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them to the manager. When enough have been gathered, the 
job manager calculates exponent vectors, stores them in a 
matrix, finds its nullspace, and finally factors n. The sieving itself 
we optimize using subtraction of low-precision logarithms in 
place of division. The matrix reduction we perform with a C 
Block-Lanczos routine (from the FLINT number theory library) 
called via the Java Native Interface.    

Results 
Our first aim was to gather data on the optimal selection of 
the smoothness bound (the maximum prime factor that a 
number can have to be considered smooth). To this end, we 
factored semiprimes (the product of two primes, and provably 
the hardest case of the factoring problem) with from 30 to 
70 decimal digits, using a range of smoothness bounds. In 
all cases, we found the optimal bound to be about one tenth 
the theoretical optimal for the single polynomial QS. This 
supports Pomerance’s hypothesis that the multiple polynomial 
optimization would reduce the optimal smoothness bound.      

Our second aim was to provided data supporting Pomerance’s 
runtime analysis. To that end, we factored semiprimes with 
from 40 to 85 decimal digits (the largest number factored is 
shown in the left margin), and plotted them against Pomerance’s 
predicted complexity function (scaled to best fit, as allowed in 
big-O analysis).

This data strongly supports Pomerance’s analysis of the 
Quadratic Sieve. Our data falls plausibly along his complexity 
function, and illustrates the sub-exponential time of the 
Quadratic Sieve by its apparent sub-linear trend against a 
logarithmic y-axis.                   

Introduction
Reducing a composite integer to its prime factors is a difficult 
task. Indeed, the lack of a polynomial time solution to the 
factoring problem is the basis of the RSA cryptographic 
system, one of the most popular public-key systems in use 
today. The Quadratic Sieve factoring algorithm, developed by 
Carl Pomerance in 1981, was the first clearly sub-exponential 
time factoring algorithm known, and is still the algorithm of 
choice for integers under 110 decimal digits. Pomerance is 
a mathematician, however, and his work on the Quadratic 
Sieve (QS) is theoretical and lacks empirical data. The aim of 
our research, then, is to gather data supporting Pomerance’s 
analysis, giving special focus to the effects of parallelizing 
the algorithm.

Congruent Squares
The QS is best understood as an extension of Fermat’s factoring 
method. Fermat attempts to express n (the number to be 
factored) as a difference of squares. Then 

n = (u2 – v2) = (u – v)(u + v)
gives a factorization. Finding such squares, unfortunately, is no 
more efficient than factoring by trial division. In 1925, however, 
Belgian mathematician Maurice Kraitchik realized that it is 
sometimes sufficient to find the weaker condition 

(u2 – v2)=kn, or u2 ≡ v2 (mod n) 
Then, there can be shown to be a probability of at least 0.5 that 
gcd(u – v, n) is a non-trivial factor of n. If we can generate a number 
of pairs of such congruent squares, then probabilistically we 
will be able to split n .

Exponent Vectors
The QS finds congruent squares by generating many relations 
of the form x2 ≡ y (mod n) by taking yi = x2

i – n as xi runs up 
from the square root of n (x2

 ≡ x2 – n (mod n) for any x). Then, if 
a subset of the y’s can be found with a square product, those 
relations can be multiplied together to yield a pair of congruent 
squares. Such a square subset can be found by applying an 
algorithm from linear algebra (nullspace finding) to the vectors 

containing the exponents from the prime factorizations of the 
y’s. To make this possible, we need to limit the size of these 
vectors (limit the number of unique prime factors of each yi). 
To this end, we take advantage of the fact that we can generate 
a surplus of relations, and select only those where the value y 
happens to be a product of relatively small primes (this quality 
is known as smoothness).   

The Quadratic Sieve
Smooth values are located in the polynomial progression 
by taking advantage of the fact that we can predict exactly 
where each prime will divide the sequence. Specifically, the 
members of the residue classes of the two solutions to the 
equation x2 ≡ n (mod p) are the locations where each prime p 
divides the polynomial. By only dividing at these location, we 
can avoid most of the cost of trial division, and find smooth 
values very efficiently. This technique is known as sieving, 
and gives the Quadratic Sieve its name.         

Multiple Polynomials
As the value of an integer x increases, the probability that x is 
smooth decreases. This leads to a diminishing return in the 
sieving process as the value of the polynomial grows. To fight 
this, we replace x in the polynomial with the linear function ax + 
b (a and b must satisfy several constraints for this to work). This 
allows many pairs a and b to be used, yielding many unique 
polynomials and allowing the sieve to start over with a new 
polynomial whenever the value of one polynomial becomes 
too large.

Parallelization
Sieving for smooth numbers in the polynomial progression is the 
time-dominant step in the QS algorithm, and this sieving can be 
carried out in parallel. The multiple polynomial optimization, in 
particular, makes this efficient. Each sieving node can be assigned 
a unique polynomial base (the value a in the preceding paragraph), 
and can independently generate thousands of b values. This allows 
each sieve to operate independently, and achieves a near perfect 
division of the sieving across multiple nodes.               

Implementation
We implemented the Multiple Polynomial Quadratic Sieve in 
Java, using a master-slave architecture. A master job manager 
takes job requests from the user, and distributes polynomial 
bases to multiple remote slave sieve clients.  These sieve clients 
then generate polynomials, find smooth relations, and return 85
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