; the addressing information is assumed to be placed in SOAP
headers and respect the normative rules required by existing specifications.

However, the Context message set requires an interoperable mechanism for referencing Web Services.
For example, context structures may reference the service that is used to manage the content of the
context. To support this requirement, WS-Context has adopted an open content model for service
references as defined by the Web Services Reliable Messaging Technical Committee [5]. The schema is
defined in [6][7] and is shown in Figure 1.

 <xsd:complexType name="ServiceRefType"> 245
 <xsd:sequence> 246
 <xsd:any namespace="##other" processContents="lax"/> 247
 </xsd:sequence> 248
 <xsd:attribute name="reference-scheme" type="xsd:anyURI" 249
 use="optional"/> 250
 </xsd:complexType> 251

252 Figure 1, ServiceRefType.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 9 of 26

253 The ServiceRefType is extended by elements of the context structure as shown in Figure 2.

<xsd:element name=”context-manager” type=”ref:ServiceRefType”/> 254

255

256
257
258
259
260
261

262
263
264

Figure 2, ServiceRefType example.

Within the ServiceRefType, the reference-scheme is the namespace URI for the referenced addressing
specification. For example, if using WS-MessageDelivery specification [4] the value would be
http://www.w3.org/2004/04/ws-messagedelivery. If using the WS-Addressing specification [8] then the
value would be http://schemas.xmlsoap.org/ws/2004/08/addressing. The reference scheme is optional
and need only be used if the namespace URI of the QName of the Web service reference cannot be used
to unambiguously identify the addressing specification in which it is defined.

The contents of the xsd:any element contain a service reference as defined by the referenced
addressing specification. For example, a reference to a Context Manager Service may appear as shown
in Figure 3, where ex is an example namespace.

<wsdl:service name="MyContextManager" 265
 wsmd:portType="wsctx:ContextManagerPortType"> 266
 <wsdl:port name="myCtxPort" binding="ex:ctxServiceBinding"> 267
 <soapbind:address 268
 location="http://example.com/wsdl-example1/impl"/> 269
 </wsdl:port> 270
</wsdl:service> 271

272

273
274

Figure 3, Web Service reference to a Context Manager service.

Figure 4 illustrates how an element derived from the ServiceRefType can be used as a container for a
Web Service reference.

<wsctx:context-manager 275
 reference-scheme="http://www.w3.org/2004/04/ws-messagedelivery"> 276
 <wsdl:service name="MyContextService" 277
 wsmd:portType="wsctx:ContextManagerPortType"> 278
 <wsdl:port name="myCtxPort" binding="ex:ctxServiceBinding"> 279
 <soapbind:address 280
 location="http://example.com/wsdl-example1/impl"/> 281
 </wsdl:port> 282
 </wsdl:service> 283
</wsctx:context-manager> 284

285

286
287
288
289

290
291
292
293

294
295
296
297

298
299
300

Figure 4, example of a service-ref element

Messages sent to referenced services MUST use the addressing scheme defined by the specification
indicated by the value of the reference-scheme element if present. Otherwise, the namespace URI
associated with the Web service reference element MUST be used to determine the required addressing
scheme.

Note, it is assumed that the addressing mechanism used by a given implementation
supports a reply-to or sender field on each received message so that any required
responses can be sent to a suitable response endpoint. This specification requires such
support and does not define how responses are handled.

To preserve interoperability in deployments that contain multiple addressing schemes, there are no
restrictions on a system, beyond those of the composite services themselves. However, it is
RECOMMENDED where possible that composite applications confine themselves to the use of single
addressing and reference model.

Because the prescriptive interaction pattern used by WS-Context is based on one-way messages with
callbacks, it is possible that an endpoint may receive an unsolicited or unexpected message. The
recipient is free to do whatever it wants with such messages.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 10 of 26

3 Context 301

Context is used to include protocol specific data for transmission, typically (though not exclusively) in
SOAP headers. The basic context structure is shown in

302
303

304
305

Figure 5.

Referencing specifications extend the wsctx:ContextType both to identify the specific protocol type and
extend the basic context structure to include protocol specific elements and attributes.

