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ABSTRACT
Large graph datasets have become invaluable assets for studying
problems in business applications and scientific research.These
datasets, collected and owned by data owners, may also contain
privacy-sensitive information. When using public clouds for elas-
tic processing, data owners have to protect both data ownership
and privacy from curious cloud providers. We propose a cloud-
centric framework that allows data owners to efficiently collect
graph data from the distributed data contributors, and privately
store and analyze graph data in the cloud. Data owners can con-
duct expensive operations in untrusted public clouds with privacy
and scalability preserved. The major contributions of thiswork
include two privacy-preserving approximate eigendecomposition
algorithms (the secure Lanczos and Nyström methods) for spec-
tral analysis of large graph matrices, and a personalized privacy-
preserving data submission method based on differential privacy
that allows for the trade-off between data sparsity and privacy.
For aN -node graph, the proposed approach allows a data owner
to finish the core operations with onlyO(N) client-side costs in
computation, storage, and communication. The expensiveO(N2)
operations are performed in the cloud with the proposed privacy-
preserving algorithms. We prove that our approach can satisfac-
torily preserve data privacy against the untrusted cloud providers.
We have conducted an extensive experimental study to investigate
these algorithms in terms of the intrinsic relationships among costs,
privacy, scalability, and result quality.

CCS Concepts
•Security and privacy → Privacy-preserving protocols; Man-
agement and querying of encrypted data;•Computing method-
ologies→ MapReduce algorithms;
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ACM proceedings;Cloud computing,Privacy preserving computa-
tions, Spectral analysis, Approximate eigen decomposition
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1. INTRODUCTION
The continuous and rapid expansion of social networks, mobile

and web applications, and biomedical research has led to genera-
tion of big graph datasets, which have great value in both business
and scientific research as shown by recent studies [1]. Thesegraph
datasets are often continuously updated, making it expensive to
store and analyze. It is thus appealing for data owners to usecloud
infrastructures for computation and data storage, as it mitigates the
need to establish, operate, and maintain expensive in-house infras-
tructures. More importantly, the elasticity of cloud computing in-
frastructures allows users to adapt rapidly to the changes in storage
and computing requirements.

However, data privacy becomes a significant concern once data
is moved to the cloud. Recent studies show that adversaries can
explore infrastructure vulnerabilities to gain unauthorized accesses
[31], and curious employees of the cloud provider may snoop pri-
vate data [9]. Two well-known generic approaches have been de-
veloped to preserve privacy while computing with untrustedpub-
lic clouds: fully homomorphic encryption (FHE) [16] and secure
multi-party garbled circuits (GC) [17]. Theoretically, they can be
used to construct the privacy-preserving versions of most data min-
ing algorithms. However, these schemes are too expensive tohave
practical applications. The current best implementation of FHE
schemes [8] will result in large ciphertext (e.g., a 4-byte integer
will become about 100 kilobytes(KB) - 25,000 times of size in-
crease) and expensive homomorphic multiplication (e.g., about 10
milliseconds (ms) for single multiplication, and it is moreexpen-
sive with multiple levels of multiplications). The major problem
with garbled circuits is the communication cost, as each gate of a
circuit will incur a communication cost between two parties. A re-
cent study on the gradient-decent-based matrix factorization algo-
rithm for recommendation systems [28] that used garbled circuits
shows the communication cost being around 40 gigabytes (GB)for
a small-size4096× 4096 matrix in just one iteration.

Thus, efficient approaches that are particularly designed for a
specific application (or a specific set of applications) are highly de-
manded.

In this paper, we develop a cloud-centric privacy-preserving
graph spectral analysis framework that enables data ownersto pri-
vately store and analyze big graphs with untrusted public clouds.
We consider graph spectral analysis as a particular area that can
possibly benefit from more efficient privacy-preserving methods
for computing with public clouds. Graph spectral analysis is im-
portant to many applications such as community detection [27],
PageRank [5], and spectral clustering [15].

In our framework, data contributors, who are distributed over the



Internet (e.g., users using mobile apps provided by the dataowner),
agree to contribute to a graph database in the cloud. Typicalexam-
ples that fit in this framework include social interactions through
instant messengers and social media forming person-personinter-
action graphs, location updates that form person-locationgraphs,
and user ratings of products that form person-product preference
graphs. These graph data are encrypted with a certain additive ho-
momorphic encryption (AHE) scheme, such as Paillier scheme[29]
and pairing scheme [7] that have much lower costs than the current
FHE schemes. The data owner interacts with the cloud to run our
proposed privacy-preserving graph spectral analysis algorithms and
get analytic results. The data owner may authorize trusted model
consumers (e.g., a data mining team in the data owner’s organiza-
tion) to use the analytic results via a service interface. The graphs
might be periodically updated and so do the analytic results.

There are three major challenges to this proposed framework.

• How to develop the cloud-side algorithms that solely relies
on the partially homomorphic operations allowed by an AHE
scheme?

• How to designpracticalcloud-client algorithms that preserve
cloud economics and utilize cloud-side scalability?

• How to define data privacy in cloud-centric storage and com-
putation, and design mechanisms to protect it?

We focus on the core operation of graph spectral analysis: the
approximate eigendecomposition of graph matrix, and address the
challenges with the following key ideas.

Our approach uses apseudo homomorphic multiplicationand
random data masking mechanism to enable cloud-side homomor-
phic matrix computations. Specifically, an AHE scheme already
enablesE(α+β) = f(E(α), E(β)), wheref() is some algorithm
that works on the encrypted version of two integer operands:E(α)
and E(β) without decrypting them. The pseudo homomorphic
multiplication for E(αβ) can be achieved by applying additions
β times, e.g.,E(

∑β

i=1
α), with one of the operands, sayβ, un-

encrypted. With these two fundamental operations, we can derive
pseudo homomorphic matrix-vector operations. The key problem
with this technique becomes protecting the unencrypted operands
in pseudo homomorphic operations, for which we design random
data masking algorithms that work with the approximate eigende-
composition algorithms.

For anN -node graph, we consider a practical cloud-client col-
laborative algorithm which should enable the data owner to conduct
expensive core operations of complexityO(N2) in the cloud with
scalable algorithms, while limiting the client-side communication
and computation costs toO(N). The presented secure Lanczos
algorithm and Nyström algorithm satisfy these requirements. We
also reveal the intricate relationships between the quality of results,
and the computation and communication costs for the two algo-
rithms, in a typical application of spectral analysis - graph spectral
clustering.

Our framework addresses the major privacy threat from curious-
but-honest cloud providers, who may try to learn private informa-
tion, such as an interaction between two nodes, the presenceof a
specific node in the graph, and the eigen-structure of the graph,
by snooping on the graph data or the intermediate results from the
computations done in the cloud. It protects data privacy in static
storage with the AHE encryption schemes and the differential pri-
vacy mechanism, and the privacy of the intermediate computing re-
sults with the pseudo homomorphic computation and random data
masking algorithms.

We also design an efficient privacy-preserving data submission
algorithm to simultaneously preserve the sparsity of graphmatrices
and allow the contributors to achieve differential privacy[13]. It
allows the data contributor to disguise node degrees and edges by
injecting randomly selected fake links. The fake links are encrypted
so that they are indistinguishable from the real links. The number
of fake links are selected viaǫ−differential privacy, with the user-
tunable privacy parameterǫ. Our algorithm completely preserves
data authenticity and provides differential privacy whilekeeping
low costs. The preserved sparsity helps reduce the cloud storage
cost and the costs of the Nyström algorithm.

