
taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 1 of 60

TAXII™ Version 2.0

Committee Specification 01

19 July 2017

Specification URIs
This version:

http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-cs01.docx (Authoritative)
http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-cs01.html
http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-cs01.pdf

Previous version:
http://docs.oasis-open.org/cti/taxii/v2.0/csprd01/taxii-v2.0-csprd01.docx (Authoritative)
http://docs.oasis-open.org/cti/taxii/v2.0/csprd01/taxii-v2.0-csprd01.html
http://docs.oasis-open.org/cti/taxii/v2.0/csprd01/taxii-v2.0-csprd01.pdf

Latest version:
http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.docx (Authoritative)
http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.html
http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.pdf

Technical Committee:
OASIS Cyber Threat Intelligence (CTI) TC

Chair:
Richard Struse (Richard.Struse@hq.dhs.gov), DHS Office of Cybersecurity and Communications
(CS&C)

Editors:
John Wunder (jwunder@mitre.org), MITRE Corporation
Mark Davidson (Mark.Davidson@nc4.com), NC4
Bret Jordan (bret_jordan@symantec.com), Symantec Corp.

Related work:
This specification replaces or supersedes:

• TAXII™ Version 1.1.1. Part 1: Overview. Edited by Mark Davidson, Charles Schmidt, and
Bret Jordan. Latest version: http://docs.oasis-open.org/cti/taxii/v1.1.1/taxii-v1.1.1-part1-
overview.html.

This specification is related to:

• STIX™ Version 2.0. Part 1: STIX Core Concepts. Edited by Rich Piazza, John Wunder, and
Bret Jordan. Latest version: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-
core.html.

• STIX™ Version 2.0. Part 2: STIX Objects. Edited by Rich Piazza, John Wunder, and Bret
Jordan. Latest version: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-
objects.html.

• STIX™ Version 2.0. Part 3: Cyber Observable Core Concepts. Edited by Ivan Kirillov and
Trey Darley. Latest version: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part3-cyber-
observable-core.html.

• STIX™ Version 2.0. Part 4: Cyber Observable Objects. Edited by Ivan Kirillov and Trey
Darley. Latest version: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part4-cyber-
observable-objects.html.

http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-cs01.docx
http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-cs01.html
http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-cs01.pdf
http://docs.oasis-open.org/cti/taxii/v2.0/csprd01/taxii-v2.0-csprd01.docx
http://docs.oasis-open.org/cti/taxii/v2.0/csprd01/taxii-v2.0-csprd01.html
http://docs.oasis-open.org/cti/taxii/v2.0/csprd01/taxii-v2.0-csprd01.pdf
http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.docx
http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.html
http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.pdf
https://www.oasis-open.org/committees/cti/
mailto:Richard.Struse@hq.dhs.gov
http://www.dhs.gov/office-cybersecurity-and-communications
http://www.dhs.gov/office-cybersecurity-and-communications
mailto:jwunder@mitre.org
https://www.mitre.org/
mailto:Mark.Davidson@nc4.com
http://www.nc4.com/
mailto:bret_jordan@symantec.com
http://www.symantec.com/
http://docs.oasis-open.org/cti/taxii/v1.1.1/taxii-v1.1.1-part1-overview.html
http://docs.oasis-open.org/cti/taxii/v1.1.1/taxii-v1.1.1-part1-overview.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-core.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-core.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part3-cyber-observable-core.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part3-cyber-observable-core.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part4-cyber-observable-objects.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part4-cyber-observable-objects.html
https://www.oasis-open.org/

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 2 of 60

• STIX™ Version 2.0. Part 5: STIX Patterning. Edited by Ivan Kirillov and Trey Darley. Latest
version: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part5-stix-patterning.html.

Abstract:
Trusted Automated eXchange of Intelligence Information (TAXII™) is an application layer protocol
for the communication of cyber threat information in a simple and scalable manner. This
specification defines the TAXII RESTful API and its resources along with the requirements for
TAXII Client and Server implementations.

Status:
This document was last revised or approved by the OASIS Cyber Threat Intelligence (CTI) TC on
the above date. The level of approval is also listed above. Check the “Latest version” location
noted above for possible later revisions of this document. Any other numbered Versions and
other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=cti#technical.

TC members should send comments on this specification to the TC’s email list. Others should
send comments to the TC’s public comment list, after subscribing to it by following the
instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/cti/.

This Committee Specification is provided under the Non-Assertion Mode of the OASIS IPR
Policy, the mode chosen when the Technical Committee was established. For information on
whether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property
Rights section of the TC’s web page (https://www.oasis-open.org/committees/cti/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for
this Work Product is provided in separate plain text files. In the event of a discrepancy between
any such plain text file and display content in the Work Product's prose narrative document(s),
the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[TAXII-v2.0]

TAXII™ Version 2.0. Edited by John Wunder, Mark Davidson, and Bret Jordan. 19 July 2017.
OASIS Committee Specification 01. http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-
cs01.html. Latest version: http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.html.

http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part5-stix-patterning.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cti#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cti#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=cti
https://www.oasis-open.org/committees/cti/
https://www.oasis-open.org/committees/cti/
https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/cti/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#quality-formalLangDefns
http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-cs01.html
http://docs.oasis-open.org/cti/taxii/v2.0/cs01/taxii-v2.0-cs01.html
http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.html

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 3 of 60

Notices

Copyright © OASIS Open 2017. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

Portions copyright © United States Government 2012-2017. All Rights Reserved.

STIX™, CYBOX™, AND TAXII™ (STANDARD OR STANDARDS) AND THEIR COMPONENT PARTS
ARE PROVIDED "AS IS" WITHOUT ANY WARRANTY OF ANY KIND, EITHER EXPRESSED, IMPLIED,
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT THESE STANDARDS
OR ANY OF THEIR COMPONENT PARTS WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR FREEDOM
FROM INFRINGEMENT, ANY WARRANTY THAT THE STANDARDS OR THEIR COMPONENT PARTS

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 4 of 60

WILL BE ERROR FREE, OR ANY WARRANTY THAT THE DOCUMENTATION, IF PROVIDED, WILL
CONFORM TO THE STANDARDS OR THEIR COMPONENT PARTS. IN NO EVENT SHALL THE
UNITED STATES GOVERNMENT OR ITS CONTRACTORS OR SUBCONTRACTORS BE LIABLE FOR
ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY
CONNECTED WITH THESE STANDARDS OR THEIR COMPONENT PARTS OR ANY PROVIDED
DOCUMENTATION, WHETHER OR NOT BASED UPON WARRANTY, CONTRACT, TORT, OR
OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY PERSONS OR PROPERTY OR
OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE
RESULTS OF, OR USE OF, THE STANDARDS, THEIR COMPONENT PARTS, AND ANY PROVIDED
DOCUMENTATION. THE UNITED STATES GOVERNMENT DISCLAIMS ALL WARRANTIES AND
LIABILITIES REGARDING THE STANDARDS OR THEIR COMPONENT PARTS ATTRIBUTABLE TO
ANY THIRD PARTY, IF PRESENT IN THE STANDARDS OR THEIR COMPONENT PARTS AND
DISTRIBUTES IT OR THEM "AS IS."

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 5 of 60

Table of Contents

1 Introduction .. 7

1.0 IPR Policy ... 7

1.1 Terminology .. 7

1.2 Normative References .. 7

1.3 Document Conventions .. 9

1.3.1 Naming Conventions ... 9

1.3.2 Font Colors and Style .. 9

1.4 Overview ... 9

1.4.1 Discovery ... 9

1.4.2 API Roots .. 10

1.4.3 Endpoints ... 10

1.4.4 Collections ... 11

1.4.5 Channels ... 11

1.4.6 Transport ... 11

1.4.7 Content Negotiation ... 11

1.4.8 Authentication and Authorization .. 12

1.4.9 STIX and Other Content .. 12

2 Data Types ... 13

3 TAXII™ API - Core Concepts .. 15

3.1 Endpoints .. 15

3.2 HTTP Headers .. 16

3.3 Sorting ... 18

3.4 Pagination ... 18

3.4.1 Object and Collection Ranges ... 18

3.4.2 Requirements .. 18

3.4.3 Endpoints Supporting Pagination .. 19

3.5 Filtering ... 21

3.5.1 Supported Fields for Match ... 22

3.6 Errors .. 23

3.6.1 Error Message ... 23

3.7 Object Resource ... 24

3.8 Property Names .. 25

3.9 DNS SRV Names ... 25

4 TAXII™ API - Server Information ... 26

4.1 Server Discovery .. 26

4.1.1 Discovery Resource .. 27

4.2 Get API Root Information .. 28

4.2.1 API Root Resource .. 29

4.3 Get Status ... 30

4.3.1 Status Resource .. 31

5 TAXII™ API - Collections ... 34

5.1 Get Collections ... 34

5.1.1 Collections Resource .. 35

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 6 of 60

5.2 Get a Collection .. 36

5.2.1 Collection Resource .. 37

5.3 Get Objects ... 38

5.4 Add Objects .. 40

5.5 Get an Object .. 42

5.6 Get Object Manifests .. 43

5.6.1 Manifest Resource .. 44

6 TAXII™ API - Channels ... 47

7 Customizing TAXII Resources ... 48

7.1 Custom Properties .. 48

7.1.1 Requirements .. 48

8 Conformance .. 50

8.1 TAXII™ Servers .. 50

8.1.1 TAXII™ 2.0 Server .. 50

8.1.2 TAXII™ 2.0 Collections Server.. 50

8.1.3 TAXII™ 2.0 Channels Server .. 50

8.2 Mandatory Server Features .. 50

8.2.1 TAXII Server Core Requirements.. 50

8.2.2 HTTPS and Authentication Server Requirements... 50

8.3 Optional Server Features .. 51

8.3.1 Client Certificate Verification ... 51

8.4 TAXII™ Clients ... 51

8.4.1 TAXII™ 2.0 Client .. 51

8.4.2 TAXII™ 2.0 Collections Client ... 51

8.4.3 TAXII™ 2.0 Channels Client ... 51

8.5 Mandatory Client Features ... 51

8.5.1 HTTPS and Authentication Client Requirements .. 51

8.5.2 Server Certificate Verification .. 52

Appendix A. Glossary .. 53

Appendix B. Acknowledgments .. 54

Appendix C. Revision History.. 60

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 7 of 60

1 Introduction
TAXII™ is an application layer protocol for the communication of cyber threat information in a simple and
scalable manner. This specification defines the TAXII RESTful API and its resources along with the
requirements for TAXII Client and Server implementations.

1.0 IPR Policy

This Committee Specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether any patents
have been disclosed that may be essential to implementing this specification, and any offers of patent
licensing terms, please refer to the Intellectual Property Rights section of the TC’s web page
(https://www.oasis-open.org/committees/cti/ipr.php).

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

All text is normative except for examples, the overview (section 1.4), and any text marked non-normative.