<xsd:complexType name="ContextType"> 306
 <xsd:sequence> 307
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 308
 maxOccurs="unbounded"/> 309
 <xsd:element name="context-identifier" 310
 type=" tns:contextIdentifierType"/> 311
 <xsd:element name="context-service" type="ref:ServiceRefType" 312
 minOccurs="0"/> 313
 <xsd:element name=”context-manager” type=”ref:ServiceRefType” 314
 minOccurs=”0”/> 315
 <xsd:element name="parent-context" type=”tns:ContextType” 316
 minOccurs="0"> 317
 </xsd:sequence> 318
 <xsd:attribute name="expiresAt" type="xsd:dateTime" 319
 use="optional"/> 320
 <xsd:attribute ref=”wsu:Id” use=”optional”/> 321
</xsd:complexType> 322

323

324
325

326

328
329
330

332

334
335
336

338

340
341
342
343
344
345

Figure 5, Context Service Context.

The context structure reflects some linear portion of a potentially tree-like relationship between contexts
of the same type from the leaf to the root.

The context consists of the following items:

• A mandatory wsctx:contextIdentifierType called wsctx:context-identifier. This identifier can be 327
thought of as a “correlation” identifier or a value that is used to indicate that a Web service is part of
the same activity. The wsctx:contextIdentifierType is a URI with an optional wsu:Id attribute. It
MUST be unique.

• An OPTIONAL wsctx:ServiceRefType element, wsctx:context-service, which identifies the issuing 331
authority responsible for generating the context.

• An OPTIONAL wsctx:context-manager wsctx:ServiceRefType to get data associated with a 333
context-identifier that resolves to a reference to a Context Manager Web service. The presence of
this endpoint is REQUIRED if the context has been passed by reference and it MAY be used to
obtain the full value of the context later. It SHOULD NOT be present if the context is passed by value.

• An OPTIONAL wsctx:parent-context element containing some portion of the current context’s 337
parent hierarchy.

• An OPTIONAL wsctx:expiresAt attribute, which indicates the date and time at which the context 339
information expires; after this time, the context is considered to be invalid. A context is determined to
be valid by its issuing authority. For example, the WS-Context specification defines an issuing
authority called the Context Service. The wsctx:expiresAt attribute allows the issuing authority
implementation to invalidate contexts automatically rather than have them remain valid forever. It is
implementation dependant as to the interpretation of a context with no specified wsctx:expiresAt
value.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 11 of 26

347

349
350

351
352
353

• An OPTIONAL wsu:Id attribute, which may be used to support signing or encrypting the context 346
structure.

• The context MAY contain information from an arbitrary number of augmenter services. The context 348
structure is extended via the extensibility xsd:any element present in the schema for the
wsctx:ContextType.

Context propagation is possible using different protocols than those used by the application, as shown in
Figure 6. The WS-Context specification does not assume a specific means by which contexts are
associated with application messages, leaving this up to the referencing specification.

Application

Service

Message
+

Context

Compose Decompose
Message Message

Context Context
Service

Server

Interceptor Interceptor

 354

355

356
357
358
359
360
361
362

363
364

365
366
367
368

369
370
371

372
373
374
375

377
378
379

Figure 6, Services and context flow.

If a context is present on a received message and it contains a context-manager element then that
element MAY be used by the recipient to dereference the context. By dereference we simply mean use
the context-manager Web service to obtain the context. Any other information present in the received
context at this point CANNOT be assumed to represent the current or entire contents of the context. If the
context-manager is dereferenced, it SHOULD return the entire current contents of the context, i.e. the
values corresponding to the context’s wsctx:ContextType elements held by the context service at the
point of receiving the dereference message.

Note, the ability of the context manager to return the context by value MAY be restricted
by security considerations, e.g., if the invoker does not have the right privileges.

At a minimum, a context that is propagated by reference need only contain the wsctx:context-identifier
and wsctx:context-manager elements. A context that is always propagated by value SHOULD NOT
contain a wsctx:context-manager element. The endpoint should return a SOAP fault with the fault code
set to the QName corresponding to wsctx:InvalidContextStructure.

Note, if a referencing specification allows a context passed by reference to be updated at
the context-manager, then a service that maintains a copy of a context which is passed
by reference CANNOT assume that the cached copy is current.

The choice of whether to transmit a full or abbreviated context is left to the sender of the context. It is
however expected that when dealing with large context elements that by-reference form will be used for
efficiency. A sender who wishes to switch between full and abbreviated has the responsibility for ensuring
that the dereferencing capability is available.