In summary, our work has the following unique contributions.

• We develop the secure Lanczos algorithm and the secure
Nyström algorithm to allow practical privacy-preserving
graph spectral analysis on untrusted public clouds. The
pseudo homomorphic operations and random data masking
algorithms are designed to protect data privacy in computa-
tion.

• We design a privacy-preserving distributed sparse graph data
submission algorithm that allows the data contributors to
employ personalized differential privacy mechanism, while
fully preserving data authenticity and sparsity. The preserved
sparsity help reduces the costs of cloud storage and privacy-
preserving graph analysis algorithms.

• We have studied the intricate relationships among data pri-
vacy, costs, scalability, and result quality, with real graph
datasets and using graph spectral clustering as the applica-
tion.

The remaining part of the paper is organized as follows: Sec-
tion 2 gives background knowledge about the proposed approach,
including a brief description on differential privacy, theAHE meth-
ods such as the Paillier encryption system, and graph spectral anal-
ysis. Section 3 describes the design of cloud-centric data service
framework and the threat model we consider. Section 4-6 describes
the core algorithms and their properties. Section 7 presents the
results of experimental evaluation. Section 8 shows some related
work on privacy-preserving computation with the cloud.

2. PRELIMINARIES
In the following, we briefly describe our notations, and present

background knowledge on the applicable encryption schemes, dif-
ferential privacy, the approxiamte eigendecomposition methods of
Lanczos and Nyström, and the basic graph spectral analysis algo-
rithm. For clear presentation, we will use Greek charactersto rep-
resent scalars; lower case letters for vectors; indexed lower case
letters for the vector elements; capital letters for matrices, subma-
trices, or sets; and indexed capital letters for matrix rows.

A graph is represented asG(V, E), whereV is the set of vertices
andE is the set of edges. We useN and |E| to represent the set
sizes ofV andE respectively. In addition,ZN

q , which is used
by the encryption schemes, represents the group ofN -dimensional
vectors of integers moduloq.

Additive Homomorphic Encryption Schemes. Our approach
will use additive homomorphic encryption (AHE) schemes to en-
crypt graph matrices and enable homomorphic computation inthe
cloud. There are several AHE schemes such as the Paillier en-
cryption [29], the pairing-based encryption [7], and the Ring-LWE
based encryption [8]. The additive homomorphic property isde-
scribed as follows. IfE() denote the encryption function, then for



two integersα andβ, the homomorphic addition is notated as:

E(α+ β) = E(α) + E(β)

For simplicity, we re-use ‘+’ inE(α) + E(β) to represent the
additive homomorphic operation, which may be implemented as
some algorithmf(E(α), E(β)). We consider thatE(αβ) can be
implemented as

∑β

i=1
E(α) if one of the operands, sayβ is unen-

crypted - we call itpseudo homomorphic multiplication. Forn-bit
integerβ, encoded asbn−1 . . . b0, this can be implemented effi-
ciently with the double-and-add algorithm, i.e., recursively com-
putingE(2α), . . . , E(2n−1α) and then

∑n−1

i=0
E(2iα), which re-

quiresO(log n) additions. For Paillier encryption, it can be more
efficient as

E(αβ) = E(α) mod_powerβ,

wheremod_powermeans the modulo power operation [21]. For
simplicity of presentation, we useE(α)β to represent this opera-
tion. Based on these notations, we can extend partial homomorphic
operations to vector dot-product. For twok-element vectorsx and
y, we have

E(xT y) = E(xT )y = xTE(y), (1)

with one of the operand unencrypted.
It can be further extended to matrix-vector multiplication. For a

k by k matrixA and ak-element column vectorx, we have

E(Ax) = E(A)x, (2)

with x unencrypted. This property will be used in developing the
secure Lanczos algorithm. It can also be extended to matrix-matrix
multiplication. AssumeR is an unencrypted matrix. We have

E(AR) = E(A)R, (3)

which will be used in developing the secure Nyström algorithm.
For this set of operations, we name thempseudo homomorphic op-
erations.

Because one operand in these operations has to be unencrypted,
finding a way to maintain the confidentiality of the unencrypted
operand will be one key problem in our algorithms.

We will use the Paillier encryption in our implementation due
to its efficiency in ciphertext size and homomorphic operations. It
is a public-key system, which enables more practical uses for a
large number of distributed data contributors. Paillier Encryption
has proven strong security guarantees. It is indistinguishable under
an adaptive chosen-plaintext attack (IND-CPA), and the scheme is
probabilistic, meaning that two equal values are mapped to differ-
ent ciphertexts uniformly at random. Table 1 summarizes theba-
sic costs for Paillier encryption. In our experiment setup,we use
1024-bit Paillier encryption key, the security of which is equivalent
to 80-bit AES encryption.

Differential Privacy. Differential privacy [13] is a standard no-
tion in data privacy which protects any individual record from pri-
vacy breach in databases via database querying. For two datasets
A1 andA2 that differ in exactly one record,M(Ai) be the mech-
anism that outputs noisy statisticsr ∈ R of the datasets, thenǫ-
differential privacy is satisfied if the following condition given in
[13] holds:

Pr[M(A1) = r] <= expǫ Pr[M(A2) = r] (4)

It is popularly applied in interactive databases to preserve data
privacy while allowing anybody to query the database. The mech-
anism M is defined as the additive perturbation of a specific

query function, such as the COUNT function, i.e., the query re-
sult plus a random noise. The noise in the output is engineered
so as to approximately preserve the utility of the query function,
yet prevent the distinguishability of any individual records in the
database. Laplacian noise is of popular choice, where a noise
is drawn from the Laplace distribution Laplace(0,b), the PDF of
which is 1

2b
exp(− |x|

b
). The parameterb is determined by the

user-specified parameterǫ and the sensitivity of query function:
∆ = max |M(A1)−M(A2)|, i.e.,b = ∆/ǫ. For example, for the
COUNT function, the sensitivity∆ is 1 and thus, the parameterb
is set to1/ǫ. In general, smaller theǫ setting (i.e., the stronger pri-
vacy preferences) and larger the∆ value, higher the level of noise
that is added to achieve the desired level of privacy.

In the non-interactive setting where the dataset is open to pub-
lic eyes, a synthesized database is published that preserves both
the desired data utility and differential privacy [6]. The resilience
of non-interactive method depends on whether all possible attack
queries are considered when designing the synthesized database.
The non-interactive setting fits our case. We will design a fake edge
addition method to achieve differential privacy against estimations
of node degrees and identification of real links, while completely
preserving data authenticity for outsourced graph data in the cloud.

Graph Spectral Analysis. When graphs are represented in ma-
trix forms, e.g., adjacency matrix or Laplacian matrix [15], the
spectral properties of the matrices play an important role in many
analytics tasks such as PageRank [5], community detection [27],
and clustering [15]. The key operation of spectral analysisis eigen-
decomposition [14], which is generally expensive: the complete
eigendecomposition of aN × N matrix has a time complexity of
O(N3). Therefore, approximate algorithms, such as the power iter-
ation methods (e.g. Lanczos method) [11], and the sampling based
Nyström method [15, 22], are often used to reduce the time com-
plexity for large graphs. These algorithms typically return approxi-
mate top-k eigenvalues and eigenvectors. The core and most expen-
sive operation in these algorithms are matrix-vector multiplication
(for iterative methods) and matrix-matrix multiplication(for Nys-
tröm methods). See algorithm 1 and 2 for the fundamental steps of
Lanczos and Nyström methods respectively.