1.2 Normative References

[HTTP Auth] IANA, “Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry”, March
2017, [Online]. Available: https://www.iana.org/assignments/http-authschemes/http-
authschemes.xhtml

[ISO10646] “ISO/IEC 10646:2014 Information technology -- Universal Coded Character Set
(UCS)”, 2014. [Online]. Available:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_201
4.zip

[RFC0020] Cerf, V., "ASCII format for network interchange", STD 80, RFC 20, DOI
10.17487/RFC0020, October 1969, http://www.rfc-editor.org/info/rfc20.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-
editor.org/info/rfc2119.

[RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for specifying the location of
services (DNS SRV)", RFC 2782, DOI 10.17487/RFC2782, February 2000,
http://www.rfc-editor.org/info/rfc2782.

[RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339,
DOI 10.17487/RFC3339, July 2002, http://www.rfc-editor.org/info/rfc3339.

[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security
Introduction and Requirements", RFC 4033, DOI 10.17487/RFC4033, March 2005,
http://www.rfc-editor.org/info/rfc4033.

https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/cti/ipr.php
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://www.rfc-editor.org/info/rfc20
http://www.rfc-editor.org/info/rfc20
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2782
http://www.rfc-editor.org/info/rfc3339
http://www.rfc-editor.org/info/rfc3339
http://www.rfc-editor.org/info/rfc4033

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 8 of 60

[RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN
Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005, http://www.rfc-
editor.org/info/rfc4122.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2",
RFC 5246, DOI 10.17487/RFC5246, August 2008, http://www.rfc-
editor.org/info/rfc5246.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, http://www.rfc-
editor.org/info/rfc5280.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based
Application Service Identity within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI
10.17487/RFC6125, March 2011, http://www.rfc-editor.org/info/rfc6125.

[RFC6818] Yee, P., "Updates to the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile", RFC 6818, DOI 10.17487/RFC6818,
January 2013, http://www.rfc-editor.org/info/rfc6818.

[RFC7230] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,
http://www.rfc-editor.org/info/rfc7230.

[RFC7231] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content", RFC 7231, DOI 10.17487/RFC7231, June 2014,
http://www.rfc-editor.org/info/rfc7231.

[RFC7233] Fielding, R., Ed., Y. Lafon, Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol
(HTTP/1.1): Range Requests", RFC 7233, 10.17487/RFC7233, June 2014,
http://www.rfc-editor.org/info/rfc7233.

[RFC7235] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):
Authentication", RFC 7235, DOI 10.17487/RFC7235, June 2014, http://www.rfc-
editor.org/info/rfc7235.

[RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext Transfer Protocol Version 2
(HTTP/2)", RFC 7540, DOI 10.17487/RFC7540, May 2015, http://www.rfc-
editor.org/info/rfc7540.

[RFC7617] Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, DOI
10.17487/RFC7617, September 2015, http://www.rfc-editor.org/info/rfc7617.

[RFC7671] Dukhovni, V. and W. Hardaker, "The DNS-Based Authentication of Named Entities
(DANE) Protocol: Updates and Operational Guidance", RFC 7671, DOI
10.17487/RFC7671, October 2015, http://www.rfc-editor.org/info/rfc7671.

[TLS1.3] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.3 draft-ietf-tls-
tls13-20", RFC draft, [Online]. Available: https://tools.ietf.org/html/draft-ietf-tls-tls13-20.

http://www.rfc-editor.org/info/rfc4122
http://www.rfc-editor.org/info/rfc4122
http://www.rfc-editor.org/info/rfc5246
http://www.rfc-editor.org/info/rfc5246
http://www.rfc-editor.org/info/rfc5280
http://www.rfc-editor.org/info/rfc5280
http://www.rfc-editor.org/info/rfc6125
http://www.rfc-editor.org/info/rfc6818
http://www.rfc-editor.org/info/rfc7230
http://www.rfc-editor.org/info/rfc7231
http://www.rfc-editor.org/info/rfc7233
http://www.rfc-editor.org/info/rfc7235
http://www.rfc-editor.org/info/rfc7235
http://www.rfc-editor.org/info/rfc7540
http://www.rfc-editor.org/info/rfc7540
http://www.rfc-editor.org/info/rfc7617
http://www.rfc-editor.org/info/rfc7671
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
https://tools.ietf.org/html/draft-ietf-tls-tls13-20

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 9 of 60

1.3 Document Conventions

1.3.1 Naming Conventions

All type names, property names and literals are in lowercase. Words in property names are separated
with an underscore (_), while words in type names and string enumerations are separated with a hyphen
(Unicode hyphen-minus, U+002D, ‘-‘). All type names, property names, object names, and vocabulary
terms are between three and 250 characters long.

1.3.2 Font Colors and Style

The following color, font and font style conventions are used in this document:

● The Consolas font is used for all type names, property names and literals.

○ resource and type names are in red with a light red background – collection

○ property names are in bold style – description

○ parameter names in URLs are stylized with angled brackets - <api-root>

○ literals (values) are in blue with a blue background – complete

● All examples in this document are expressed in JSON. They are in Consolas 9-point font, with

straight quotes, black text and a light grey background, and 2-space indentation.

● Parts of the example may be omitted for conciseness and clarity. These omitted parts are

denoted with ellipses (...).

1.4 Overview

Trusted Automated Exchange of Intelligence Information (TAXII) is an application layer protocol used to
exchange cyber threat intelligence (CTI) over HTTPS. TAXII enables organizations to share CTI by
defining an API that aligns with common sharing models. Specifically, TAXII defines two primary services,
Collections and Channels, to support a variety of commonly-used sharing models. Collections allow a
producer to host a set of CTI data that can be requested by consumers. Channels allow producers to
push data to many consumers; and allow consumers to receive data from many producers. Collections
and Channels can be organized by grouping them into an API Root to support the needs of a particular
trust group or to organize them in some other way. Note: This version of the TAXII specification reserves
the keywords required for Channels but does not specify Channel services. Channels and their services
will be defined in a subsequent version of this specification.

TAXII is specifically designed to support the exchange of CTI represented in STIX. As such, the examples
and some features in the specification are intended to align with STIX. This does not mean TAXII cannot
be used to share data in other formats; it is designed for STIX, but is not limited to STIX.

1.4.1 Discovery

This specification defines two discovery methods. The first is a network level discovery that uses a DNS
SRV record [RFC2782]. This DNS SRV record can be used to advertise the location of a TAXII Server
within a network (e.g., so that TAXII-enabled security infrastructure can automatically locate an
organization's internal TAXII Server) or to the general Internet. See section 3.9 for complete information
on advertising TAXII Servers in DNS.

The second discovery method is a Discovery Endpoint (this specification uses the term Endpoint to
identify a URL and an HTTP method with a defined request and response) that enables authorized clients
to obtain information about a TAXII Server and get a list of API Roots. See section 4.1 for complete
information on the Discovery Endpoint.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 10 of 60

1.4.2 API Roots

API Roots are logical groupings of TAXII Channels, Collections, and related functionality. A TAXII server
instance can support one or more API Roots. API Roots can be thought of as instances of the TAXII API
available at different URLs, where each API Root is the "root" URL of that particular instance of the TAXII
API. Organizing the Channels and Collections into API Roots allows for a division of content and access
control by trust group or any other logical grouping. For example, a single TAXII Server could host
multiple API Roots - one API Root for Channels and Collections used by Sharing Group A and another
API Root for Channels and Collections used by Sharing Group B.

Each API Root contains a set of Endpoints that a TAXII Client contacts in order to interact with the TAXII
Server. This interaction can take several forms:

● Server Discovery, as described above, can be used to learn about the API Roots hosted by a

TAXII Server.

● Each API Root might support zero or more Collections. Interactions with Collections include

discovering the type of CTI contained in that Collection, pushing new CTI to that Collection,

and/or retrieving CTI from that Collection. Each piece of CTI content in a Collection is referred to

as an Object.

● Each API Root might host zero or more Channels.

● Each API Root also allows TAXII Clients to check on the Status of certain types of requests to the

TAXII Server. For example, if a TAXII Client submitted new CTI, a Status request can allow the

Client to check on whether the new CTI was accepted.

Figure 1.1 summarizes the relationships between the components of an API Root.

Figure 1.1

1.4.3 Endpoints

An Endpoint consists of a specific URL and HTTP Method on a TAXII Server that a TAXII Client can
contact to engage in one, specific type of TAXII exchange. For example, each Collection on a TAXII
Server has an Endpoint that can be used to get information about it; TAXII Clients can contact the
Collection’s Endpoint to request a description of that Collection. A separate Endpoint is used for the TAXII
Client to collect a manifest of that Collection’s Content. Yet another Endpoint is used to get objects from

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 11 of 60

the Collection and, at the same URL, a POST can be used to add objects to the collection. The Endpoints
supported by a TAXII Server are summarized in section 3.1 and fully defined in sections 4, 5, and 6.

1.4.4 Collections

A TAXII Collection is an interface to a logical repository of CTI objects provided by a TAXII Server and is
used by TAXII Clients to send information to the TAXII Server or request information from the TAXII
Server. A TAXII Server can host multiple Collections per API Root, and Collections are used to exchange
information in a request–response manner.

Figure 1.2 below illustrates how Collection based communications are used when a single TAXII Client
makes a request to a TAXII Server and the TAXII Server fulfills that request with information available to
the TAXII Server (nominally from a database).

1.4.5 Channels

A TAXII Channel is maintained by a TAXII Server and enables TAXII Clients to exchange information with
other TAXII Clients in a publish-subscribe model. TAXII Clients can publish messages to Channels and
subscribe to Channels to receive published messages. A TAXII Server may host multiple Channels per
API Root.

Figure 1.3 below illustrates how Channel communications are used when a single authorized TAXII Client
sends a message to the TAXII Server, and that TAXII Server then distributes the message to all
authorized TAXII Clients that are connected to the Channel. The arrows in the following diagrams
represent data flow.

 Figure 1.2 Figure 1.3

1.4.6 Transport

The TAXII protocol defined in this specification uses HTTPS (HTTP over TLS) as the transport for all
communications.

1.4.7 Content Negotiation

This specification uses HTTP content negotiation [RFC7231]. The STIX 2.0 and TAXII 2.0 media types
are defined in the following table.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 12 of 60

Media Type Description

application/vnd.oasis.taxii+json Any version of TAXII in JSON

application/vnd.oasis.taxii+json; version=2.0 TAXII version 2.0 in JSON

application/vnd.oasis.stix+json Any version of STIX in JSON

application/vnd.oasis.stix+json; version=2.0 STIX version 2.0 in JSON

1.4.8 Authentication and Authorization

Access control to an instance of the TAXII API is specific to the sharing community, vendor, or product
and is not defined by this specification.

Authentication and Authorization in TAXII is implemented as defined in [RFC7235], using the
Authorization and WWW-Authenticate HTTP headers respectively.

HTTP Basic authentication, as defined in [RFC7617] is the mandatory to implement authentication
scheme in TAXII. As specified in sections 8.2.2 and 8.5.1, TAXII Servers and Clients are required to
implement support for HTTP Basic, though other authentication schemes can also be supported.
Implementers can allow operators to disable the use of HTTP Basic in their operations.