3.1 Activities 376

As mentioned in Section 2, an activity is defined as a collection of Web service operation invocations
performed within a valid context. An activity is created, runs, and then completes. An outcome is the
result of a completed activity. The expected semantics of a web service within an activity are defined by

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 12 of 26

380
381

382
383
384
385
386

387
388
389
390
391

392
393
394
395

396
397
398

399
400
401

403
404
405
406
407
408
409

specifications derived from WS-Context. These semantics are indicated by the XML QName of the
derived context type. The activity itself is uniquely identified by a context-identifier element.

In a system, there may be a set of contexts C associated with an activity. There will typically be multiple
contexts because context data structures may be copied by value from service to service and may be
augmented to include data that is valid to the local execution environment. The contexts in C are not
equivalent: each may reflect one service's view of the activity at a point in time. The initial context created
for a specific activity is the base from which all other contexts may be derived.

A context is associated with one and only one activity; "compound" activity contexts do not exist, although
nesting of activities MAY be supported. The set of operations represented by A may be used to define
more than one activity; for example, the operations in A may include a context for a security protocol and
a context for a transaction protocol, each representing a separate activity. As a result, a SOAP header
MAY contain multiple context data structures (wsctx:ContextType) representing different activities.

A Web service that performs an operation within an invalid context creates an invalid activity. It is up to
the specifications using WS-Context to determine the implications of invalid activities (which may vary
from insignificant or severe) and provide mechanisms that avoid operation execution in the context of
invalid activities if necessary.

Activities MAY be nested. If an activity is nested, then the global context MAY contain a hierarchy
representing the activity structure. Each element in the context hierarchy MAY also possess a different
wsctx:context-identifier.

A referencing specification or implementation MAY use the wsctx:InvalidContextStructure fault code to
indicate that a service has received a context structure that is invalid in a way defined by that referencing
specification.

3.2 Context information and SOAP 402

Where messages (either application messages, or WS-Context protocol messages themselves) require
contextualization, the context is transported in a SOAP header block. Referencing specifications
determine if WS-Context actors must understand contexts that arrive in SOAP header blocks. In the
example shown in Figure 7, the context propagated with application messages must be understood by
their recipients. Hence in this case each SOAP header block carrying a context has the “mustUnderstand”
attribute set to “true” (“1”) and the recipient must understand the header block encoding according to its
QName.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 13 of 26

<?xml version="1.0" encoding="UTF-8"?> 410
<soap:Envelope xmlns:soap="http://www.w3.org/2002/06/soap-envelope"> 411
 <soap:Header> 412
 <example:context 413
 xmlns="http://docs.oasis-open.org/ws-caf/2005/10/wsctx" 414
 expiresAt="2005-04-26T22:50:00+01:00" 415
 xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/” 416
 xmlns:soapbind=”http://schemas.xmlsoap.org/wsdl/soap/” 417
 xmlns:example=”http://example.com/context/” 418
 soap:mustUnderstand="1"> 419
 <context-identifier> 420
 http://docs.oasis-open.org/ws-caf/2005/10/wsctx/abcdef:012345 421
 </context-identifier> 422
 <context-service> 423
 <example:address> 424
 http://example.org/wsctx/service 425
 </example:address> 426
 </context-service> 427

 <parent-context expiresAt="2005-04-27T22:50:00+01:00"> 428
 <context-identifier> 429
 http://example.org/5e4f2218b 430
 </context-identifier> 431
 <context-service> 432
 <example:address> 433
 http://example.org/wsctx/service 434
 </example:address> 435

 </context-service> 436
 </parent-context> 437
 </example:context> 438
 </soap:Header> 439
 <soap:Body> 440
 <!-- Application Payload --> 441
 </soap:Body> 442
</soap:Envelope> 443

444 Figure 7, Context Transported in a SOAP Header Block.

http://example.org/wsctx/service
http://example.org/wsctx/service

4 Context Manager 445

As described in Section 3, a context MAY be passed by reference or by value. If the context is passed by
reference, then a receiver may eventually require the context’s value information. WS-Context defines the
Context Manager, which allows applications to retrieve and set data associated with a context. The
Context Manager is only implemented to support contexts that are passed by reference. It is this Context
Manager that is referenced by the presence of a context-manager element in a propagated context.

446
447
448
449
450
451
452
453

454
455

Figure 8 shows the message interactions for the context using the dereferencing call-back style
mentioned earlier: solid lines represent the initial request invocations and dashed lines represent the
response invocations.

Note, the Context Manager need not be the same endpoint as the Context Service (see
Section 5).