Algorithm 1 Lanczos Method for Eigen-approximation

1: b0← randomN -dimensional vector;
2: for i← 1 to t do
3: bi ← Abi−1

4: other vector-based processing
5: end for
6: Post-processing with the vectors{bi, i = 0..t} to get top-k approximate eigen-

vectors

Algorithm 2 Nyström Method for Eigen-approximation

1: s← generate random index set such that‖s‖ = m < N
2: CN×m ← get the correspondingm column vectors fromA
3: Wm×m← submatrix ofA with rows and column indices ins
4: decomposeWm×m to get top-k eigenvaluesΛk×k and eigenvectorsUm×k

5: computeCN×mUm×kΛ
−1

k×k

These algorithms reduce the complexity with some sacrifice in
accuracy. Greater number of Lanczos iterations, and greater sam-
pling rate for Nyström account for better accuracy, however, in-
crease the computation cost. In subsequent sections, we present our
framework that privately processes user-submitted matrices with
untrusted public cloud platforms to conduct eigen-anlaysis. We
will develop the secure versions of these approximate algorithms
for working with encrypted graph matrices in the cloud.



Table 1: Parameter setting and costs for Paillier encryption. b: bits, B:bytes, ms: milliseconds

Keysize(b) Cipher-size(B) Enc(ms) Add(ms) Mult(ms) Dec(ms)
1024 256 3.173 0.005 0.052 2.096
2048 512 16.481 0.014 0.160 15.165

3. FRAMEWORK AND SECURITY
OVERVIEW

In this section we describe the primary elements of the proposed
framework, the threat model, and security guarantees.
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Figure 1: Framework for privacy-preserving graph
spectral analysis with the cloud.

Figure 1 shows our framework, which involves four parties: the
public cloud, the data owner, data contributors, and authorized
model consumer. We also use the client side to represent either
the data owner or the data contributors that may involve in cloud-
client interactions. The data owner will generate a public key and
a private key, and distribute the public key to the data contributors.
Data contributors then upload the encrypted data to the cloud to
gain the data owner’s incentives using a web application or amo-
bile App provided by the data owner. The graph data can be the
data contributor’s personal interactions with other contributors in
an online social network, or relationships with other itemssuch as
locations and products, which make bipartite graphs. Alternatively,
the data owner can also upload any in-house graph datasets that are
collected via other channels. Data consumers are authorized by the
data owner to use the graph analysis service. The data owner will
provide analytic results to the model consumers.

The core spectral analysis algorithms work on the encrypted
data and guarantee that the most expensive computations (e.g., in
O(N2) complexity) are performed in the cloud, while both the
storage and computation costs on the client-side stay low (e.g., in
O(N) complexity). Upon updated graphs, the data owner will pe-
riodically start the cloud-client spectral analysis algorithms to gen-
erate updated models.

3.1 Threat Model
We make practical threat assumptions and focus on confidential-

ity breaching by honest-but-curious cloud providers - 1) The data
contributors operate through secure systems and no information is
leaked by themselves. 2) The data owner’s in-house infrastructures
are secure. An adversary who can compromise data owner’s fire-
wall cannot be protected by our framework. 3) All communication
channels are secure and data in transit is always encrypted.4) Our
framework is not meant to ensure integrity, freshness, or complete-
ness of results returned to data owners, but to efficiently address
the secure storage and processing of large datasets in cloud. 5) The
data owner is a trusted party who will manage all they keys andcan
read all data submitted by data contributors.

Threat 1: Data contributors’ privacy.

Social graphs often include sensitive interactions between
data contributors. Although data contributors’ real IDs have
been removed, attackers can still utilize node degrees [37]to
de-anonymize and then reveal sensitive links between the de-
anonymized data contributors [36]. Our design will protectnode
degree and links1 with encryption and a bin-based randomized
anonymization scheme that satisfiesǫ-differential privacy.

Threat 2: Privacy of data in computation.
Since the cloud provider is untrusted, not only the data in stor-

age, but also the data in computation needs to be protected. Our
framework lets the cloud perform heavy tasks of eigendecomposi-
tion over protected data, with no additional information about the
matrix or the analytic results revealed to the cloud provider. Any
intermediate data generated during computations and interactions
are in encrypted form or masked by randomization.

4. DENSE VECTOR DATA SUBMISSION
In this section, we first present our graph data encoding method

and basic dense vector submission that breaches no information,
but demands high storage costs. Later, in Section 6 we will in-
troduce the personalized privacy-preserving data submission algo-
rithm that allows the contributor to reduce the size of submission
with personalized privacy setting.

Representation of Data. In order to use the AHE schemes all
values need to be converted tonon-negative integers. For matrices
in the real value domain, a valid method to preserve the desired pre-
cision, e.g.,d decimal places, is to multiply the original value by
10d to scale up the values and drop the remaining decimal places.
In addition, we also need to shift the values so that the domain is
positive. The conversion can be represented as an affine transfor-
mation: for a real valueα,

g(α) = 10dα+ τ, (5)

whereτ is a large positive value that converts the smallest nega-
tive value to non-negative. This process is clearly reversible for the
result of the discussed matrix-vector operations.

Encoding Graph as Dense Matrix.We first present the method
that encodes the whole graph as a dense matrix. It will fully pre-
serve the confidentiality of the entire graph, but the storage and
computation costs will be much higher than the sparse methodwe
will discuss later. We use thenormalized graph Laplacian matrix
for spectral clustering [32] as an example. Other graph matrices can
use a similar method to encode. Below we describe the encoding
method for a Laplacian matrix.

For an undirected graph, letD be the diagonal matrix with node
degrees on its diagonal -Dii represents the degree of nodei,
i = 1..N . Let W be the adjacency matrix withWij =1 if and
only if the edge(i, j) exists, andWij = 0 otherwise. For undi-
rected graphs,W is a symmetric matrix, where each row(column)
of W represents the corresponding node’s adjacency edges. The
normalized graph Laplacian matrixL isL = I −D−1W ,

whereI is theN by N identity matrix. Specifically, for each
row of the Laplacian matrix, sayLi, its elementlij , j = 1..N is
1Compared to links, the no-link relationship is less sensitive and
thus not protected in our method



lij =







−1/Dii if Wij = 1 andi 6= j
1 if i = j
0 otherwise

Each data contributor may represent one node (or a few nodes)
in the graph, and contribute the corresponding row(s) of theLapla-
cian matrix. To encode the entire vector in the dense format,it is
straightforward to apply Eq. 5 to convert each element of therow.

5. PRIVACY-PRESERVING APPROXI-
MATE EIGENDECOMPOSITION AL-
GORITHMS

A major motivation for using the cloud to store and process graph
data is to move the expensive processing algorithms to the cloud
for good scalability and cost-saving. Specifically, we expect the
cloud-side handles theO(N2) computations in a scalable manner,
while the client-side costs are limited toO(N). Meanwhile, the
algorithm should not reveal any information additional to whatever
the adversary already knows, e.g., the information disclosed by the
personalized data submission algorithm.