If the TAXII Server receives a request for any Endpoint that requires authentication, regardless of HTTP
method, and either an acceptable Authorization header that grants the client access to that object is

not sent with the request or the TAXII Server does not determine via alternate means that the client is
authorized to access the resource, the TAXII Server responds with a HTTP 401 (Unauthorized) status
code and a WWW-Authenticate HTTP header.

The WWW-Authenticate header contains one or more challenges, which define which authentication

schemes are supported by the TAXII Server. The format of the WWW-Authenticate HTTP header and

any challenges are defined in [RFC7235]. To ensure compatibility, it is recommended that any
authentication schemes used in challenges be registered in the IANA Hypertext Transfer Protocol (HTTP)
Authentication Scheme Registry [HTTP Auth] .

A TAXII Server may omit objects, information, or optional fields from any response if the authenticated
client is not authorized to receive them, so long as that omission does not violate this specification.

1.4.9 STIX and Other Content

TAXII is designed with STIX in mind and support for exchanging STIX 2.0 [STIX™ Version 2.0. Part 1:
STIX Core Concepts] content is mandatory to implement. Additional content types are permitted, but
specific requirements for STIX are present throughout the document. See section 3.7 for more details.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 13 of 60

2 Data Types
This section defines the names and permitted values of common types used throughout this specification.
These types are referenced by the “Type” column in other sections. This table does not, however, define
the meaning of any fields using these types. These types may be further restricted elsewhere in the
document.

Type Description

api-root An API Root Resource, see section 4.2.1.

boolean A boolean is a value of either true or false. Properties with this type MUST have a

literal (unquoted) value of true or false.

bundle A STIX Bundle, see section 5 of STIX™ Version 2.0. Part 1: STIX Core Concepts.

collection A Collection Resource, see section 5.2.1.

collections A Collections Resource, see section 5.1.1.

dictionary A dictionary is a JSON object that captures an arbitrary set of key/value pairs.

discovery A Discovery Resource, see section 4.1.1.

error An Error Message, see section 3.6.1.

identifier An identifier is an RFC 4122-compliant Version 4 UUID. The UUID MUST be

generated according to the algorithm(s) defined in RFC 4122, section 4.4 (Version
4 UUID) [RFC4122].

integer The integer data type represents a whole number. Unless otherwise specified, all
integers MUST be capable of being represented as a signed 64-bit value.
Additional restrictions MAY be placed on the type where it is used.

list The list type defines a sequence of values ordered based on how they appear in

the list. The phrasing “list of type <type>” is used to indicate that all values

within the list MUST conform to the specified type. For instance, list of type

integer means that all values of the list must be of the integer type.

This specification does not specify the maximum number of allowed values in a
list, however every instance of a list MUST have at least one value. Specific

TAXII resource properties may define more restrictive upper and/or lower bounds
for the length of the list.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 14 of 60

Empty lists are prohibited in TAXII and MUST NOT be used as a substitute for
omitting optional properties. If the property is required, the list MUST be present
and MUST have at least one value.

The JSON MTI serialization uses the JSON array type [RFC7159], which is an
ordered list of zero or more values.

manifest A Manifest Resource, see section 5.6.1.

object An Object Resource, see section 3.7.

status A Status Resource, see section 4.3.1.

string The string data type represents a finite-length string of valid characters from the

Unicode coded character set [ISO10646] that are encoded in UTF-8. Unicode
incorporates ASCII [RFC0020] and the characters of many other international
character sets.

timestamp The timestamp type defines how timestamps are represented in TAXII and is

represented in serialization as a string.

● The timestamp field MUST be a valid RFC 3339-formatted timestamp

[RFC3339] using the format YYYY-MM-DDTHH:mm:ss.[s+]Z where the “s+”

represents 1 or more sub-second values. The brackets denote that sub-

second precision is optional, and that if no digits are provided, the decimal

place MUST NOT be present.

● The timestamp MUST be represented in the UTC timezone and MUST

use the “Z” designation to indicate this.

https://docs.google.com/document/d/1u11fNxZZj8yYXhwTwMpRTMeJw4iYtAxQZEiRA2XHM8U/edit#bookmark=id.mmt4e4p953r5

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 15 of 60

3 TAXII™ API - Core Concepts
The TAXII API is described as sets of Endpoints. Each Endpoint is identified by the URL that it is
accessible at and the HTTP method that is used to make the request. For example, the "Get Collections"
Endpoint is requested by issuing a GET to `<api-root>/collections/`. Each Endpoint identifies its URL,
which parameters it accepts (including both path parameters and standard parameters), which features it
supports (e.g. filtering, pagination), and which content types it defines on request and response. It also
identifies common error conditions and provides guidance on how to use the Endpoint.

This section defines behavior that applies across Endpoints, such as normative requirements to support
each Endpoint, sorting, pagination, filtering, and error handling.

3.1 Endpoints

Sections 4, 5 and 6 define the set of TAXII Endpoints used in the TAXII API. The following normative
requirements apply to each Endpoint:

● All TAXII requests MUST include a media range in the Accept header. Requests for TAXII or

STIX content MUST use the values from section 1.4.7 and SHOULD include the version

parameter.

● All TAXII responses MUST include the appropriate media type and version parameter in the

Content-Type header as defined for that Endpoint.

● TAXII responses SHOULD be the highest version of content (e.g., TAXII, STIX) that the server

supports if the version parameter in the Accept header is omitted during content negotiation.

● TAXII responses with an HTTP success code (200 series) that permit a response body MUST

include the appropriate response body for the specified content type as identified in the definition

of that Endpoint.

● TAXII responses with an HTTP error code (400-series and 500-series status codes, defined by

sections 6.5 and 6.6 of [RFC7231]) that permit a response body (i.e. are not in response to a

HEAD request) MUST contain an error message (see section 3.6.1) in the response body.

● Requests with media types in the Accept and/or Content-Type headers that are defined for that

Endpoint MUST NOT result in an HTTP 406 (Not Acceptable) or HTTP 415 (Unacceptable Media

Type) response.

● Requests with media types in the Accept and/or Content-Type headers that are not defined for

that Endpoint MAY be satisfied with the appropriate content or MAY result in an HTTP 406 (Not

Acceptable) or HTTP 415 (Unacceptable Media Type) response.

● TAXII responses from Endpoints that support pagination and include items as a requested range

unit MUST comply with the normative requirements in section 3.4 and MUST respond with an

appropriate 200, 206, or 416 response per the HTTP specification [RFC7233].

● TAXII responses to Endpoints that support filtering MUST filter results per the requirements in

section 3.5.

The following table provides a summary of the Endpoints (URLs and HTTP Methods) defined by TAXII
and the Resources they operate on.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 16 of 60

URL Methods Resource Type (section 2)

Core Concepts (section 4)

/taxii/ GET discovery

<api-root> GET api

<api-root>/status/<status-id>/ GET status

Collections (section 5)

<api-root>/collections/ GET collections

<api-root>/collections/<id>/ GET collection

<api-root>/collections/<id>/objects/ GET, POST object*

<api-root>/collections/<id>/objects/<object-id>/ GET object*

<api-root>/collections/<id>/manifest/ GET manifest

Channels (section 6)

<TBD in a future version>

* The actual format of objects is dependent on HTTP Content negotiation, as discussed in section 1.4.7

3.2 HTTP Headers

This section summarizes the HTTP headers and defines custom headers used by this specification.

Type Description

Standard Headers

Accept The Accept header is used by HTTP Requests to specify which
Content-Types are acceptable in response. STIX and TAXII define
media types that can be used in the Accept header in section 1.4.7.
See section 5.3.2 of [RFC7231].

Accept-Ranges The Accept-Ranges header is used by HTTP Responses to specify

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 17 of 60

its acceptance of range requests for a resource. See section 2.3 of
[RFC7233].

Authorization The Authorization header is used by HTTP Requests to specify
authentication credentials. See section 4.2 of [RFC7235].

Content-Range The Content-Range header is used by HTTP to identify which
subrange(s) of a resource are contained in an HTTP 206 (Partial
Content) response. See section 4.2 of [RFC7233].

Content-Type The Content-Type header is used by HTTP to identify the format of
HTTP Requests and HTTP Responses. STIX and TAXII define
media types that can be used in the Content-Type header in section
1.4.7. See section 3.1.1.5 of [RFC7231].

Range The Range header is used by HTTP to request a subrange of a
resource. TAXII uses the Range header, and related headers, to
perform pagination. See section 3.1 of [RFC7233].

WWW-Authenticate The WWW-Authenticate header is used by HTTP Responses to
indicate that authentication is required and to specify the
authentication schemes and parameters that are supported. See
section 4.1 of [RFC7235].

Custom Headers

X-TAXII-Date-Added-First The X-TAXII-Date-Added-First header is an extension header. It
indicates the date_added timestamp of the first object of the

response.

The value of this header MUST be a timestamp. All HTTP 200 and

206 responses to the following Endpoints MUST include the X-
TAXII-Date-Added-First header:

● GET <api-root>/collections/objects/

● GET <api-root>/collections/manifest/

X-TAXII-Date-Added-Last The X-TAXII-Date-Added-Last header is an extension header. It
indicates the date_added timestamp of the last object of the

response.

The value of this header MUST be a timestamp. All HTTP 200 and

206 responses to the following Endpoints MUST include the X-
TAXII-Date-Added-Last header:

● GET <api-root>/collections/objects/

● GET <api-root>/collections/manifest/

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 18 of 60

3.3 Sorting

For the Collection and Manifest Endpoints, objects MUST be sorted in ascending order by the date the
object first appeared in the TAXII Collection (i.e., the added date). The most recently added object is last
in the list.

For the Object Search Endpoint, objects MUST be sorted in ascending order by the date the object first
appeared in object search (i.e., the added date). If an object would appear multiple times, all appearances
after the first appearance MUST be omitted from the result. That is, if an object would have appeared first
in the list and again halfway down, only the first entry should be present in the result.

For the Collections Endpoint, Collections MUST be sorted and MAY be sorted in any order. Pagination
requires a consistent sort order, and therefore multiple responses from the same endpoint need to be
sorted in a consistent manner. Sort order MUST be consistent across responses.

3.4 Pagination

Pagination is a feature that is used to break up result sets over multiple request/response pairs. TAXII
uses HTTP's Range and Content-Range headers, and defines the items range unit, to perform

pagination as defined in section 2 of [RFC7233]. items is the mandatory to implement range unit for

TAXII. Other range units MAY be implemented by clients and servers.

3.4.1 Object and Collection Ranges

The items range unit is defined for expressing subranges of a resource [HTTP 7233]. For the Endpoints

that return object, items represents objects. For the Endpoints that return collections, items

represents Collections.

The first items value in the Range and Content-Range headers gives the first item in a range. The last

items value in the Range and Content-Range headers gives the last item in the range; that is, items

ranges specified are inclusive. items are zero-indexed; that is, the first item is object zero. A Content-
Range header will have a third value that identifies the size of the available dataset.

For example:

● If the Range header contains "items 10-49", "10" represents the first item requested; and "49"

represents the last item requested.

● if the Content-Range header contains "items 10-49/500", "10" represents the first object in the

response; "49" represents the last object in the response; and "500" represents the total number

of items available.