 456

457

458
459

461
462
463
464

466

467
468
469
470

Figure 8, Context interactions.

The ContextManager has the following operations, all of which contain the callback address for the
ContextResponseHandler:

• getContents: this message is used to request the entire contents of a specific context. The Context 460
Manager responds with either the contents message or an appropriate fault message. The entire
contents of the context SHOULD be returned, i.e. the values corresponding to the context’s
ContextType elements. Note, the implementation MAY impose restrictions based on security
privileges, for example.

• setContents: the contents of the context are replaced with the context information provided. It 465
responds with either the contentsSet message or an appropriate fault message.

Note, if the context is passed by reference and updates to it are allowed by the
referencing specification, then some form of concurrency control protocol MAY be
required to ensure that multiple updates do not conflict. It is implementation dependant as
to what (or if) concurrency control is provided by the ContextManager.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 14 of 26

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 15 of 26

471
472

474

476

478

The ContextResponseHandler has the following operations, all of which MUST be contextualized with at
least a minimal context header, i.e., the context identifier:

• contents: this message is a response to getContents and returns the entire contents of a specific 473
context.

• contentsSet: this message is sent as a response to setContents to indicate that contents of the 475
context have been updated.

• UnknownContext: this fault code is sent to indicate that the specified context cannot be located. 477

The WSDL interfaces that elucidate these roles are shown in Figure 9.

<wsdl:portType name="ContextManagerPortType"> 479
 <wsdl:operation name="getContents"> 480
 <wsdl:input message="tns:GetContentsMessage"/> 481
 </wsdl:operation> 482
 <wsdl:operation name="setContents"> 483
 <wsdl:input message="tns:SetContentsMessage"/> 484
 </wsdl:operation> 485
</wsdl:portType> 486
<wsdl:portType name="ContextResponseHandlerPortType"> 487
 <wsdl:operation name="contents"> 488
 <wsdl:input message="tns:ContentsMessage"/> 489
 </wsdl:operation> 490
 <wsdl:operation name="contentsSet"> 491
 <wsdl:input message="tns:ContentsSetMessage"/> 492
 </wsdl:operation> 493
</wsdl:portType> 494

495 Figure 9, WSDL Interfaces for ContextManager and ContextResponseHandler Roles.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 16 of 26

5 Context Service 496

The WS-Context specification defines a Context Service that supports the abstract notion of an activity
and allows referencing specifications and services to scope work within these activities by sharing
context. The basic infrastructure supports the lifecycle of contexts and ensures that each is uniquely
identified. This section specifies how activities and contexts are modeled, managed, and represented by
the Context Service.

497
498
499
500
501

503
504

505
506
507

508
509
510
511
512

514
515
516
517
518

519
520
521

5.1 Status 502

During its existence an activity MAY report statuses (which SHOULD unambiguously reflect internal
states of the activity), in reaction to receipt of the message wsctx:getStatus.

The referencing specification states whether statuses will be reported, and if so, how possible states are
named and defined. If an activity does not return statuses then it MUST return a fault
wsctx:NoStatusesDefined when asked to report a status.

If a Context Service does return statuses then it MUST report its current status when asked; there is no
notion of automatically informing services when a specific state is entered. If an activity cannot report its
current status but may be able to do so in the future then it SHOULD return a fault
wsctx:StatusUnknown. If an activity is unknown to the Context Service when it is asked to report a
status, then it SHOULD return a fault: wsctx:UnknownActivity.

5.2 Context Service messages 513

In order to be able to scope work within activities it is necessary for a component of the Context Service
to provide an interface for activity demarcation. Since the Context Service maintains information on
multiple activities, an activity context MUST be present on some operation invocations to determine the
appropriate activity on which to operate. This context SHOULD be passed by reference, since it is only
required for identification purposes.

Interactions with the Context Service occur between users (services) and the Context Service via the
UserContextService and ContextService interfaces respectively. The WSDL for the PortTypes of these
services is shown below and the interactions are described in the following section.

