
A Parallel Implementation of the Quadratic
Sieve Factoring Algorithm in Java
By Ammon Bartram

SUNY Potsdam
bartraah190@potsdam.edu

Adviser: Brian Ladd
laddbc@potsdam.edu

them to the manager. When enough have been gathered, the
job manager calculates exponent vectors, stores them in a
matrix, finds its nullspace, and finally factors n. The sieving itself
we optimize using subtraction of low-precision logarithms in
place of division. The matrix reduction we perform with a C
Block-Lanczos routine (from the FLINT number theory library)
called via the Java Native Interface.

Results
Our first aim was to gather data on the optimal selection of
the smoothness bound (the maximum prime factor that a
number can have to be considered smooth). To this end, we
factored semiprimes (the product of two primes, and provably
the hardest case of the factoring problem) with from 30 to
70 decimal digits, using a range of smoothness bounds. In
all cases, we found the optimal bound to be about one tenth
the theoretical optimal for the single polynomial QS. This
supports Pomerance’s hypothesis that the multiple polynomial
optimization would reduce the optimal smoothness bound.

Our second aim was to provided data supporting Pomerance’s
runtime analysis. To that end, we factored semiprimes with
from 40 to 85 decimal digits (the largest number factored is
shown in the left margin), and plotted them against Pomerance’s
predicted complexity function (scaled to best fit, as allowed in
big-O analysis).

This data strongly supports Pomerance’s analysis of the
Quadratic Sieve. Our data falls plausibly along his complexity
function, and illustrates the sub-exponential time of the
Quadratic Sieve by its apparent sub-linear trend against a
logarithmic y-axis.

Introduction
Reducing a composite integer to its prime factors is a difficult
task. Indeed, the lack of a polynomial time solution to the
factoring problem is the basis of the RSA cryptographic
system, one of the most popular public-key systems in use
today. The Quadratic Sieve factoring algorithm, developed by
Carl Pomerance in 1981, was the first clearly sub-exponential
time factoring algorithm known, and is still the algorithm of
choice for integers under 110 decimal digits. Pomerance is
a mathematician, however, and his work on the Quadratic
Sieve (QS) is theoretical and lacks empirical data. The aim of
our research, then, is to gather data supporting Pomerance’s
analysis, giving special focus to the effects of parallelizing
the algorithm.

Congruent Squares
The QS is best understood as an extension of Fermat’s factoring
method. Fermat attempts to express n (the number to be
factored) as a difference of squares. Then

n = (u2 – v2) = (u – v)(u + v)
gives a factorization. Finding such squares, unfortunately, is no
more efficient than factoring by trial division. In 1925, however,
Belgian mathematician Maurice Kraitchik realized that it is
sometimes sufficient to find the weaker condition

(u2 – v2)=kn, or u2 ≡ v2 (mod n)
Then, there can be shown to be a probability of at least 0.5 that
gcd(u – v, n) is a non-trivial factor of n. If we can generate a number
of pairs of such congruent squares, then probabilistically we
will be able to split n .

Exponent Vectors
The QS finds congruent squares by generating many relations
of the form x2 ≡ y (mod n) by taking yi = x2

i – n as xi runs up
from the square root of n (x2

 ≡ x2 – n (mod n) for any x). Then, if
a subset of the y’s can be found with a square product, those
relations can be multiplied together to yield a pair of congruent
squares. Such a square subset can be found by applying an
algorithm from linear algebra (nullspace finding) to the vectors

containing the exponents from the prime factorizations of the
y’s. To make this possible, we need to limit the size of these
vectors (limit the number of unique prime factors of each yi).
To this end, we take advantage of the fact that we can generate
a surplus of relations, and select only those where the value y
happens to be a product of relatively small primes (this quality
is known as smoothness).

The Quadratic Sieve
Smooth values are located in the polynomial progression
by taking advantage of the fact that we can predict exactly
where each prime will divide the sequence. Specifically, the
members of the residue classes of the two solutions to the
equation x2 ≡ n (mod p) are the locations where each prime p
divides the polynomial. By only dividing at these location, we
can avoid most of the cost of trial division, and find smooth
values very efficiently. This technique is known as sieving,
and gives the Quadratic Sieve its name.

Multiple Polynomials
As the value of an integer x increases, the probability that x is
smooth decreases. This leads to a diminishing return in the
sieving process as the value of the polynomial grows. To fight
this, we replace x in the polynomial with the linear function ax +
b (a and b must satisfy several constraints for this to work). This
allows many pairs a and b to be used, yielding many unique
polynomials and allowing the sieve to start over with a new
polynomial whenever the value of one polynomial becomes
too large.

Parallelization
Sieving for smooth numbers in the polynomial progression is the
time-dominant step in the QS algorithm, and this sieving can be
carried out in parallel. The multiple polynomial optimization, in
particular, makes this efficient. Each sieving node can be assigned
a unique polynomial base (the value a in the preceding paragraph),
and can independently generate thousands of b values. This allows
each sieve to operate independently, and achieves a near perfect
division of the sieving across multiple nodes.

Implementation
We implemented the Multiple Polynomial Quadratic Sieve in
Java, using a master-slave architecture. A master job manager
takes job requests from the user, and distributes polynomial
bases to multiple remote slave sieve clients. These sieve clients
then generate polynomials, find smooth relations, and return 85

28
52

80
75

86
98

11
03

03
15

74
79

08
55

08
78

45
31

39
17

28
17

16
64

52
01

30
72

72
29

82
74

55
81

01
72

87
26

76
90

08
3

 =
11

41
64

59
80

27
84

14
80

66
83

84
28

01
35

07
82

85
02

71
86

9
*

74
70

37
89

29
36

82
32

80
78

97
80

27
97

47
15

43
78

12
23

00
7