All items values MUST be:

● a non-negative integer

● zero indexed (i.e., the first object is object "0")

3.4.2 Requirements

The following requirements only apply to items based range requests (aka pagination).

● The Accept-Ranges header allows a server to indicate that it supports range requests for the

target resource [RFC7233] as well as which range units are supported.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 19 of 60

● For resources where items-based pagination is supported, and where the Accept-Ranges

header is present, the Accept-Ranges header MUST contain items as an acceptable range. The

Accept-Ranges header MAY contain other acceptable ranges, if the server supports them.

● Requests MAY use the Range header to request a subset of data that would otherwise be

returned.

● As defined in the HTTP specification, HTTP 206 (Partial Content) [RFC7233] responses include a

Content-Range header, even if the entire resource is contained in the response.

● As defined in the HTTP specification, if the requested Range cannot be satisfied, an HTTP 416

(Requested Range Not Satisfiable) [RFC7233] response is used.

○ For example, if a range requests items 500-600, but only 0-100 are available, an HTTP

416 (Requested Range Not Satisfiable) is used.

● An HTTP 206 (Partial Content) response with a Content-Range header MAY be returned even if

the original request did not have a Range header.

○ Note that this is a deviation from the HTTP specification, which indicates that HTTP 206

responses are only permitted when the Range header is present in the request.

● Responses to requests with a Range header SHOULD contain only the requested range and

MAY include a range smaller than what was requested.

● TAXII follows standard HTTP rules for the Content-Range and Range headers, with the

exception of allowing a 206 response to a request without a Range header:

○ The 206 (Partial Content) status code indicates that the server is successfully fulfilling a

range request for the target resource see section 4.1 of [RFC7233]

○ If a single part is being transferred, the server generating the 206 response MUST

generate a Content-Range header field, describing what range of the selected

representation is enclosed, and a payload consisting of the range. See section 4.2 of

[RFC7233].

NOTE: The total number of items available in a result may change with each request for a new page in
the paginated result set. This can happen if items have been added or deleted between subsequent
requests.

3.4.3 Endpoints Supporting Pagination

The following URL Endpoints support Pagination.

● GET <api-root>/collections/ - see section 5.1.

● GET <api-root>/collections/<id>/objects/ - see section 5.3.

● GET <api-root>/collections/<id>/manifest/ - see section 5.6.

Examples

Client makes a request with no Range header and server returns all results, no pagination.

GET Request

GET .../collections/my-collection/objects/?added_after=2016-02-01T00:00:01.000Z HTTP/1.1

Accept: application/vnd.oasis.stix+json; version=2.0

Get Response

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 20 of 60

HTTP/1.1 200 Ok

Content-Type: application/vnd.oasis.stix+json; version=2.0

Client makes a request for items 0-49 (50 items) and the server responds with 0-49.

GET Request

GET .../collections/my-collection/objects/?added_after=2016-02-01T00:00:01.000Z HTTP/1.1

Range: items 0-49

Accept: application/vnd.oasis.stix+json; version=2.0

GET Response

HTTP/1.1 206 Partial Content

Content-Type: application/vnd.oasis.stix+json; version=2.0

X-TAXII-Date-Added-First=2016-02-21T05:01:01.000Z

X-TAXII-Date-Added-Last=2016-02-21T12:01:01.000Z

Content-Range: items 0-49/500

Client makes a request for items 0-999 (1000 items) and the server responds with 0-49 (50 items).

GET Request

GET .../collections/my-collection/objects/?added_after=2016-02-01T00:00:01.000Z HTTP/1.1

Range: items 0-999

Accept: application/vnd.oasis.stix+json; version=2.0

GET Response

HTTP/1.1 206 Partial Content

Content-Type: application/vnd.oasis.stix+json; version=2.0

X-TAXII-Date-Added-First=2016-02-21T05:01:01.000Z

X-TAXII-Date-Added-Last=2016-02-21T12:01:01.000Z

Content-Range: items 0-49/500

Client makes a request with no Range header and server responds with pagination. This example shows
the first and second requests in this series. Note: the client needs to add the "Range" header to the
second request.

GET Request 1

GET .../collections/my-collection/objects/?added_after=2016-02-01T00:00:01.000Z HTTP/1.1

Accept: application/vnd.oasis.stix+json; version=2.0

GET Response 1

HTTP/1.1 206 Partial Content

Content-Type: application/vnd.oasis.stix+json; version=2.0

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 21 of 60

X-TAXII-Date-Added-First=2016-02-21T05:01:01.000Z

X-TAXII-Date-Added-Last=2016-02-21T12:01:01.000Z

Content-Range: items 0-99/500

GET Request 2

GET .../collections/my-collection/objects/?added_after=2016-02-01T00:00:01.000Z HTTP/1.1

Range: items 100-199

Accept: application/vnd.oasis.stix+json; version=2.0

GET Response 2

HTTP/1.1 206 Partial Content

Content-Type: application/vnd.oasis.stix+json; version=2.0

X-TAXII-Date-Added-First=2016-02-21T05:01:01.000Z

X-TAXII-Date-Added-Last=2016-02-21T12:01:01.000Z

Content-Range: items 100-199/500

3.5 Filtering

This section defines the URL parameters used for matching and filtering content. A TAXII Client may
request specific content from a TAXII Server by specifying a set of filters included in the request to the
server. The match parameter specifies what to include in the response from the TAXII Server. If no
match parameter is specified then the TAXII Client is requesting all content be returned for that Endpoint.

URL Parameters Description

added_after A timestamp that filters objects to only include those added to the Channel or
Collection after the specified timestamp. The value of this parameter is a
timestamp.

The added_after parameter is not in any way related to dates or times in a

STIX object or any other CTI object.

Note: The HTTP Date header can be used to identify and correct any time
skew between client and server.

match[<field>] The match parameter defines filtering on the specified <field>. The list of

fields that must be supported is defined per Endpoint as defined in sections 4,
5, and 6. The match parameter can be specified any number of times, where

each match instance specifies an additional filter to be applied to the resulting

data. Said another way, all match fields are ANDed together. All <field>

parameters are defined in this table. Requests MAY use a <field> not

defined in this specification, and servers MAY ignore fields they do not
understand.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 22 of 60

Each <field> MUST NOT occur more than once in a request.

Each match MAY contain one or more values. Multiple values are separated
by a comma (U+002C COMMA, “,”) without any spaces. If multiple values are
present, the match is treated as a logical OR. For instance,
?match[type]=incident,ttp specifies a filter for objects that are of type
incident OR ttp.

Examples

?match[type]=incident,ttp,actor

?match[type]=incident&match[version]=2016-01-01T01:01:01.000Z

3.5.1 Supported Fields for Match

Match Field Description

id The identifier of the object(s) that are being requested. When searching for a
STIX Object, this is a STIX ID.

Examples
?match[id]=indicator--3600ad1b-fff1-4c98-bcc9-4de3bc2e2ffb

?match[id]=indicator--3600ad1b-fff1-4c98-bcc9-4de3bc2e2ffb,sighting--
4600ad1b-fff1-4c58-bcc9-4de3bc5e2ffd

type The type of the object(s) that are being requested. Only the types listed in this
parameter are permitted in the response.

Requests for types defined in [STIX™ Version 2.0. Part 2: STIX ObjectsSTIX
2.0] MUST NOT result in an error due to an invalid type.

Requests for other types not defined in [STIX™ Version 2.0. Part 2: STIX
ObjectsSTIX 2.0] MAY be fulfilled.

Examples
?match[type]=indicator

?match[type]=indicator,sighting

version The version of the object(s) that are being requested. If no version parameter
is provided, the server MUST return the latest version of the object.

Valid values for the version parameter are:

last - requests the latest version of an object. This is the default parameter

value.

first - requests the earliest version of an object

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 23 of 60

all - requests all versions of an object

<value> - requests a specific version of an object.

For STIX objects this requests objects whose modified time matches exactly
the provided value. This value MUST follow the rules for timestamp as defined

in [STIX™ Version 2.0. Part 1: STIX Core Concepts].

For example: "2016-01-01T01:01:01.000Z" tells the server to give you the exact
STIX object with a modified time of "2016-01-01T01:01:01.000Z".

For non-STIX objects this value MAY be any string that represents the version
of that object type. If the target format does not support object versions, this
parameter MUST be ignored.

3.6 Errors

TAXII primarily relies on the standard HTTP error semantics (400-series and 500-series status codes,
defined by sections 6.5 and 6.6 of [RFC7231]) to allow TAXII Servers to indicate when an error has
occurred. For example, an HTTP 404 (Not Found) status code in response to a request to get information
about a Collection means that the Collection could not be found. The tables defining the Endpoints in
sections 4 and 5 identify common errors and which response should be used, but are not exhaustive and
do not describe all possible errors.

In addition to this, TAXII defines an error message structure that is provided in the response body when

an error status is being returned. It does not, however, define any error codes or error conditions beyond
those defined by HTTP.

3.6.1 Error Message

Message Name: error

The error message is provided by TAXII Servers in the response body when returning an HTTP error

status and contains more information describing the error, including a human-readable title and

description, an error_code and error_id, and a details structure to capture further structured

information about the error. All of the fields are application-specific and clients shouldn't assume
consistent meaning across TAXII Servers even if the codes, IDs, or titles are the same.

Property Name Type Description

title (required) string A human readable plain text title for this error.

description (optional) string A human readable plain text description that gives
details about the error or problem that was
encountered by the application.

error_id (optional) string An identifier for this particular error instance. A TAXII
Server might choose to assign each error occurrence
it's own identifier in order to facilitate debugging.

error_code (optional) string The error code for this error type. A TAXII Server
might choose to assign a common error code to all

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 24 of 60

errors of the same type. Error codes are application-
specific and not intended to be meaningful across
different TAXII Servers.

http_status (optional) string The HTTP status code applicable to this error.

external_details (optional) string A URL that points to additional details. For example,
this could be a URL pointing to a knowledge base
article describing the error code. Absence of this field
indicates that there are no additional details.

details (optional) dictionary The details property captures additional server-
specific details about the error. The keys and values
are determined by the TAXII Server and MAY be any
valid JSON object structure.

Examples

{

 "title": "Error condition XYZ",

 "description": "This error is caused when the application tries to access data...",

 "error_id": "1234",

 "error_code": "581234",

 "http_status": "409",

 "external_details": "http://example.com/ticketnumber1/errorid-1234",

 "details": {

 "somekey1": "somevalue",

 "somekey2": "some other value"

 }

}

3.7 Object Resource

Resource Name: object

This resource type is negotiated based on the media type. This specification does not define any form of
content wrapper for objects. Instead, objects are the direct payload of HTTP messages.

When returning STIX 2 content (the Content-Type header contains
application/vnd.oasis.stix+json; version=2.0) in a TAXII response, the root object MUST be a

STIX bundle per section 5 of STIX™ Version 2.0. Part 1: STIX Core Concepts. For example:

A single indicator in response to a request for an indicator by ID is enclosed in a bundle.

A list of campaigns returned from a Collection is enclosed in a bundle.