<wsdl:portType name="ContextServicePortType"> 522
 <wsdl:operation name="begin"> 523
 <wsdl:input message="tns:BeginMessage"/> 524
 </wsdl:operation> 525
 <wsdl:operation name="complete"> 526
 <wsdl:input message="tns:CompleteMessage"/> 527
 </wsdl:operation> 528
 <wsdl:operation name="getStatus"> 529
 <wsdl:input message="tns:GetStatusMessage"/> 530
 </wsdl:operation> 531
 <wsdl:operation name="setTimeout"> 532
 <wsdl:input message="tns:SetTimeoutMessage"/> 533
 </wsdl:operation> 534
 <wsdl:operation name="getTimeout"> 535
 <wsdl:input message="tns:GetTimeoutMessage"/> 536
 </wsdl:operation> 537
</wsdl:portType> 538
<wsdl:portType name="UserContextServicePortType"> 539
 <wsdl:operation name="begun"> 540

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 17 of 26

 <wsdl:input message="tns:BegunMessage"/> 541
 </wsdl:operation> 542
 <wsdl:operation name="completed"> 543
 <wsdl:input message="tns:CompletedMessage"/> 544
 </wsdl:operation> 545
 <wsdl:operation name="status"> 546
 <wsdl:input message="tns:StatusMessage"/> 547
 </wsdl:operation> 548
 <wsdl:operation name="timeoutSet"> 549
 <wsdl:input message="tns:TimeoutSetMessage"/> 550
 </wsdl:operation> 551
 <wsdl:operation name="timeout"> 552
 <wsdl:input message="tns:TimeoutMessage"/> 553
 </wsdl:operation> 554
 555
 </wsdl:portType> 556

557

558
559

562

563
564
565

566

567
568
569
570

571
572
573

574
575
576
577
578

579
580

581
582
583

Figure 10, ContextService WSDL.

In order to drive the Context Service, the following two roles (and associated services) are defined for the
interactions:

• ContextService: this has operations begin, complete, getStatus, setTimeout and getTimeout; 560

• UserContextService: this is the user/service callback endpoint address for the various ContextService 561
operations. As such, it has operations begun, completed, status, timeoutSet, timeout.

The ContextService has the following operations, all of which are associated with the current context (if
any). It is assumed that responses to these messages will be sent back using information present in
whatever addressing scheme is used.

begin
The begin operation creates a new context (based on the wsctx:type parameter). If a context is present
on the begin message then the new context is automatically nested with that context in a parent-child
relationship, i.e., the propagated context is the immediate parent in the parent-contexts element, which
MUST be set in the returned context.

Note, it is not necessary for the entire parent-context hierarchy to be represented in the
context structure. Some implementations and referencing specifications MAY wish to
restrict this structure to only some linear subset of the hierarchy.

begin is therefore the first operation in an activity to use WS-Context. A unique context identifier is
created for the context such that any context information that is subsequently obtained will reference this
identifier. If a context is present on the begin request then the newly created context will be nested within
it. Otherwise, the context exists at the top level. If the activity is completing, or has completed, the
wsctx:InvalidContext fault will be sent to the received UserContextService endpoint.

If nesting of activities is not supported by the implementation and there is a context present with the begin
message then wsctx:InvalidContextStructure fault will be sent to the UserContextService endpoint.

The expiresAt parameter is used to control the lifetime of a context. If the Activity has not completed by
the expiry date and time then it is subject to being completed automatically by the Context Service. The
expiresAt can have the following possible values:

• any dateTime value: the Activity MUST complete by the expiry date and time. 584

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 18 of 26

586
587

589
590

591
592

593
594
595

596
597

598
599

600

601
602
603
604

605
606
607
608

609
610
611

612
613

614

615
616
617
618

619
620

621

622
623
624
625

• not present: the Activity will never be completed automatically by the Context Service implementation, 585
i.e., it will never be considered to have timed out. If the implementation does not support this
semantic, then the wsctx:TimeoutNotSupported fault will be sent to the UserContextService.

• empty: the last value specified using setTimeout is used. If no prior call to the setTimeout operation 588
has occurred for this thread, or the duration returned is 0, then it is implementation dependant as to
the timeout value associated with this Activity.

Any other value results in the Context Service the wsctx:TimeoutNotSupported fault being sent to the
UserContextService endpoint.

Upon success, the begun response will be sent by invoking the begun operation of the
UserContextService. The context will be present as a SOAP header in envelope containing the begun
message.

If an invalid context is propagated on the begin request then the wsctx:InvalidContext fault code is
returned to the UserContextService.

The wsctx:InvalidProtocol fault is sent to the UserContextService is the service cannot create a context
of the required type.

complete
A valid activity context is associated with this invocation. A Context Service implementation MAY impose
restrictions on which Web services can terminate an activity, and in which case the wsctx:NoPermission
fault MAY be returned to the UserContextService. It is beyond the scope of this specification to determine
how restrictions are imposed.