We design our algorithms based on two major methods for ap-
proximate eigendecomposition: the Lanczos method [11] andthe
Nyström method [22]. These two methods have been used to ef-
fectively reduce the computational costs for eigendecomposition of
large matrices. The challenge is to design the secure cloud-client
collaborative algorithms to meet the cost and privacy requirements.
In the following, we will briefly describe the original algorithms
and then present the secure versions working on encrypted graph
matrices.

5.1 Privacy-preserving Lanczos Algorithm
The Lanczos method is based on matrix power iteration[11].

The Lanczos iteration for a matrixAN×N initiates with the gen-
eration of a randomN dimensional vectorb0, then the operation
bi = Abi−1/‖Abi−1‖ is performed in each iterationi. The most
expensive computation is the matrix-vector multiplication, and it is
also essential to preserve the privacy of the vectorbi because the
eigenvectors are derived from the set{bi, i = 0..t} for t iterations.

With an AHE scheme, we use pseudo homomorphic matrix-
vector multiplication to computeE(Abi−1), wherebi−1 has to be
in plaintext. The challenge here is to efficiently protectbi−1 and
recoverAbi−1 afterwards.

We describe our random data masking algorithm for AHE
schemes. Paillier encryption is used as the representativeAHE
scheme for its fast computation speed and small ciphertext size.

The core data masking and result recovery algorithm consists of
three key steps: preparation, random masking, and recovery.

Preparation. This step consists of two substeps. (1) The data
owner selectsh N dimensional random vectors,{si}, whereh is
small which is related to complexity for estimates with highconfi-
dence as described in [30], and send them to cloud. These random
vectors will be used to protect the vectorsbi in each iteration. The
cloud will compute E(Asi) and send back the results to the data
owner. (2) The data owner also generates a random vectorb0 and
distribute E(b0) to data contributors. Each data contributori com-
putes E(Aib0) =

∑N

j=1
E(Aijb0j) using pseudo homomorphic

multiplication withAij in plaintext, and sends back the single en-
crypted scalar E(Aib0) to the data owner.

Random Masking. The perturbed vector̄bi is given as

b̄i = bi + ri mod q (6)

whereq is a big random prime large enough to contain all val-
ues and computation results in the application domain andri is
designed from the seed vectorssi as:

ri =
h
∑

l=1

αilsl +
i−1
∑

j=0

βijbj mod q, (7)

whereαil and βij are randomly drawn fromZq . This ap-
proach protectsbi and the security depends on the randomness of
ri. Knowing sl, l = 1..h to reveal information aboutbj vectors is
a learning with error (LWE) problem, and hence our perturbation is
secure under the intractability of the LWE problem, which will be
discussed in more detail later.

Recovery. Recovery ofAbi is performed at data owner asAb̄i
from the cloud is the result ofAbi + Ari. Because

Ari =

h
∑

k=1

αikAsk +

i−1
∑

j=0

βjkAbj mod q, (8)

The set of vectorsAs1, Ash are precomputed by cloud. Let
cj = Asj . Then computation ofAri =

∑h

j=1
αjcj +

∑i−1

j=0
βjbj

involves onlyh + i vector-scalar multiplications andh + i vec-
tor additions. Abi can be recovered with only aO(N) cost:
Abi = Ab̄i − Ari mod q.

Algorithm 3 gives the detail. The client side communicationand
computation costs are limited toO(tN). The cloud-side pseudo
homomorphic computation ofE(Ab̄i−) with the encryptedE(A)
and the plaintext̄bi−1 can be easily cast to a matrix-row based par-
allel algorithm. For example, with MapReduce processing [12],
each map function handlesE(Aj b̄i−1) for a rowAj , which gen-
erates one element in the result vector; the reduce functionsimply
assembles the elements by their indices.

Algorithm 3 Privacy-preserving Lanczos Algorithm with AHE
schemes
1: b0← randomN -dimensional vector and encryptE(b0) // data owner
2: downloadE(b0), computeE(Aib0), and send back to data owner// each data

contributor
for i← 1 to t do:

3: b̄i−1 ← perturbation based on{b0, .., bi−2} and seed vectors
{s1, .., sh} and upload̄bi−1 // data owner

4: computeE(Ab̄i−1) // cloud
5: download and decryptE(Ab̄i−1) // data owner
6: recoverbi from Ab̄i−1 // data owner
7: αi−1 ← bTi bi−1 // data owner
8: wi−1 ← bi − αibi−1 − βi−1bi−2

wherebi = 0 for i < 0 // data owner
9: βi ← ‖wi−1‖ // data owner

10: bi ← wi−1/βi // data owner
11: end for

Privacy Analysis. Since the adversary only sees the plaintext
b̄i in the cloud-side computation, while the rest part of cloud-side
computation does not leak any additional information, the key is
how well b̄i protectsbi. Note that the adversary also knows the seed
random vectors{sj}, for j = 1..h, sj ∈ Z

N
q , as they were sent in

plaintext in the preparation step. We want to show the following
proposition.

PROPOSITION 1. {b̄i}, i = 0..t, cannot be distinguished from
uniformly random vectors, with the known{sj , j = 1..h}.

PROOF. We will prove theb0 case. Other cases are similar.
Let ai = (αi1, . . . , αik)

T be the random parameter vector, and
C = (s1, ..., sh) be the matrix consisting ofsi as the column vec-
tors. We represent the Equation 6 with matrix operations fori = 0:



Figure 2: Lanczos for AHE scheme Figure 3: Nyström for AHE scheme

b̄0 = b0 + r0 = Ca0 + b0 mod q, with knownC and unknowna0

andb0. If C, a0, andb0 are drawn uniformly at random, the prob-
lem of distinguishing< C, b̄0 > from uniformly random samples
overZN×m

q × Z
N
q is exactly the decision version of theLearning

with Errors (LWE) problem [30]. The existing results on the LWE
problem have shown thatb̄0 cannot be distinguished from any uni-
formly random vectors ifb0 is a random vector anda0 is secret
[30]. Therefore,b0 is securely protected. The same conclusion can
be extended to the casesi ≥ 1 with more unknowns included.

5.2 Privacy-preserving Nyström Algorithm
The Nyström method has been applied to handle large matrices

for spectral analysis [15, 22]. It uses a small sample submatrix of
a large matrix to compute approximate eigenvectors. LetCN×m

bem (m ≪ N ) column vectors randomly sampled from the orig-
inal matrixA. LetS be the set of the sampled column indices and
Wm×m be a reduced matrix with the corresponding rows of the
matrixC with row indices inS. TheW matrix represents the sam-
pled subgraph consisting of the nodes inS. Let the eigendecom-
position ofW beW = UΛUT , whereU , an orthogonal matrix
andΛ, a diagonal matrix contain the eigenvectors and eigenvalues
of W , correspondingly. LetUm×k be the top-k eigenvectors and
Λk×k be the corresponding eigenvalues. The Nyström method uses
CUm×kΛ

−1

k×k to approximate the top-k eigenvectors of the original
matrixA.