An empty response with no STIX objects results in an empty bundle.

Definitions for media types other than STIX can be found in their respective specifications.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 25 of 60

Examples

{

 "type": "bundle",

 ...,

 "indicators": [

 {

 "type": "indicator",

 "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",

 ...,

 }

]

}

3.8 Property Names

All property names and string literals MUST be exactly the same, including case, as the names listed in
the property tables in this specification.

For example, the discovery resource has a property called api_roots and it must result in the JSON

key name "api_roots".

Properties marked required in the property tables MUST be present in the JSON serialization of that
resource.

3.9 DNS SRV Names

Organizations that choose to implement a DNS SRV record in their DNS server to advertise the location
of their TAXII Server MUST use the service name taxii.

Examples

The following example is for a DNS SRV record advertising a TAXII Server for the domain “example.com”
located at taxii-hub-1.example.com:443:

_taxii._tcp.example.com. 86400 IN SRV 0 5 443 taxii-hub-1.example.com

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 26 of 60

4 TAXII™ API - Server Information
The following table provides a summary of the Server Information Endpoints (URLs and HTTP Methods)
defined by TAXII and the Resources they operate on.

URL Methods Resource Type

/taxii/ GET discovery

<api-root>/ GET api-root

<api-root>/status/<status-id>/ GET status

4.1 Server Discovery

This Endpoint provides general information about a TAXII Server, including the advertised API Roots. It's
a common entry point for TAXII Clients into the data and services provided by a TAXII Server. For
example, clients auto-discovering TAXII Servers via the DNS SRV record defined in section 1.4.1 will be
able to automatically retrieve a discovery response for that server by requesting the /taxii/ path on that

domain.

Discovery API responses MAY advertise any TAXII API Root that they have permission to advertise,
included those hosted on other servers.

Properties

Supported Method GET

URL /taxii/

Parameters N/A

Pagination No

Filtering No

Valid Request Type Accept: application/vnd.oasis.taxii+json; version=2.0

Successful Response Status: 200 (OK)

Content-Type: application/vnd.oasis.taxii+json; version=2.0

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 27 of 60

Body: discovery

Common Error Codes 404 - No discovery information could be found or the requester does not have

access to get discovery information.

401, 403 - The client either needs to authenticate or does not have access to

get discovery information

4.1.1 Discovery Resource

Resource Name: discovery

The discovery resource contains information about a TAXII Server, such as a human-readable title,

description, and contact information, as well as a list of API Roots that it is advertising. It also has an

indication of which API Root it considers the default, or the one to use in the absence of other

information/user choice.

Property Name Type Description

title (required) string A human readable plain text name used to identify this
server.

description (optional) string A human readable plain text description for this server.

contact (optional) string The human readable plain text contact information for
this server and/or the administrator of this server.

default (optional) string The default API Root that a TAXII Client MAY use.
Absence of this field indicates that there is no default
API Root. The default API Root MUST be an item in
api_roots.

api_roots (optional) list of type

string

A list of URLs that identify known API Roots. This list
MAY be filtered on a per-client basis.

Examples

URLs

https://taxii.example.com:443/taxii/

https://someserver.example.net/taxii/

GET Request

GET /taxii/ HTTP/1.1

Host: example.com

Accept: application/vnd.oasis.taxii+json; version=2.0

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 28 of 60

GET Response

HTTP/1.1 200 OK

Content-Type: application/vnd.oasis.taxii+json; version=2.0

{

 "title": "Some TAXII Server",

 "description": "This TAXII Server contains a listing of...",

 "contact": "string containing contact information",

 "default": "https://example.com/api2/",

 "api_roots": [

 "https://example.com/api1/",

 "https://example.com/api2/",

 "https://example.net/trustgroup1/"

]

}

4.2 Get API Root Information

This Endpoint provides general information about an API Root, which can be used to help users and
clients decide whether and how they want to interact with it. Multiple API Roots MAY be hosted on a
single TAXII Server. Often, an API Root represents a single trust group.

Each API Root MUST have a unique URL.

Each API Root MAY have different authentication and authorization schemes.

Properties

Supported Method GET

URL /<api-root>/

Parameters <api-root> - the base URL of the API Root containing the Collections

Pagination No

Filtering No

Valid Request Type Accept: application/vnd.oasis.taxii+json; version=2.0

Successful Response Status: 200 (OK)

Content-Type: application/vnd.oasis.taxii+json; version=2.0

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 29 of 60

Body: api-root

Common Error Codes 404 - No API Root could be found or the requester does not have access to

get API Root information.

401, 403 - The client either needs to authenticate or does not have access to

get API Root information.

4.2.1 API Root Resource

Resource Name: api-root

The api-root resource contains general information about the API Root, such as a human-readable

title and description, the TAXII versions it supports, and the maximum size of the content body it

will accept in a PUT or POST (max_content_length).

Property Name Type Description

title (required) string A human readable plain text name used to identify this
API instance.

description (optional) string A human readable plain text description for this API
Root.

versions (required) list of type

string
The list of TAXII versions that this API Root is compatible
with. A value of taxii-2.0 MUST be included in this list

to indicate conformance with this specification.

max_content_length

(required)

integer The maximum size of the request body in octets (8-bit
bytes) that the server can support. This applies to
requests only and is determined by the server. Requests
with total body length values smaller than this value
MUST NOT result in an HTTP 413 (Request Entity Too
Large) response.

Examples

URLs

https://example.com/api1/

https://example.com/api2/

https://example.org/trustgroup1/

GET Request

GET /api1/ HTTP/1.1

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 30 of 60

Host: example.com

Accept: application/vnd.oasis.taxii+json; version-2.0

GET Response

HTTP/1.1 200 OK

Content-Type: application/vnd.oasis.taxii+json; version=2.0

{

 "title": "Malware Research Group",

 "description": "A trust group setup for malware researchers",

 "versions": ["taxii-2.0"],

 "max_content_length": 9765625

}

4.3 Get Status

This Endpoint provides information about the status of a previous request. In TAXII 2.0, the only request
that can be monitored is one to add objects to a Collection (see section 5.4). It is typically used by TAXII
Clients to monitor a request that they made in order to take action when it is complete.

TAXII Servers SHOULD provide status messages at this Endpoint while the request is in progress until at
least 24 hours after it has been marked completed.

Properties

Supported Method GET

URL /<api-root>/status/<status-id>/

Parameters <api-root> - the base URL of the API Root containing the Collections

<status-id> - the identifier of the status message being requested

Pagination No

Filtering No

Valid Request Type Accept: application/vnd.oasis.taxii+json; version=2.0

Successful Response Status: 200 (OK)

Content-Type: application/vnd.oasis.taxii+json; version=2.0

Body: status

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 31 of 60

Common Error Codes 404 - No status could be found or the requester does not have access to get

status information.

401, 403 - The client either needs to authenticate or does not have access to

get status information

4.3.1 Status Resource

Resource Name: status

The status resource represents information about a request to add objects to a Collection. It contains
information about the status of the request, such as whether or not it's completed (status) and the status

of individual objects within the request (i.e. whether they are still pending, completed and failed, or
completed and succeeded).

The status resource is returned in two places: as a response to the initial request (see section 5.4) and in
response to a get status request (see section 4.3), which can be made after the initial request to
continuously monitor its status.

The list of objects that are still pending and the list of objects that have been added are both lists of
strings containing the identifier of the object (e.g., for STIX objects, their id). The list of objects that

failed to be added is a simple type so that both the id and a message indicating why it failed can be

provided.

Property Name Type Description

id (required) string The identifier of this Status resource.

status (required) string The overall status of a previous POST request
where an HTTP 202 (Accept) was returned. The
value of this property MUST be one of complete

or pending. A value of complete indicates that

this resource will not be updated further and
MAY be removed in the future. A status of
pending indicates that this resource MAY

update in the future.

request_timestamp

(optional)
timestamp The datetime of the request that this status

resource is monitoring.

total_count (required) integer The total number of objects that were in the
request. For a STIX bundle this would be the

number of objects in the bundle.

success_count (required) integer The number of objects that were successfully
created.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 32 of 60

successes (optional) list of type

string
A list of object IDs that were successfully
processed. For STIX objects the STIX ID MUST
be used here. For object types that do not have
their own identifier, the server MAY use any
value as the id.

failure_count (required) integer The number of objects that failed to be created.

failures (optional) list of type

status-failure
A list of objects that were not successfully
processed.

pending_count (required) integer The number of objects that have yet to be
processed.

pendings (optional) list of type

string
A list of objects for objects that have yet to be
processed. For STIX objects the STIX ID MUST
be used here. For object types that do not have
their own identifier, the server MAY use any
value as the id.

Type Name: status-failure

This type represents an object that was not added to the Collection. It contains the id of the object and a

message describing why it couldn't be added.

Property Name Type Description

id (required) string The identifier of the object that failed to be
created. For STIX objects the id MUST be the

STIX Object id. For object types that do not

have their own identifier, the server MAY use
any value as the id.

message (optional) string A message indicating why the object failed to be
created.

Examples

URLs

https://example.com/api1/status/2d086da7-4bdc-4f91-900e-d77486753710/

https://example.com/api2/status/88dc8293-827e-44f0-a592-4b5302fbe9d3/

https://example.org/trustgroup1/status/5d26743b-4ade-4b7d-8fea-f68119d4f909/

GET Request

GET /api1/status/2d086da7-4bdc-4f91-900e-d77486753710/ HTTP/1.1

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 33 of 60

Host: example.com

Accept: application/vnd.oasis.taxii+json; version=2.0

GET Response

HTTP/1.1 200 OK

Content-Type: application/vnd.oasis.taxii+json; version=2.0

{

 "id": "2d086da7-4bdc-4f91-900e-d77486753710",

 "status": "pending",

 "request_timestamp": "2016-11-02T12:34:34.12345Z",

 "total_objects": 4,

 "success_count": 1,

 "successes": [

 "indicator--c410e480-e42b-47d1-9476-85307c12bcbf"

],

 "failure_count": 1,

 "failures": [

 {

 "id": "malware--664fa29d-bf65-4f28-a667-bdb76f29ec98",

 "message": "Unable to process object"

 }

],

 "pending_count": 2,

 "pendings": [

 "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",

 "relationship--045585ad-a22f-4333-af33-bfd503a683b5"

]

}

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 34 of 60

5 TAXII™ API - Collections
A TAXII Collection is a logical grouping of threat intelligence that enables the exchange of information
between a TAXII Client and a TAXII Server in a request-response manner. Collections are hosted in the
context of an API Root. Each API Root MAY have zero or more Collections. As with other TAXII
Endpoints, the ability of TAXII Clients to read from and write to Collections can be restricted depending on
their permissions level.

This sections defines the TAXII API Collection Endpoints (URLs and methods), valid media types, and
responses.

The following table provides a summary of the Endpoints (URLs and HTTP Methods) defined by TAXII
and the Resources they operate on.