A protocol-specific completion command MAY accompany this invocation and MAY be used by the
ContextService when terminating the activity. For example, one completion status for a transaction
protocol might represent an abort signal. Some protocols may not make distinctions between success or
failure in the termination of an activity and would not require any completion status.

Once complete, the Context Service sends the completed message to the UserContextService. If the
activity is in a state where completed is not allowed (eg, the activity has already completed), then the
wsctx:InvalidState fault will be sent to the UserContextService.

If an invalid context is propagated on the request then the wsctx:InvalidContext fault is sent to the
UserContextService.

getStatus
This operation is used to obtain the current status of the activity referenced in the propagated context.
The Context Service invokes the status operation on the associated UserContextService to return the
current status of the Activity. If there is no valid context associated with the context-identifier, the
wsctx:InvalidContext fault code is returned to the UserContextService.

If an invalid context is propagated on the request then the wsctx:InvalidContext fault code is returned to
the UserContextService.

setTimeout
No context is associated with this invocation. This operation modifies a state variable associated with the
Context Service that affects the expiry date and time associated with the activities created by subsequent
invocations of the begin operation when no expiry is specified (i.e., the begin expiresAt value is empty):
this is a default timeout value associated with the service. If the parameter has a non-zero value n, then

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 19 of 26

626
627

629

631
632
633

635
636
637

638

639
640
641
642

644
645

646

647
648

649

activities created by subsequent invocations of begin will be subject to being completed if they do not
complete before n seconds after their creation. The timeout can have the following possible values:

• any positive duration: the Activity MUST complete within this duration from the time the activity is 628
begun.

• Not present: the Activity will never be completed automatically by the Context Service 630
implementation, i.e., it will never be considered to have timed out. If the implementation does not
support this semantic, then the wsctx:TimeoutNotSupported fault code will be sent to the
UserContextService.

• 0: it is implementation dependant as to the meaning of passing a zero duration. 634

A valid timeout value results in the Context Service calling the UserContextService’s timeoutSet
operation. Any other value results in the wsctx:TimeoutNotSupported fault code being invoked on the
associated UserContextService.

getTimeout
No context is associated with this invocation. Upon successful execution, this operation causes the
Context Service to return the default timeout value (via the timeout message) associated with the service,
i.e., the duration that is associated with activities created by calls to begin when no expiresAt value is
passed via begin.

5.2.1 WS-Context Faults 643

This section defines well-known error codes to be used in conjunction with an underlying fault handling
mechanism.

Unknown Context
This fault is sent by the ContextManager to indicate that the context identified in a received message is
not recognised. This may indicate an unknown activity.

The qualified name of the fault code is:

wsctx:UnknownContext 650

651

652

653

Invalid Context
This fault can be sent by an endpoint to indicate that it cannot accept a context which it was passed.

The qualified name of the fault code is:

wsctx:InvalidContext 654

655

656

657

No Context
This fault can be sent by an endpoint to indicate that it did not receive a context when one was expected.

The qualified name of the fault code is:

wsctx:NoContext 658

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 20 of 26

659

660
661

662

Invalid State
This fault is sent by the Context Service to indicate that the endpoint that generates the fault has entered
an invalid state. This is an unrecoverable condition.

The qualified name of the fault code is:

wsctx:InvalidState 663

664

665
666

667

Invalid Context Structure
This fault it sent by the Context Service if nesting of activities is not supported and there is a context
present with the begin. This is an unrecoverable condition.

The qualified name of the fault code is:

wsctx:InvalidContextStructure 668

669

670
671

672

Timeout Not Supported
This fault is sent by the Context Service if an attempt is made to create an activity without a timeout and
the implementation does not support that semantic. This is an unrecoverable condition.

The qualified name of the fault code is:

wsctx:TimeoutNotSupported 673

674

675
676

677

Parent Activity Completed
This fault is sent by the Context Service if an attempt is made to create a nested activity with a parent
activity that has already completed. This is an unrecoverable condition.

The qualified name of the fault code is:

wsctx:ParentActivityCompleted 678

679

680
681

682

No Permission
This fault MAY be sent by the Context Service if the implementation imposes restrictions on which Web
services can terminate an activity.