Let’s consider a basic version without encryption and privacy
protection. The cloud gets the matrixC andW , and sendsW to
the client. The client decomposesW and sends backUm×k and
Λk×k. Finally, the cloud computes the resultV = Um×kΛ

−1

k×k

andCV , and sends it back. This algorithm moves the most expen-
sive computations to the cloud. Basically, the cloud-side computa-
tion cost isO(Nmk), the client-side computation cost isO(km2),
and the communication cost isO(kN + m2). The costs are ac-
ceptable only whenm2 is O(N). However, this cannot be simply
transformed to AHE-encrypted data, as the cloud-side computation
of CUm×kΛ

−1

k×k will requireUm×k andΛk×k in plaintext, which
reveals the eigen-structure ofW and thus significantly breaches
privacy.

The key idea of the privacy-preserving version is to replacethe
stepE(CV ) in the cloud withE(CR), whereR is am×k random
matrix. The problem is then to recoverCV with the result ofCR.
This can be done by the following operation:

CR(RTR)−1RTV , if (RTR)−1RTV is provided. SinceR is
a random matrix, it can be the unencrypted operand in pseudo ho-
momorphic multiplication. Furthermore,R can be transferred in
plaintext, or encrypted with AES in the same size as the plaintext.

Algorithm 4 shows the detail. LetΦ = CR. The client down-
loadsE(W ),R andE(Φ) in one batch; there is no uploading cost.
The cloud sideE(CR) is computed with pseudo homomorphic
matrix-matrix multiplication and can be done in a scalable manner
with a MapReduce program.

Algorithm 4 Secure Nyström Method for AHE schemes

1: preset parametersk, and the sampling numberm //data owner
2: s← generate random index set ofm items from[1..N ] //cloud
3: E(CN×m)← get the correspondingm column vectors fromE(A) //cloud
4: E(Wm×m) ← a reduced matrix fromC with rows and column indices ins

// cloud
5: generate a random matrixRm×k // cloud
6: computeE(Φ) = E(CR); // cloud
7: download matricesE(Wm×m), Rm×k, andE(ΦN×k) // data owner
8: decryptE(W ) andE(Φ) // data owner
9: decomposeW to getW = Um×mΛm×mUT

m×m // data owner

10: get topk eigenvaluesΛk×k and eigen vectorsUm×k of Wm×m //data
owner

11: Vm×k ← Um×kΛ
−1

k×k
//data owner

12: M ← (RT R)−1RTUkΛ
−1

k
; //data owner

13: computeΦM ; // data owner

It is straightforward to analyze the involved costs in this algo-
rithm. The cloud-to-client transmission consists of threematri-
ces: E(W ), E(Φ), andR, which isO(kN + m2). The algo-
rithm involves only this download cost. The client-side compu-
tation costs consist ofO(kN + m2) decryption operations, and
O(k2(m+N) + k3) on matrix computation. Since bothm ≪ N
and k ≪ m, the client side computation cost is highly accept-
able. The cloud-side pseudo homomorphic matrix operationscan
be easily implemented with a MapReduce program with scalability
preserved.

Privacy Analysis. Because this algorithm does not ask the client
to upload any information, and the cloud side works with either
the encrypted data or the random matrix,R, it does not leak any
additional information.

5.3 Transmission-Cost Comparison and
Trade-off

As we have shown, for both algorithms the client-side compu-
tation costs are all linear to the number of nodesN , which can be
comfortably handled by the data owner. The key cost differences
are on cloud-client data transmission and data decryption.

The secure Lanczos method has both upload and download costs.
The total transmission cost is linear to the number of Lanczos iter-
ations,t. The upload stream contains only the plaintext vectors,
which incurs much lower costs than the download stream that con-
tains the encrypted vectors. The overall transmission costis tN
encrypted elements.

In comparison, the Nyström method has only the download cost.
The key factor for the Nyström method is the sampling rater =
m/N , which is intrinsically related to the density of the graph.Let
∆ = 2|E|/N2 be the density of the graph, which is the percentage
of the non-empty items in the graph matrix. Let’s consider the
cost of the transmitted matricesE(W ), E(Φ), andR. The cost
of the plaintext matrix,R, is ignorable. The average number of
elements inE(W ) is around(rN)2∆, andE(Φ) has a fixed cost



kN . Therefore, the total transmission cost of encrypted elements
is (rN)2∆+ kN = 2r2|E|+ kN .

The decryption costs are similar:tN for the lanczos method and
kN + 2r2|E| for the Nyström method.

Sincek has to be smaller thant in the Lanczos method, the Nys-
tröm method saves the costs if and only if

2r2|E| < (t− k)N. (9)

As we will show in experiments, around certain sampling ratethe
result quality for the Nyström reaches a stable level; similarly there
is an approximate range fort to reach a stable level in Lanczos
method. The Nyström method can be cheaper than the Lanczos
method with lower sampling rates and low graph density, especially
when the Lanczos method needs a large number of iterations to
converge. However, we also observed that the Nyström method
often converges to a lower-quality result. Thus, when selecting the
algorithm to use, the user needs to consider the complicatedtrade-
offs between costs and result quality.

6. PRIVACY-PRESERVING SPARSE DATA
SUBMISSION

For a big graph with many nodes, each row of the matrix is nor-
mally very sparse. An appealing solution is to skip some of the zero
entries but still provide enough protection to privacy. We design an
algorithm to protect node degrees and links with differential pri-
vacy, while also preserving the sparsity of data and the authenticity
of data. The problem setting and data encoding method distinguish
our method from previous studies [24, 37] on privacy-preserving
graph publishing in two aspects. (1) Previous studies aim toshare
data and models with curious parties. In contrast, we prevent data
and models sharing with curious parties. (2) Most existing meth-
ods change the authenticity of graph data by adding or removing
nodes or edges. Our method will preserve the authenticity ofdata
completely. (3) In our framework, data disguising is done individ-
ually by each data contributor who only knows a little bit of global
information (i.e., a histogram of node degree distributiongener-
ated from sample nodes and distributed by the data owner). Many
existing methods work on the entire graph to determine the graph
perturbation scheme [37], which is impractical for big datahosting
in the cloud.

Regardless how the elements are encrypted, the sparse represen-
tation of graphs reveals node degrees and edge existence ? the non-
zero entries represent the edge weights from which we can derive
node degrees. The known node degrees and edges open doors to
several effective privacy attacking methods [4, 37]. Our basic idea
to address the issue is by adding randomly selected fake links (en-
crypted zero entries) to disguise node degrees and real links, which
does not change the authenticity of the graph. The goal is to make
groups of nodes that have close node degrees indistinguishable un-
der the definition of differential privacy, after adding thefake links.
Furthermore, by using a probabilistic encryption scheme such as
the Paillier encryption, the encrypted zero entries cannotbe distin-
guished from non-zero ones.

Compared to the dense vector submission method, our sparse
method will disclose some additional information. Letdi be the
node degree of nodei, andki be the number of added zero entries.
(1) The actual node degreedi must be smaller than the number of
submitted entries, i.e.,di+ki. (2) The probability of one submitted
entry to be a non-zero entry is increased from1/N to 1/(di + ki).
If this is acceptable to the data contributor, their cost of submission
can be reduced fromO(N) to O(di + ki). In the following, we
will first discuss the sparsification technique and then describe the

selection ofki to satisfy differential privacy.