URL Methods Resource Type

<api-root>/collections/ GET collections

<api-root>/collections/<id>/ GET collection

<api-root>/collections/<id>/objects/ GET, POST object

<api-root>/collections/<id>/objects/<object-id>/ GET object

<api-root>/collections/<id>/manifest/ GET manifest

5.1 Get Collections

This Endpoint provides information about the Collections hosted under this API Root. This is similar to the
response to get a Collection (see section 5.2), but rather than providing information about one Collection
it provides information about all of the Collections. Most importantly, it provides the Collection's id, which

is used to request objects or manifest entries from the Collection.

Properties

Supported Method GET

URL /<api-root>/collections/

Parameters <api-root> - the base URL of the API Root containing the Collections

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 35 of 60

Pagination Yes

Filtering No

Valid Request Type Accept: application/vnd.oasis.taxii+json; version=2.0

Successful Response Status: 200 (OK)

Content-Type: application/vnd.oasis.taxii+json; version=2.0

Body: collections

Common Error Codes 404 - The Collections resource does not exist or the client does not have

access to the Collections resource.

401, 403 - The client either needs to authenticate or does not have

access to get Collection information.

5.1.1 Collections Resource

Resource Name: collections

The collections resource is a simple wrapper around a list of collection resources.

Property Name Type Description

collections (optional) list of type

collection
A list of Collections. If there are no Collections in the
list, this key MUST be omitted and the response is an
empty object. The collection resource is defined in

section 5.2.1.

Examples

GET Request

GET /api1/collections/ HTTP/1.1

Host: example.com

Accept: application/vnd.oasis.taxii+json; version=2.0

GET Response

HTTP/1.1 200 OK

Content-Type: application/vnd.oasis.taxii+json; version=2.0

{

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 36 of 60

 "collections": [

 {

 "id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116",

 "title": "High Value Indicator Collection",

 "description": "This data collection is for collecting high value IOCs",

 "can_read": true,

 "can_write": false,

 "media_types": [

 "application/vnd.oasis.stix+json; version=2.0"

]

 },

 {

 "id": "52892447-4d7e-4f70-b94d-d7f22742ff63",

 "title": "Indicators from the past 24-hours",

 "description": "This data collection is for collecting current IOCs",

 "can_read": true,

 "can_write": false,

 "media_types": [

 "application/vnd.oasis.stix+json; version=2.0"

]

 }

]

}

5.2 Get a Collection

This Endpoint provides general information about a Collection, which can be used to help users and
clients decide whether and how they want to interact with it. For example, it will tell clients what it's called
and what permissions they have to it.

Properties

Supported Method GET

URL /<api-root>/collections/<id>/

Parameters <api-root> - the base URL of the API Root containing the Collection

<id> - the identifier of the Collection being requested

Pagination No

Filtering No

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 37 of 60

Valid Request Type Accept: application/vnd.oasis.taxii+json; version=2.0

Successful Response Status: 200 (OK)

Content-Type: application/vnd.oasis.taxii+json; version=2.0

Body: collection

Common Error Codes 404 - The Collection could not be found or the requester does not have

access to get Collection information.

401, 403 - The client either needs to authenticate or does not have

access to get Collection information

5.2.1 Collection Resource

Resource Name: collection

The collection resource contains general information about a Collection, such as its id, a human-

readable title and description, an optional list of supported media_types (representing the media

type of objects can be requested from or added to it), and whether the TAXII Client, as authenticated, can
get objects from the Collection and/or add objects to it.

Property Name Type Description

id (required) identifier The id property universally and uniquely identifies this

Collection. It is used in the Get Collection Endpoint
(see section 5.2) as the <id> parameter to retrieve the

Collection.

title (required) string A human readable plain text title used to identify this
Collection.

description (optional) string A human readable plain text description for this
Collection.

can_read (required) boolean Indicates if the requester can read (i.e., GET) objects
from this Collection.

can_write (required) boolean Indicates if the the requester can write (i.e., POST)
objects to this Collection.

media_types (optional) list of type

string
A list of supported media types for Objects in this
Collection. Absence of this field is equivalent to a
single-value list containing
application/vnd.oasis.stix+json.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 38 of 60

Examples

GET Request

GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/ HTTP/1.1

Host: example.com

Accept: application/vnd.oasis.taxii+json; version=2.0

GET Response

HTTP/1.1 200 OK

Content-Type: application/vnd.oasis.taxii+json; version=2.0

{

 "id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116",

 "title": "High Value Indicator Collection",

 "description": "This data collection is for collecting high value IOCs",

 "can_read": true,

 "can_write": false,

 "media_types": [

 "application/vnd.oasis.stix+json; version=2.0"

]

}

5.3 Get Objects

This Endpoint retrieves objects from a Collection. Clients can search for objects in the Collection, retrieve
all objects in a Collection, or paginate through objects in the Collection.

To support searching the Collection, the Endpoint supports filtering as defined in section 3.5. Clients can
provide one or more filter parameters to get objects with a specific ID, of a specific type, or with a specific
version. Future versions of TAXII will add more advanced filtering capabilities.

To support requesting a large number of objects, the Endpoint supports pagination as defined in section
3.4. Clients can optionally provide their desired number of items per page and which page they want and
servers will return that result set. Servers can also override client-provided pagination parameters,
including requiring pagination when it isn't requested. As such, all clients should be aware that responses
to this Endpoint may be paginated and be prepared to properly handle that.

When requesting STIX 2.0 content, the content will always be delivered in a STIX bundle (even if there's

only zero or one objects, in which case the bundle will be empty or only contain one object). Other

content types can be requested by using a different Accept header, however the specific representation

of other content types is not defined.

Properties

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 39 of 60

Supported Method GET

URL /<api-root>/collections/<id>/objects/

Parameters <api-root> - the base URL of the API Root containing the Collection

<id> - the identifier of the Collection from which objects are being

requested

Pagination Yes

Filtering Yes - id, type, version

Valid Request Type Accept: application/vnd.oasis.stix+json; version=2.0

Successful Response Status: 200 (OK)

Content-Type: application/vnd.oasis.stix+json; version=2.0

Body: bundle

Requests for other content types are permitted and may result in other
response bodies.

Common Error Codes 404 - The Objects resource does not exist or the client does not have

access to the Objects resource.

401, 403 - The client either needs to authenticate or does not have access

to get objects in the Collection.

Examples

GET Request

GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/objects/ HTTP/1.1

Host: example.com

Accept: application/vnd.oasis.stix+json; version=2.0

GET Response

HTTP/1.1 200 OK

Content-Type: application/vnd.oasis.stix+json; version=2.0

{

 "type": "bundle",

 ...

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 40 of 60

 "objects": [

 {

 "type": "indicator",

 ...

 }

]

}

5.4 Add Objects

This Endpoint adds objects to a Collection.

Successful responses to this Endpoint will contain a status resource describing the status of the request.

The status resource contains an id, which can be used to make requests to the get status Endpoint (see

section 4.3), a status flag to indicate whether the request is completed or still being processed, and

information about the status of the particular objects in the request.

If the request is marked pending in the status field, the client SHOULD periodically poll the get status

Endpoint to get an updated status until such a time that the status property returns a value of complete.

At that point, the request can be considered complete.

When adding STIX 2.0 content, clients MUST deliver all objects in a STIX bundle. Other content types

MAY be added (if the Collection supports it) by using a different Content-Type header, however the

specific representation of other content types is not defined.

Properties

Supported Method POST

URL /<api-root>/Collections/<id>/objects/

Parameters <api-root> - the base URL of the API Root containing the Collection

<id> - the identifier of the Collection to which objects are being added

Pagination No

Filtering No

Valid Request Type Accept: application/vnd.oasis.taxii+json; version=2.0

Content-Type: application/vnd.oasis.stix+json; version=2.0

Body: bundle

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 41 of 60

POSTs containing other Content-Types are permitted and may have a
different body.

Successful Response Status: 202 (Accepted)

Content-Type: application/vnd.oasis.taxii+json; version=2.0

Body: status

Common Error Codes 422 - The object type or version is not supported or could not be

processed. This can happen, for example, when sending a version of
STIX that this TAXII Server does not support and cannot process, when
sending a malformed body, or other unprocessable content.

401, 403 - The client either needs to authenticate or does not have

access to get Collection information

Examples

POST Request

POST /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/objects/ HTTP/1.1

Host: example.com

Accept: application/vnd.oasis.taxii+json; version=2.0

Content-Type: application/vnd.oasis.stix+json; version=2.0

{

 "type": "bundle",

 ...

 "objects": [

 {

 "type": "indicator",

 "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf",

 ...

 }

]

}

POST Response

HTTP/1.1 202 Accepted

Content-Type: application/vnd.oasis.taxii+json; version=2.0

{

 "id": "2d086da7-4bdc-4f91-900e-d77486753710",

 "status": "pending",

 "request_timestamp": "2016-11-02T12:34:34.12345Z",

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 42 of 60

 "total_count": 4,

 "success_count": 1,

 "successes": [

 "indicator--c410e480-e42b-47d1-9476-85307c12bcbf"

],

 "failure_count": 0,

 "pending_count": 3

}

5.5 Get an Object

This Endpoint gets an object from a Collection by its id. It can be thought of as a search where the

match[id] parameter is set to the <object-id> in the path. For STIX 2.0 objects, the <object-id>

MUST be the STIX id.

To support getting a particular version of an object, this Endpoint supports filtering as defined in section
3.5. The only valid match parameter is version.

When requesting STIX 2.0 content, the content will always be delivered in a STIX bundle (even if there's

only zero or one objects, in which case the bundle will be empty or only contain one object). Other

content types MAY be requested by using a different Accept header, however the specific representation

of other content types is not defined.

Properties

Supported Method GET

URL /<api-root>/collections/<id>/objects/<object-id>/

Parameters <api-root> - the base URL of the API Root containing the Collection

<id> - the identifier of the Collection being requested

<object-id> - the ID of the object being requested

Pagination No

Filtering Yes - version

Valid Request Type Accept: application/vnd.oasis.stix+json; version=2.0

Successful Response Status: 200 (OK)

Content-Type: application/vnd.oasis.stix+json; version=2.0

Body: bundle

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 43 of 60

Requests for other content types are permitted and may result in other
response bodies.

Common Error Codes 404 - The object could not be found or the requester does not have access

to get the object.

401, 403 - The client either needs to authenticate or does not have

access to get the object.

Examples

GET Request

GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/object/indicator--252c7c11-daf2-
42bd-843b-be65edca9f61/ HTTP/1.1

Host: example.com

Accept: application/vnd.oasis.stix+json; version=2.0

GET Response

HTTP/1.1 200 OK

Content-Type: application/vnd.oasis.stix+json; version=2.0

{

 "type": "bundle",

 ...,

 "indicators": [

 {

 "type": "indicator",

 "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",

 ...,

 }

]

}

5.6 Get Object Manifests

This Endpoint retrieves a manifest about objects from a Collection. It supports filtering and pagination
identical to the get objects Endpoint (see section 5.3) but rather than returning the object itself it returns
metadata about the object. It can be used to retrieve metadata to decide whether it's worth retrieving the
actual objects.