The qualified name of the fault code is:

wsctx:NoPermission 683

684

685
686

687

Child Activity Pending
This fault MAY be sent by the Context Service if an attempt is made to complete a parent activity that
currently has active child activities.

The qualified name of the fault code is:

wsctx:ChildActivityPending 688

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 21 of 26

689

690
691

692

Status Unknown
This fault SHOULD be sent by a Context Service if it cannot report its current status but may be able to
do so in the future.

The qualified name of the fault code is:

wsctx:StatusUnknown 693

694

695
696

697

No Statuses Defined
This fault MUST be sent by a Context Service if a status value is requested and no values have been
defined by the referencing specification.

The qualified name of the fault code is:

wsctx:NoStatusesDefined 698

699

700
701

702

Unknown Activity
This fault SHOULD be returned if an activity is unknown to the Context Service when it is asked to report
a status.

The qualified name of the fault code is:

wsctx:UnknownActivity 703

704

705
706

707

Invalid Protocol
This fault is be sent by the Context Service if an attempt is made to create an activity with a protocol type
it does not recognise.

The qualified name of the fault code is:

wsctx:InvalidProtocol 708

710
711
712

713
714
715
716

717
718
719

5.2.2 Message exchanges 709

The WS-CAF protocol family is defined in WSDL, with associated schemas. All the WSDL has a common
pattern of defining paired port-types, such that one port-type is effectively the requestor, the other the
responder for some set of request-response operations.

portType for an initiator (“client” for the operation pair) will expose the responses of the
“request/response” as input operations (and should expose the requests as output messages); the
responder (service-side) only exposes the request operations as input operations (and should expose the
responses as output messages).

Each “response” is shown on the same line as the “request” that invokes it. Where there are a number of
responses to a “request”, these are shown on successive lines. The initiator portTypes typically include
various fault and error operations.

Initiator (and receiver of
response)

Responder “requests” responses

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 22 of 26

Initiator (and receiver of
response)

Responder “requests” responses

setContents

contentsSet
wsctx:UnknownContext
wsctx:InvalidContext
wsctx:NoContext

ContextResponseHandler ContextManager
getContents contents

wsctx:UnkownContext
wsctx:InvalidContext
wsctx:NoContext

begin begun
wsctx:InvalidState
wsctx:InvalidContext
wsctx:InvalidContextStructure
wsctx:TimeoutNotSupported
wsctx:ParentActivityCompleted
wsctx:NoPermission
wsctx:InvalidProtocol

complete completed
wsctx:InvalidState
wsctx:InvalidContext
wsctx:ChildActivityPending
wsctx:NoPermission
wsctx:NoContext

getStatus status
wsctx:InvalidState
wsctx:InvalidContext
wsctx:NoPermission
wsctx:NoContext

setTimeout timeoutSet
wsctx:InvalidState
wsctx:InvalidContext
wsctx:TimeoutNotSupported
 wsctx:NoPermission

UserContextService ContextService

getTimeout timeout
wsctx:InvalidState
wsctx:InvalidContext
wsctx:NoPermission

 720

721

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 23 of 26

6 Security Considerations 722

WS-Context is designed to be composable with WS-Security. WS-Context provides a context structure
that is typically bound to a SOAP header block as well as endpoints for management of context lifecycle
and contents.

723
724
725

726
727
728
729
730

731
732
733
734
735

736
737
738
739
740
741
742
743
744
745
746
747

748
749

It is RECOMMENDED that messages containing context headers use WS-Security [9] facilities for digital
signatures to guarantee message integrity and to verify originators of both messages and contexts. The
message as a whole, the individual context headers, or both may be signed. In addition, when contexts
are passed by value sensitive context data should be encrypted with XML encryption facilities as
described in WS-Security for confidentiality.

The ContextType schema includes an optional attribute, wsu:Id, which is used for ease of processing of
WS-Security features. It is RECOMMENDED that implementations use the wsu:Id attribute to support
encryption and signing of the context element. In addition, the context-identifier element definition
includes an optional wsu:Id attribute to allow context services to sign identifiers, while allowing other
services (e.g., the context manager) to freely update and change the content of the context itself.

It is RECOMMENDED that authorization checks be applied to context service and context manager
operations. It is out of the scope of this specification to indicate how user identity and authorization are
managed. Implementations may use appropriate mechanisms for the Web services environment. For
example, user identity may be asserted via mechanisms described in Web Services Security Username
Token Profile 1.0.