6.1 Data Sparsification
First, we use a transformation to preserve the eigen-structure,

which makes it possible to use a sparse encoding method. Letγ be
a sufficiently large positive integer such that⌊γ/Dii⌋, whereDii is
the degree of nodei, for all i = 1..N are also positive integers with
necessary precision preserved. LetH = γ(I−L) and lettop-k (or
bottom-k) eigenvectorsof H be the eigenvectors corresponding to
the largest (or smallest)k eigenvalues,k = 1..N . We have the
following Proposition.

PROPOSITION 1. The top-k eigenvectors ofH are the same as
the bottom-k eigenvectors ofL.

PROOF. Let eigendecomposition ofL beL = UΛUT , where
U is the eigenvector matrix andΛ is the diagonal eigenvalue ma-
trix: Λii is the i-th largest eigenvalueλi. Then γ(I − L) =
U(γ(I − Λ))UT . Therefore,U is alsoH ’s eigenvector matrix.
However,H ’s eigenvalue matrix,γ(I − Λ) reverses the order of
L’s eigenvalues.

Now, letHi be thei-th row ofH and
its elementhij , j = 1..N is

hij =

{

γ − ⌊γ/Dii⌋ if Wij = 1 andi 6= j
0 otherwise

It allows us to develop a concise sparse encoding scheme withH :
for data contributori and every elementj, j = 1..N , if Wij = 1
andi 6= j, it outputs(i, j, E(γ−⌊γ/Dii⌋)); otherwise, with some
probabilitypi (to be described) it outputs(i, j, E(0)) for i 6= j.

6.2 Disguising Node Degrees and Edges with
Differential Privacy

We propose a bin-based graph disguising algorithm. We will first
describe the method to protect node degrees and then discussthe
protection on edges. Specifically, we sort the nodes by theirnode
degrees and then partition the distribution by bins. The nodes in the
same bin add randomly selected fake edges to achieve node-level
differential privacy.

The node degree distribution can be estimated with the node de-
grees of randomly sampled nodes. This can be achieved by asking
some randomly selected data contributors to submit encrypted node
degrees before them submitting the graph data. The data owner can
build a histogram to approximate the node degree distribution. Ap-
parently, this additional cost is quite low.

Let’s generate an equi-height histogram with the sample node
degrees, e.g., for a 100-bin histogram, each bin contains about 1%
of the nodes. The number of bins is chosen so that each bin con-
tains a moderate number of nodes, for example, a value in (50,100)
to provide satisfactory indistinguishability. LetUi be the maxi-
mum node degree in thei-th bin, andLi be the minimum degree
in the i-th bin. Our purpose is to make the nodes in this bin in-
distinguishable in terms of node degree, which is implemented via
ǫ−differential privacy. Let the query functionF () about node de-
gree be quite general, say finding the node degree ranked atk in
the bin. LetA andA′ be theneighboring graphwhich differ from
each other by only one node in the bin. We can derive the sensitivity
∆i = max{F (A)−F (A′)} = Ui−Li. Note that without bucke-
tization∆i can be very large, possibly up to the number of nodes in
the graph. Thus, the bucketization mechanism helps reduce func-
tion sensitivity and results in much less fake links to better preserve
the sparsity.



According to the noise design of differential privacy, we derive
that the parameterb of Laplace noise to be(Ui −Li)/ǫ. This noise
can be negative, which suggests we remove some edges and thus
destroy the authenticity of data. To avoid this problem, we add an
offset to the noise to make it positive. For a specificb, we can
always identify the boundq for Pr(x < q) <= 0.01. That means,
if we add an offset|q| to the distribution, we can make sure the
majority of population(> 99%) positive. With such an offset, the
number of fake links,ki,j is chosen as follows

ki,j = |qi|+ δi,j ,

where |qi| is the offset andδi,j is a random integer drawn from
Laplace(0, (Ui − Li)/ǫ) to makeki,j > 0. With such a noise
design, the nodes in the same bin satisfyǫ-differential privacy.

By preserving node-degree differential privacy, edge differential
privacy is also satisfied. We defineA andA′ as a pair of neigh-
boring graphs, if they only differ by one edge. The problem of
checking the existence of an edge can be transformed to an edge
counting query function. Let’s look at any arbitrary edge counting
functions. Clearly, the sensitivity of such a function is 1.Thus,
Laplace(0, 1/ǫ) is used to generate the noisy edges. Since the pa-
rameter(Ui − Li)/ǫ used for disguising node degrees is no less
than1/ǫ, the fake links generated for protecting the privacy of node
degrees also protect edge privacy.

Algorithm 5 gives the details of our privacy preserving sparse
submission algorithm. Here, we only discuss two types of functions
for querying node degrees and edges that are already used to design
privacy attacks. However, our result can be easily extendedto any
new types of query functions.

Algorithm 5 Privacy preserving sparse submission (H,ǫ, di,j ).

1: input: H: histogram provided by the data owner.ǫ: user selected parameter for
ǫ-differential privacy.di,j : the actual node degree.

2: find the bin that containsdi,j , whose upper bound and lower bound areUi and
Li, respectively;

3: b← (Ui − Li)/ǫ;
4: q ← b ∗ 3.912;// for b = 1 theq value is at 3.912, which scales withb;
5: draw a valueδi,j from the distribution Laplace(0, b);
6: ki,j ← |q| + δi,j ;
7: add thedi,j real links to the list with the sparse encoding;
8: randomly chooseki,j edges from the restN − di,j edges and encode them as

the encrypted zero entries;
9: submit thedi,j + ki,j items.

7. EXPERIMENTS
To show the practicalness of the proposed approach, we evaluate

the computation, storage, and communication costs associated with
the data contributors, the cloud, and the data owner. We use spectral
clustering as an application of graph spectral analysis to show the
result quality and related trade-offs of the two eigendecomposition
methods.

Table 2: Statistics of the graph datasets.

Dataset N |E| AvgDegree Density
Facebook 3,959 84,243 42 0.0107
Twitter 76,244 1,242,390 32 0.0004
Gplus 102,100 12,113,501 237 0.0023

7.1 Setup
Resources. The client machine is configured with 128 GB

of RAM and four quad-core AMD processors. The cloud-side

MapReduce program is tested on an in-house Hadoop cluster con-
figured with 14 slave nodes running Apache Hadoop version 1.0.3.
Each slave node is configured with 16 GB of RAM, four quad-core
AMD processors, 16 map slots, 12 reduce slots, and a 64MB HDFS
block size. The MapReduce program is implemented with Java and
Java native library and accesses the GMP library (gmplib.org) for
fast encryption/decryption. We also implement a customized in-
put/output MapReduce format classes for efficiently handling the
encrypted sparse matrix. Local algorithms for proxy side are im-
plemented in the Linux environment with C++ and various libraries
such as Armadillo (arma.sourceforge.net)for matrix computation,
and the GMP for encryption.

Datasets.
We use three graph datasets from the SNAP database

(snap.stanford.edu). Table 2 shows some statistics of these datasets
after some pre-processing. The original datasets were usedto study
some kind of social circles in the three popular social networks
[26]. Only the original Facebook data is undirected while the other
two are directed. We did some preprocessing to convert the di-
rected graphs to undirected ones and removed the dangling nodes
that do not link to any other node. Note that this conversion is only
meaningful for testing our algorithms.