This Endpoint supports filtering, which is applied against the source object rather than the manifest entry
for an object. Thus, searching the manifest for a type of indicator will return the manifest entries for

objects with a type of indicator, even though the manifest doesn't have a type field.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 44 of 60

Properties

Supported Method GET

URL /<api-root>/collections/<id>/manifest/

Parameters <api-root> - the base URL of the API Root containing the Collection

<id> - the identifier of the Collection being requested

Pagination Yes

Filtering Yes - id, type, version

Filtering is based on properties of the objects that the manifest entries
represent. For example, filtering by type=indicator will return manifest

entries for objects with a type of indicator.

Valid Request Type Accept: application/vnd.oasis.taxii+json; version=2.0

Successful Response Status: 200 (OK)

Content-Type: application/vnd.oasis.taxii+json; version=2.0

Body: manifest

Common Error Codes 404 - The Manifest resource does not exist or the client does not have

access to the Manifest resource.

401, 403 - The client either needs to authenticate or does not have

access to get manifests for objects in the Collection.

5.6.1 Manifest Resource

Resource Name: manifest

The manifest resource is a simple wrapper around a list of manifest-entry items.

Property Name Type Description

objects (optional) list of type

manifest-entry

The list of manifest entries for objects returned
by the request. If there are no manifest-entry

items in the list, this key MUST be omitted and
the response is an empty object.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 45 of 60

Type Name: manifest-entry

The manifest-entry type captures metadata about a single object, indicated by the id property. The

metadata includes information such as when the object was added to the Collection, what versions of the
object are available, and what media types the object is available in.

Property Name Type Description

id (required) identifier The identifier of the object that this manifest

entry describes.

date_added (optional) timestamp The date and time this object was added to the
server.

versions (optional) list of type

string

A list of available versions, sorted in order from
most recent version to least recent version.

For example versions[0] contains the newest
version and versions[len-1] contains the oldest
version.

For objects in STIX format, the STIX modified

field is the version.

media_types (optional) list of type

string
The media types that this object can be
requested in.

Examples

GET Request

GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/manifest/ HTTP/1.1

Host: example.com

Accept: application/vnd.oasis.taxii+json; version=2.0

GET Response

HTTP/1.1 200 OK

Content-Type: application/vnd.oasis.taxii+json; version=2.0

{

 "objects": [

 {

 "id": "indicator--29aba82c-5393-42a8-9edb-6a2cb1df070b",

 "date_added": "2016-11-01T03:04:05Z",

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 46 of 60

 "versions": ["2016-11-03T12:30:59.000Z","2016-12-03T12:30:59.000Z"],

 "media_types": ["application/vnd.oasis.stix+json; version=2.0"]

 },

 {

 "id": "indicator--ef0b28e1-308c-4a30-8770-9b4851b260a5",

 "date_added": "2016-11-01T10:29:05Z",

 "versions": ["2016-11-03T12:30:59.000Z"],

 "media_types": ["application/vnd.oasis.stix+json; version=2.0"]

 }

]

}

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 47 of 60

6 TAXII™ API - Channels
RESERVED

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 48 of 60

7 Customizing TAXII Resources
This section defines how to extent TAXII in an interoperable manner.

7.1 Custom Properties

It is understood that there will be cases where certain information exchanges can be improved by adding
properties that are not specified nor reserved in this document; these properties are called Custom
Properties. This section provides guidance and requirements for how TAXII Servers and Clients should
use and interpret Custom Properties in order to extend TAXII in an interoperable manner.

Note: The presence of Custom Properties may introduce variability of behavior depending on whether or
not the TAXII Server or Client understands the Custom Properties. A reasonable strategy to minimize
unwanted variations in behavior is to provide well defined and consistent rules for processing Custom
Properties to any TAXII Server or Client that would be reasonably expected to parse them.

7.1.1 Requirements

● A TAXII resource MAY have any number of Custom Properties.

● Custom Property names MUST be in ASCII and are limited to characters a-z (lowercase ASCII)

and underscore (_).

● Custom Property names SHOULD start with “x_” followed by a source unique identifier (like a

domain name), an underscore and then the name. For example: x_examplecom_customfield.

● Custom Property names SHOULD be no longer than 30 ASCII characters in length.

● Custom Property names MUST have a minimum length of 3 ASCII characters.

● Custom Property names MUST be no longer than 256 ASCII characters in length.

● Custom Property names that are not prefixed with “x_” may be used in a future version of the

specification for a different meaning. If compatibility with future versions of this specification is

required, the “x_” prefix MUST be used.

● Custom Property names SHOULD be unique when produced by the same source and SHOULD

use a consistent namespace prefix (e.g., a domain name).

● Custom Properties SHOULD only be used when there are no existing properties defined by the

TAXII specification that fulfill that need.

TAXII Servers that receive a TAXII Resource with one or more Custom Properties it does not understand
MAY respond in one of two ways:

1. Either refuse to process the content further and respond to the message with an HTTP 422

(Unprocessable Entity) status code,

2. or silently ignore non-understood properties and continue processing the message.

TAXII Clients that receive a TAXII Resource with one or more Custom Properties it does not understand
MAY silently ignore non-understood properties and continue processing the message.

The reporting and logging of errors originating from the processing of Custom Properties depends on the
TAXII Server and Client implementations and is therefore not covered in this specification.

Examples
{

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 49 of 60

 ...,

 "x_acmeinc_scoring": {

 "impact": "high",

 "probability": "low"

 },

 ...

}

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 50 of 60

8 Conformance

8.1 TAXII™ Servers

This section describes the types of TAXII Servers that can be implemented and which normative
requirements those types of servers must conform to.

8.1.1 TAXII™ 2.0 Server

A "TAXII 2.0 Server" is any software that conforms to the following normative requirements:

1. It MUST support all requirements for a TAXII Collections Server as defined in section 8.1.2.

8.1.2 TAXII™ 2.0 Collections Server

A "TAXII 2.0 Collections Server" is any software that conforms to the following normative requirements:

1. It MUST support all requirements as defined in section 3, section 4 and section 5.

2. It MUST include all required properties within TAXII Resources, as defined in section 4 and

section 5.

3. It MUST support all features listed in section 8.2, Mandatory Server Features.

4. It MAY support any features listed in section 8.3, Optional Server Features. Software supporting

an optional feature MUST comply with the normative requirements of that feature.

8.1.3 TAXII™ 2.0 Channels Server

RESERVED

8.2 Mandatory Server Features

This sections defines the mandatory features that all TAXII Servers must implement.

8.2.1 TAXII Server Core Requirements

1. It MUST define the URL of the Discovery API to be /taxii/ and it MUST be located at the root of

the server, e.g., https://example.com/taxii/

2. It MUST support at least one API Root.

3. It MAY support multiple API Roots.

4. It MAY implement other HTTP Methods, Content Types, and/or URLs beyond those defined in

this specification.

5. It MUST be capable of sending HTTP responses for features that it supports whose content is

valid TAXII as defined in sections 3, 4, 5, and 6 or STIX as defined in [STIX™ Version 2.0. Part 1:

STIX Core Concepts].

6. All properties MUST conform to the data type and normative requirements for that property.

8.2.2 HTTPS and Authentication Server Requirements

1. It MUST accept TAXII 2.0 requests using HTTPS [RFC7230].

2. It MUST accept connections using TLS version 1.2 [RFC5246] and SHOULD accept connections

using TLS version 1.3 [TLS1.3] or higher

3. It SHOULD NOT accept any TLS 1.2 connections that use any of the cipher suites that are listed

in the cipher suite black list in Appendix A of [RFC7540].

4. It MUST implement the HTTP Basic authentication scheme per [RFC 7617].

https://example.com/taxii/

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 51 of 60

5. It MAY permit configurations that enable and/or disable all authentication schemes, including

HTTP Basic authentication.

6. It MAY implement additional authentication and authorization schemes beyond HTTP Basic, see

section 1.4.8.

7. It MAY restrict access to clients by omitting specific objects, information, or optional fields from

any TAXII response.

8. It MAY permit operators to disable all authentication.

9. It MAY choose to not respond to (a.k.a. silently ignore) unauthorized requests.

8.3 Optional Server Features

This sections defines the optional features that a TAXII Server MAY implement.

8.3.1 Client Certificate Verification

TAXII 2.0 servers MAY choose to verify a client’s certificate and use it for authentication. TAXII Servers
supporting client certificate verification and authentication MUST follow the normative requirements listed
in this section.

● The default strategy for TAXII Servers authenticating and verifying certificates SHOULD be PKIX

as defined in [RFC5280], [RFC6818], [RFC6125] et al.

● It MAY support other certificate verification policies such as Certificate Pinning.

8.4 TAXII™ Clients

This section describes the types of TAXII Clients that can be implemented and which normative
requirements those types of clients must conform to.

8.4.1 TAXII™ 2.0 Client

A "TAXII 2.0 Client" is any software that conforms to the following normative requirements:

1. It MUST support all requirements for a TAXII Collections Client as defined in section 8.4.2.

8.4.2 TAXII™ 2.0 Collections Client

A "TAXII 2.0 Collections Client" is any software that exchanges CTI data with a TAXII 2.0 Collections
Server or a TAXII 2.0 Server. A TAXII 2.0 Collections Client conforms to the following normative
requirements:

1. It SHOULD be capable of looking up and using the TAXII SRV record from DNS.

2. It MUST support parsing all properties for resources defined in section 4 and section 5.

3. It MUST support all features listed in section 8.5, Mandatory Client Features.

8.4.3 TAXII™ 2.0 Channels Client

RESERVED

8.5 Mandatory Client Features

This section defines the mandatory features that all TAXII Clients MUST support.

8.5.1 HTTPS and Authentication Client Requirements

1. It MUST initiate TAXII 2.0 requests to a TAXII 2.0 Server using HTTPS [RFC7230].

2. It MUST support TLS 1.2 and SHOULD use TLS version 1.3 [TLS1.3] or higher

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 52 of 60

3. It SHOULD NOT use TLS 1.2 with any of the cipher suites that are listed in the cipher suite

blacklist in Appendix A of [RFC7540].

4. It MUST implement the HTTP Basic authentication scheme as a client per [RFC 7617].

5. It MAY implement additional authentication and authorization schemes beyond HTTP Basic, see

section 1.4.8.

8.5.2 Server Certificate Verification

● The default strategy for TAXII Clients authenticating and verifying the server's TLS certificate

SHOULD be PKIX as defined in [RFC5280], [RFC6818], [RFC6125] et al.

● TAXII Clients MAY support other certification verification policies such as:

○ Certificate Pinning: A single or limited set of either hard-coded or physically distributed

pinned certificate authorities or end-entity certificates.

○ DANE: DNS-based Authentication of Named Entities [RFC7671]. Systems implementing

DANE SHOULD also implement DNSSEC [RFC4033].

○ Note that Self-Signed Certificates (like other certificates which cannot be verified by

PKIX) MAY be supported via Certificate Pinning and/or DANE as noted above.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 53 of 60

Appendix A. Glossary

API Root - A grouping of TAXII Channels, Collections, and related functionality.

Channel - A publish-subscribe communications method where messages are exchanged.

CTI - Cyber Threat Intelligence

Collection - A logical group of CTI objects.