In addition to any authorization checks it may perform on the sender of a message, it is RECOMMENDED
that applications services perform checks that contexts were created by authorized issuing authorities. A
separate authorization problem arises for specific participation in specific activities. For example, a user
may be permitted to access a service but not to participate in arbitrary transactions associated with the
service. It is RECOMMENDED that application services maintain authorization checks for participation in
specific activities based on domain specific requirements.

In order to defend against spoofing of context-identifiers by an attacker it is RECOMMENDED that service
managers create context-identifiers incorporating random parts.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 24 of 26

7 Conformance considerations 750

The WS-Context specification defines a session model for Web Services (the activity concept), a context
to represent that model in executing systems and endpoints to manage context lifecycle and contents.

751
752

753
754
755

756
757
758

759
760

761
762

763
764

The minimum usage of WS-Context is restricted to the pass by value model of the context structure itself.
Conformant implementations MUST follow the rules specified in Section 3; lexical representations of the
context must be valid according to the schema definition for wsctx:ContextType.

Systems and protocols that leverage the pass-by-reference representation of context MUST support the
Context Manager. Conformant implementations of the Context Manager MUST follow the rules stated in
Section 4.

Context lifecycle demarcation and control is managed by the Context Service. Conformant
implementations of the Context Service MUST follow the rules stated in Section 5.

All messages based on the normative WSDL provided in this specification MUST be augmented by a
Web services addressing specification to support callback-style message exchange.

Specifications that build on WS-Context MUST satisfy all requirements for referencing specifications that
are identified for contexts, context-services and context managers.

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 25 of 26

8 Normative References 765

[1] WSDL 1.1 Specification, see http://www.w3.org/TR/wsdl 766

767
768

769
770

771
772

773
774
775

776
777

778
779

780

781
782

[2] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard
University, March 1997.

[3] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding, L.
Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[4] WS-Message Delivery Version 1.0, http://www.w3.org/Submission/2004/SUBM-ws-messagedelivery-
20040426/

[5] WS-Reliability latest specification, http://www.oasis-open.org/committees/download.php/8909/WS-
Reliability-2004-08-23.pdf. See Section 4.2.3.2 (and its subsection), 4.3.1 (and its subsections). Please
note that WS-R defines BareURI as the default.

[6] Addressing wrapper schema, http://www.oasis-
open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd

[7] WS-R schema that uses the serviceRefType, http://www.oasis-
open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd

[8] Web Services Addressing, see http://www.w3.org/Submission/ws-addressing/

[9] Web Services Security: SOAP Message Security V1.0, http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0.pdf

http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.w3.org/Submission/ws-addressing/

wsctx 2 April 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 26 of 26

Appendix A. Acknowledgements 783

The following individuals were active members of the committee during the development of this
specification:

784
785

786
787
788
789
790
791
792
793
794
795
796
797
798

799
800

Kevin Conner (Arjuna Technologies)
Mark Little (Arjuna Technologies)
Tony Fletcher (Choreology)
Peter Furniss (Choreology)
Alastair Green (Choreology)
John Fuller (Individual)
Eric Newcomer (IONA Technologies)
Martin Chapman (Oracle)
Simeon Green (Oracle)
Jeff Mischinkinsy (Oracle)
Greg Pavlik (Oracle)
Pete Wenzel (SeeBeyond)
Doug Bunting (Sun Microsystems)

Thanks to all members, past and present, of the WS-CAF technical committee who contributed to the
various versions of the specification.

	Note on terminology
	1.1 Namespace
	1.1.1 Prefix Namespace

	1.2 Referencing Specifications
	1.3 Precedence of schema and WSDL

	2 Architecture
	2.1 Invocation of Service Operations
	2.2 Relationship to WSDL
	2.3 Referencing and addressing conventions

	3 Context
	3.1 Activities
	3.2 Context information and SOAP

	4 Context Manager
	5 Context Service
	5.1 Status
	5.2 Context Service messages
	begin
	complete
	getStatus
	setTimeout
	getTimeout
	5.2.1 WS-Context Faults
	Unknown Context
	Invalid Context
	No Context
	Invalid State
	Invalid Context Structure
	Timeout Not Supported
	Parent Activity Completed
	No Permission
	Child Activity Pending
	Status Unknown
	No Statuses Defined
	Unknown Activity
	Invalid Protocol
	5.2.2 Message exchanges

	6 Security Considerations
	7 Conformance considerations
	8 Normative References