We define the graph density as2|E|

N2 for undirected graphs, which
is the proportion of non-empty elements in the graph matrix.Den-
sity is one of the factors affecting the cost and effectiveness of the
Nyström algorithm. We also give the average degree2|E|/N as it
is related to the data contributor’s cost.

Evaluation Method. Both the Lanczos and Nyström methods
involve the trade-off between costs and result quality. Since we
focus on graph spectral analysis, we use the results of a typical
application, graph spectral clustering, to measure the quality. Al-
though there are several variations of the graph spectral clustering
algorithm [32], they all follow the same general steps as depicted
in Algorithm 6.

Algorithm 6 Graph spectral clustering algorithm

1: Input: a normalized/unnormalized LaplacianL;
2: Compute the lastk eigenvectorsu1, ...uk of L;
3: LetU ∈ R

n×k be the matrix containing vectorsu1, ...uk as columns;
4: For i = 1, ..., n, letyi ∈ R

k be thei-th row ofU ;
5: Cluster the row vectorsyi, i = 1, ..., n with the k-means algorithm into clusters

C1, ..., Ck.

It is clear that the most expensive step is the eigendecomposition
of the Laplacian matrix. The remaining steps can be done locally
by the client withO(N) complexity.

We will use the quality of graph spectral clustering as the quality
measure, which is computed based on the matching between the
baseline cluster labels generated by using precise eigendecompo-
sition, and the labels generated by using the Lanczos or Nyström
method. Note that the quality of the result is affected not only by
the result of eigendecomposition, but also by the k-means algo-
rithm. In particular, k-means results can be significantly affected
by the selection of the initial centroids. To eliminate thisuncer-
tainty, we use the kmeans++ algorithm [2] in experiments.

7.2 Data Contributor’s Costs
Each data contributor in the framework will generate one row

of the graph matrix, encrypt the elements, and transmit themto
the cloud. In the dense format, the submitted vector consists ofN
elements. In the sparse format, the element will be encoded in the
sparse format(i, j, E(.)), whereE(.) is the encrypted non-zero or
zero items. The encryption and transmission costs are determined
by the encryption method and the number of elements in the row.



Table 3: The perturbation parameters and results.

Dataset nbins nodes per bin original |E| |E| after perturbation % increase
Facebook 100 40 84243 99965 18.66
Twitter 1000 76 1242390 1527286 22.93
GPlus 2000 52 12113501 13228599 9.21

In the sparse format, the total number of elements varies according
to the personalized privacy parameterǫ, as described in Section 4.
We select the number of bins so that the number of nodes in each
bin is in [50, 100] to provide sufficient indistinguishability within
the bin. Withǫ = 1.0, we have the results in Table 3, which shows
that the size of increased edges are quite manageable.

Table 4 shows a comparison between dense and sparse schemes
using 1024-bit Paillier encryption for the three graphs in terms of
the average cost for a data contributor. The actual results of each
data contributor varies according to their original node degree. The
sparse result is based on the settings in Table 3, which is much
lower than the dense format. Even with the dense format, the costs
are still acceptable.

Table 4: Contributor’s Average Cost

Format EncryptAi (s) Upload E(Ai) (MB)
FB Twitter GPlus FB Twitter GPlus

dense 12.60 241.92 324.00 0.97 18.61 24.93
sparse 0.08 0.06 0.41 0.01 0.01 0.03

7.3 Cloud-side Costs
The cloud side storage cost is the sum of all data contributors?

contribution. Table 5 shows the storage costs for the dense and
sparse formats respectively.

Table 5: The cloud storage and parallel computing costs. (MB:
megabytes, GB: gigabytes, TB: terabytes)

Format Facebook Twitter GPlus
dense 3.78GB 1.35TB 2.43TB
sparse 24.41MB 372.87MB 3.15GB

We also experiment with the MapReduce implementation of the
cloud-side matrix-vector homomorphic multiplication. The matrix
is partitioned by rows in the MapReduce processing. Each Map
function handles the homomorphic dot productsE(Aj)bi, and the
Reduce function sorts the results from the Map output. Clearly, the
major computation cost occurs in the Map phase, which is deter-
mined by the number of Map waves, which in turn is determined
by the amount of input data and the available resources. Since each
Map process handles one data block, which is 64MB by default,the
maximum number of parallel Map processes isM/64MB, where
M is the total size (in MB) of the encrypted matrixE(A). With
sufficient processing resources, sayM/64MB Map slots, all the
Map processes can be done in one wave. Figure 4 shows the time
costs for matrix-vector multiplication with different dimensions in
the in-house cluster for dense encoding of large graphs. With the
increase of Map waves, the cost increases slightly non-linearly due
to the additional scheduling cost [35]. Overall, the average per-
wave cost is about 50-60 seconds. That says, with sufficient paral-
lel processing resources, the MapReduce program can be donein
pretty short time. Our in-house cluster has about 224 map slots.
With the same block setting and similar worker node configuration,
to handle 2.7TB for the dense GPlus matrix, about 2632 similar
worker nodes are needed to achieve the lowest cost. In contrast,
with the sparse format, our small in-house cluster is sufficient to

handle 3.15GB of sparse GPlus data in one wave. The optimal set-
ting of MapReduce system can be achieved with some optimization
methods [18], which is out of the scope of our paper.

7.4 Costs for Data Owner
We consider the overall costs for the data owner to run the Lanc-

zos and Nyström methods. These costs are determined by the pa-
rameterst, the number of Lanczos iterations andm number of sam-
ples in Nyström method. The parameters are intricately linked to
the quality of approximation and the specific dataset. Therefore, we
use the spectral clustering results to determine the satisfactory set-
tings oft andm for each dataset and then derive the corresponding
costs for the data owner.

Spectral Clustering Results.We use theeigs_symfunction in
the Armadillo library, which in turn calls the standard ARPACK
library function [23], to find top-k eigenvectors of the unencrypted
sparse matrix. Note that it is more numerically stable to findthe
top-k eigenvectors (corresponding to the largest k eigenvalues) than
to find the bottom-k eigenvectors that are required by spectral clus-
tering. Since we have done the transformation on Laplacian matrix
H = γ(I − L) for encoding (Section 4), the top-k eigenvectors
of H are what we need in practice. With these eigenvectors re-
turned byeigs_symwe conduct the spectral clustering algorithm to
establish the standard labels. For simplicity, we choosek = 10 for
all datasets2. Figure 5 and 6 shows the accuracy change over the
number of iterations and the sampling rate for these two methods,
respectively. Table 6 gives the appropriate parameter settings for
each dataset to achieve the same level of accuracy. Note: Ouren-
cryption framework does not affect the quality of results for both
Lanczos and Nyström methods.

Table 6: Number of iterations (t) for Lanczos and sampling size
(m) for Nystrom to attain satisfactory clustering accuracy

Datasets N Accuracy t m
Facebook 3959 82% 30 396
Twitter 76244 90% 25 3050
Gplus 102100 92% 30 8168

Costs of the Lanczos method.According to the settings oft,
we give the aggregated costs int iterations for the Lanczos method.
The major costs include uploading{b̄i}, downloading{E(Ab̄i)},
and decrypting{E(Ab̄i)}. Note that all these vectors are dense, re-
gardless of the sparse or dense representation of the matrixE(A).
Table 7 shows the aggregated costs fort iterations. Overall, the
communication costs are moderate while the decryption is expen-
sive. It still allows the data owner to monitor the change of graph
spectral structures in every couple of hours.