Endpoint - A combination of a URL and HTTP method with defined behavior in TAXII.

STIX - Structured Threat Information Expression (STIX™) is a language and serialization format used to
exchange cyber threat intelligence (CTI).

STIX Content - STIX documents, including STIX Objects, grouped as STIX Bundles.

STIX Object - A STIX Domain Object (SDO) or STIX Relationship Object (SRO).

TAXII - Trusted Automated eXchange of Intelligence Information (TAXII™) is an application layer protocol
for the communication of cyber threat intelligence (CTI).

TAXII Client - A software package that connects to a TAXII Server and supports the exchange of CTI.

TAXII Server - A software package that supports the exchange of CTI.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 54 of 60

Appendix B. Acknowledgments
TAXII Subcommittee Chairs:

Bret Jordan, Symantec Corp.

Mark Davidson, NC4

Special Thanks:

Substantial contributions to this specification from the following individuals are gratefully acknowledged:

Terry MacDonald, Cosive

Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)

Richard Struse, DHS Office of Cybersecurity and Communications

Sergey Polzunov, EclecticIQ

Iain Brown, GDS

Eric Burger, Georgetown University

Jason Keirstead, IBM

Allan Thomson, LookingGlass Cyber

Rich Piazza, MITRE Corporation

Charles Schmidt, MITRE Corporation

John Wunder, MITRE Corporation

Mark Davidson, NC4

John-Mark Gurney, New Context Services, Inc.

Dave Cridland, Surevine

Bret Jordan, Symantec Corp.

Participants:

The following individuals were members of the OASIS CTI Technical Committee during the creation of
this specification and their contributions are gratefully acknowledged:

David Crawford, Aetna

Marcos Orallo, Airbus Group SAS

Roman Fiedler, AIT Austrian Institute of Technology

Florian Skopik, AIT Austrian Institute of Technology

Russell Spitler, AlienVault

Ryan Clough, Anomali

Nicholas Hayden, Anomali

Wei Huang, Anomali

Angela Nichols, Anomali

Hugh Njemanze, Anomali

Katie Pelusi, Anomali

Dean Thompson, Australia and New Zealand Banking Group (ANZ Bank)

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 55 of 60

Alexander Foley, Bank of America

Sounil Yu, Bank of America

Vicky Laurens, Bank of Montreal

Humphrey Christian, Bay Dynamics

Ryan Stolte, Bay Dynamics

Alexandre Dulaunoy, CIRCL

Andras Iklody, CIRCL

Rapha‘l Vinot, CIRCL

Sarah Kelley, CIS

Syam Appala, Cisco Systems

Ted Bedwell, Cisco Systems

David McGrew, Cisco Systems

Mark-David McLaughlin, Cisco Systems

Pavan Reddy, Cisco Systems

Omar Santos, Cisco Systems

Jyoti Verma, Cisco Systems

Doug DePeppe, Cyber Threat Intelligence Network, Inc. (CTIN)

Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)

Ben Othman, Cyber Threat Intelligence Network, Inc. (CTIN)

Jeff Odom, Dell

Sreejith Padmajadevi, Dell

Ravi Sharda, Dell

Will Urbanski, Dell

Sean Sobieraj, DHS Office of Cybersecurity and Communications (CS&C)

Richard Struse, DHS Office of Cybersecurity and Communications (CS&C)

Marlon Taylor, DHS Office of Cybersecurity and Communications (CS&C)

Jens Aabol, Difi-Agency for Public Management and eGovernment

Wouter Bolsterlee, EclecticIQ

Marko Dragoljevic, EclecticIQ

Oliver Gheorghe, EclecticIQ

Joep Gommers, EclecticIQ

Sergey Polzunov, EclecticIQ

Rutger Prins, EclecticIQ

Andrei S”rghi, EclecticIQ

Raymon van der Velde, EclecticIQ

Ben Sooter, Electric Power Research Institute (EPRI)

Chris Ricard, Financial Services Information Sharing and Analysis Center (FS-ISAC)

Phillip Boles, FireEye, Inc.

Prasad Gaikwad, FireEye, Inc.

Rajeev Jha, FireEye, Inc.

Anuj Kumar, FireEye, Inc.

Shyamal Pandya, FireEye, Inc.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 56 of 60

Paul Patrick, FireEye, Inc.

Scott Shreve, FireEye, Inc.

Jon Warren, FireEye, Inc.

Remko Weterings, FireEye, Inc.

Gavin Chow, Fortinet Inc.

Steve Fossen, Fortinet Inc.

Kenichi Terashita, Fortinet Inc.

Ryusuke Masuoka, Fujitsu Limited

Daisuke Murabayashi, Fujitsu Limited

Derek Northrope, Fujitsu Limited

Jonathan Algar, GDS

Iain Brown, GDS

Adam Cooper, GDS

Mike McLellan, GDS

Tyrone Nembhard, GDS

Chris O'Brien, GDS

James Penman, GDS

Howard Staple, GDS

Chris Taylor, GDS

Laurie Thomson, GDS

Alastair Treharne, GDS

Julian White, GDS

Bethany Yates, GDS

Robert van Engelen, Genivia

Eric Burger, Georgetown University

Allison Miller, Google Inc.

Mark Risher, Google Inc.

Yoshihide Kawada, Hitachi, Ltd.

Jun Nakanishi, Hitachi, Ltd.

Kazuo Noguchi, Hitachi, Ltd.

Akihito Sawada, Hitachi, Ltd.

Yutaka Takami, Hitachi, Ltd.

Masato Terada, Hitachi, Ltd.

Peter Allor, IBM

Eldan Ben-Haim, IBM

Allen Hadden, IBM

Sandra Hernandez, IBM

Jason Keirstead, IBM

John Morris, IBM

Laura Rusu, IBM

Ron Williams, IBM

Paul Martini, iboss, Inc.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 57 of 60

Jerome Athias, Individual

Peter Brown, Individual

Joerg Eschweiler, Individual

Stefan Hagen, Individual

Elysa Jones, Individual

Sanjiv Kalkar, Individual

Terry MacDonald, Individual

Alex Pinto, Individual

Tim Casey, Intel Corporation

Kent Landfield, Intel Corporation

Karin Marr, Johns Hopkins University Applied Physics Laboratory

Julie Modlin, Johns Hopkins University Applied Physics Laboratory

Mark Moss, Johns Hopkins University Applied Physics Laboratory

Mark Munoz, Johns Hopkins University Applied Physics Laboratory

Nathan Reller, Johns Hopkins University Applied Physics Laboratory

Pamela Smith, Johns Hopkins University Applied Physics Laboratory

David Laurance, JPMorgan Chase Bank, N.A.

Russell Culpepper, Kaiser Permanente

Beth Pumo, Kaiser Permanente

Michael Slavick, Kaiser Permanente

Trey Darley, Kingfisher Operations, sprl

Gus Creedon, Logistics Management Institute

Wesley Brown, LookingGlass

Jamison Day, LookingGlass

Kinshuk Pahare, LookingGlass

Allan Thomson, LookingGlass

Ian Truslove, LookingGlass

Chris Wood, LookingGlass

Greg Back, Mitre Corporation

Jonathan Baker, Mitre Corporation

Sean Barnum, Mitre Corporation

Desiree Beck, Mitre Corporation

Michael Chisholm, Mitre Corporation

Nicole Gong, Mitre Corporation

Ivan Kirillov, Mitre Corporation

Michael Kouremetis, Mitre Corporation

Chris Lenk, Mitre Corporation

Richard Piazza, Mitre Corporation

Larry Rodrigues, Mitre Corporation

Jon Salwen, Mitre Corporation

Charles Schmidt, Mitre Corporation

Alex Tweed, Mitre Corporation

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 58 of 60

Emmanuelle Vargas-Gonzalez, Mitre Corporation

John Wunder, Mitre Corporation

James Cabral, MTG Management Consultants, LLC.

Scott Algeier, National Council of ISACs (NCI)

Denise Anderson, National Council of ISACs (NCI)

Josh Poster, National Council of ISACs (NCI)

Mike Boyle, National Security Agency

Joe Brule, National Security Agency

Jessica Fitzgerald-McKay, National Security Agency

David Kemp, National Security Agency

Shaun McCullough, National Security Agency

John Anderson, NC4

Michael Butt, NC4

Mark Davidson, NC4

Daniel Dye, NC4

Angelo Mendonca, NC4

Michael Pepin, NC4

Natalie Suarez, NC4

Benjamin Yates, NC4

Daichi Hasumi, NEC Corporation

Takahiro Kakumaru, NEC Corporation

Lauri Korts-P_rn, NEC Corporation

John-Mark Gurney, New Context Services, Inc.

Christian Hunt, New Context Services, Inc.

Daniel Riedel, New Context Services, Inc.

Andrew Storms, New Context Services, Inc.

Stephen Banghart, NIST

David Darnell, North American Energy Standards Board

Cory Casanave, Object Management Group

Aharon Chernin, Perch

Dave Eilken, Perch

Sourabh Satish, Phantom

Josh Larkins, PhishMe Inc.

John Tolbert, Queralt Inc.

Ted Julian, Resilient Systems, Inc..

Igor Baikalov, Securonix

Joseph Brand, Semper Fortis Solutions

Duncan Sparrell, sFractal Consulting LLC

Thomas Schreck, Siemens AG

Rob Roel, Southern California Edison

Dave Cridland, Surevine Ltd.

Bret Jordan, Symantec Corp.

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 59 of 60

Curtis Kostrosky, Symantec Corp.

Juha Haaga, Synopsys

Masood Nasir, TELUS

Greg Reaume, TELUS

Alan Steer, TELUS

Crystal Hayes, The Boeing Company

Wade Baker, ThreatConnect, Inc.

Cole Iliff, ThreatConnect, Inc.

Andrew Pendergast, ThreatConnect, Inc.

Ben Schmoker, ThreatConnect, Inc.

Jason Spies, ThreatConnect, Inc.

Ryan Trost, ThreatQuotient, Inc.

Patrick Coughlin, TruSTAR Technology

Chris Roblee, TruSTAR Technology

Mark Angel, U.S. Bank

Brian Fay, U.S. Bank

Joseph Frazier, U.S. Bank

Mark Heidrick, U.S. Bank

Mona Magathan, U.S. Bank

Yevgen Sautin, U.S. Bank

Richard Shok, U.S. Bank

James Bohling, US Department of Defense (DoD)

Eoghan Casey, US Department of Defense (DoD)

Gary Katz, US Department of Defense (DoD)

Jeffrey Mates, US Department of Defense (DoD)

Evette Maynard-Noel, US Department of Homeland Security

Robert Coderre, VeriSign

Kyle Maxwell, VeriSign

Eric Osterweil, VeriSign

Patrick Maroney, Wapack Labs LLC

Anthony Rutkowski, Yanna Technologies LLC

taxii-v2.0-cs01 19 July 2017
Standards Track Work Product Copyright © OASIS Open 2017. All Rights Reserved. Page 60 of 60

Appendix C. Revision History

Revision Date Editor Changes Made

01 2017-04-24 Bret Jordan,

Mark Davidson,

John Wunder

Initial Version