Costs of the Nyström method. The major client-side costs
of the Nyström method consist of downloadingE(Wm×m),
E(ΦN×k), andR, and decryptingE(W ) andE(Φ). Other costs
are comparably small and skipped in the discussion. Note that these
costs are determined not only bym, but also by the sparsity of the
matrix, which determines the size ofE(W ). Table 8 shows the
costs for the dense format and the sparse format with the settings

2The optimalk should depend on the actual graph clustering struc-
tures. However, the simplified setting is enough for our goals.
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Figure 4: MapReduce processing for
matrix-vector homomorphic computation.
The cost is approximately determined by
the number of Map waves.
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Figure 5: Clustering accuracy vs. the num-
ber of iterations for the Lanczos algorithm.

0.7

0.75

0.8

0.85

0.9

0.95

2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30%

C
lu

st
er

in
g

 A
cc

u
ra

cy

Sample Rate

Facebook Twitter Gplus

Figure 6: Clustering accuracy vs. the sam-
pling rate for the Nyström algorithm.

Table 7: The aggregated costs of the lanczos method. mins: min-
utes

Datasets t Upload Download Decryption
Facebook 30 960KB 30MB 4 mins
Twitter 25 14MB 488MB 66 mins
Gplus 30 23MB 783MB 107 mins

given by Table 3. The result shows that the costs for dense matrices
are very high, while the costs for sparse matrices are much lower.

Comparing these two methods, we find that to achieve the same
level of model quality the Nyström method with sparse matrices
yields lower costs than the Lanczos method. However, as Figure
5 and 6 show, with more Lanczos iterations, the model qualitycan
improve further, while the Nyström method converges to a lower
quality level with higher sampling rate. This represents a potential
trade-off between the costs and model quality.

8. RELATED WORK
Numerous graph mining algorithms have been developed dur-

ing the past decade for analyzing the web, social networks, soft-
ware bugs, and biological networks [1]. With the emergence of big
graphs, several scalable algorithms or toolkits have recently been
developed dedicated to graph mining, for e.g. PEGASUS [19],
Pregel [25], Giraph (giraph.apache.org), and parallel spectral clus-
tering algorithms [10]. However, the data privacy problem for min-
ing graph data in public clouds is not addressed yet.

Fully homomorphic encryption (FHE) schemes have been con-
sidered an ideal solution for privacy-preserving computation of out-
sourced data, but the current most efficient solutions [8] still result
in large ciphertext size and expensive homomorphic multiplication.
Another generic solution is the garbled circuits (GC) [17] for se-
cure multiparty computation, which suffers from high communica-
tion costs. A recent study [28] uses the optimized implementation
FastGC [17] to implement iterative privacy-preserving matrix fac-
torization for recommender systems. It shows that one iteration
of computation with a4096 × 4096 matrix costs about 40GB in
communication. Somewhat homomomorphic encryptions provide
semantic security to the plaintext being masked, however their ap-
plication alone is not enough for protecting sparse graph dataset as
we describe in our paper.

Atallah et al. [3] present secure outsourcing solutions that are
specific to large-scale systems of linear equations and matrix multi-
plication applications. These solutions fall short as theyleak private
information, depend on multiple non-colluding servers, and require
a large communication overhead. Wang et al. [33] use an iterative
approach for solving linear equations via client-cloud collabora-
tion; however, their approach possesses several weaknesses. First,

it requires that the entire unencrypted matrix be present atthe client
side. Secondly, the client side must perform a problem transforma-
tion step with a computation cost ofO(N2). These weaknesses
render Wang’s approach impractical for big matrices.

Privacy-preserving graph data publishing [37] is somewhatre-
lated to our work. However, it has a totally different problem set-
ting than ours. Graph data publishing wants to share the graph data
but needs to address the privacy attacks from the curious data min-
ers. It normally publishes perturbed graph structures by adding or
removing edges and nodes to disguise some graph structures which
puts dents to the graph authenticity. In our problem, we avoid shar-
ing of the graph data and we ensure the graph authenticity is fully
preserved.

The attacks to anonymized graph data have been extensively dis-
cussed [4, 37] and several methods such as k-degree anonymiza-
tion [24] have been proposed to address the attacks. However, at-
tacks with background knowledge cannot be thoroughly discovered
and understood. Thus, differential privacy for graph analysis be-
comes popular in recent years. Differential privacy has been used
in graph spectral analysis in [34] in the interactive setting, however
fails to consider the use of cloud infrastructures for analytics. Ka-
siviswanathan et al. [20] studied the application of differential pri-
vacy in graph analysis about node and edge differential privacy in
interactive setting. Our method differs from these work in several
aspects. We apply the non-interactive setting of differential pri-
vacy which perfectly fits the cloud-client computing paradigm. We
protect the data authenticity completely, and allow distributed data
contributors to submit data individually, with a little information
from the data owner about the distribution of overall node degrees.

9. CONCLUSION
In this paper, we present a cloud-centric privacy-preserving

graph spectral analysis framework. The graph datasets are col-
lected from distributed data contributors, encrypted withan addi-
tive homomorphic encryption scheme, and stored in the cloud. We
develop two privacy-preserving eigendecomposition algorithms:
the Lanczos and Nyström methods to generate approximate top-k
eigenvectors and eigenvalues for conducting the spectral analysis.
These two algorithms are designed to meet three requirements: (1)
the cloud side processes the expensive operations ofO(N2) com-
plexity with great scalability, (2) the client side costs are linear to
the number of nodesN , and (3) these algorithms do not leak data
privacy to adversaries. We also design a personalized sparse data
submission algorithm for data contributors to preserve data sparsity
while still allowing the contributors to achieve personalized privacy
with solid guarantees provided via differential privacy. Preserving
sparsity significantly reduces the cloud storage costs and very im-



Table 8: Costs of the Nyström method

Dataset m Dense Sparse
Download Decryption Download Decryption

Facebook 396 48.0MB 7.0 mins 10.1 +/- 0.5MB 1.5 mins +/- 4.1 secs
Twitter 3050 2.4GB 351.6 mins 187.4 +/- 0.9MB 26.8 mins +/- 1.0 secs
Gplus 8168 16.2GB 2366.2 mins 290.3 +/- 1.6MB 42.5 mins +/-13.4 secs

portantly the costs for the Nyström method.
We have done extensive experiments with real graph datasets

to show the storage and computation costs for the data contribu-
tors, the cloud, and the data owner. A comparative study has been
done between the two privacy-preserving eigendecomposition al-
gorithms to understand the trade-off between costs and result qual-
ity. The result shows that the Nyström method with sparse data sub-
mission may have lower costs, however with lower quality results,
when compared to the Lanczos method. In contrast, the Lanczos
method is not affected by data sparsity. Overall, we show that the
costs for both proposed methods are practical.

This work can be extended to several directions. First, we may
consider new methods to further reduce data transmission cost for
both algorithms, especially for the Lanczos method. Second, we
will explore into issues governing dynamically updated graphs. Fi-
nally, we will also extend the core operations of our framework to
other graph mining algorithms.
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