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1. INTRODUCTION

The continuous and rapid expansion of social networks, lmobi
and web applications, and biomedical research has led tergen

datasets, collected and owned by data owners, may alsoirconta tion of big graph datasets, which have great value in botimbas

privacy-sensitive information. When using public clouds élas-
tic processing, data owners have to protect both data oWwipers
and privacy from curious cloud providers. We propose a cloud
centric framework that allows data owners to efficientlylec
graph data from the distributed data contributors, andagely

and scientific research as shown by recent studies [1]. Tdrapd
datasets are often continuously updated, making it experisi
store and analyze. It is thus appealing for data owners tclosel
infrastructures for computation and data storage, as igatés the
need to establish, operate, and maintain expensive inehatras-

store and analyze graph data in the cloud. Data owners can con tructures. More importantly, the elasticity of cloud cortipg in-

duct expensive operations in untrusted public clouds witrapy
and scalability preserved. The major contributions of thark
include two privacy-preserving approximate eigendecasitjom
algorithms (the secure Lanczos and Nystrom methods) far-spe
tral analysis of large graph matrices, and a personalizedqy-
preserving data submission method based on differentiahqyr
that allows for the trade-off between data sparsity andapyiv

frastructures allows users to adapt rapidly to the charmgstorage
and computing requirements.

However, data privacy becomes a significant concern on@e dat
is moved to the cloud. Recent studies show that adversaaies c
explore infrastructure vulnerabilities to gain unauthed accesses
[31], and curious employees of the cloud provider may snaép p
vate data [9]. Two well-known generic approaches have been d

For a N-node graph, the proposed approach allows a data ownerVveloped to preserve privacy while computing with untrusped-

to finish the core operations with onty(N) client-side costs in
computation, storage, and communication. The exper@iE?)
operations are performed in the cloud with the proposedapyiv
preserving algorithms. We prove that our approach canfaetis
torily preserve data privacy against the untrusted clowdigers.
We have conducted an extensive experimental study to igedst
these algorithms in terms of the intrinsic relationship@agicosts,
privacy, scalability, and result quality.
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lic clouds: fully homomorphic encryption (FHE) [16] and see
multi-party garbled circuits (GC) [17]. Theoretically,etyh can be
used to construct the privacy-preserving versions of maist ohin-
ing algorithms. However, these schemes are too expenshavio
practical applications. The current best implementatibiirldE
schemes [8] will result in large ciphertext (e.g., a 4-bytgeger
will become about 100 kilobytes(KB) - 25,000 times of size in
crease) and expensive homomorphic multiplication (elgpual0
milliseconds (ms) for single multiplication, and it is marpen-
sive with multiple levels of multiplications). The majorgiiiem
with garbled circuits is the communication cost, as eack gaa
circuit will incur a communication cost between two partidsre-
cent study on the gradient-decent-based matrix factooizatigo-
rithm for recommendation systems [28] that used garbleclits
shows the communication cost being around 40 gigabytes {@B)
a small-sizet096 x 4096 matrix in just one iteration.

Thus, efficient approaches that are particularly desigoedf
specific application (or a specific set of applications) agally de-
manded.

In this paper, we develop a cloud-centric privacy-preseyvi
graph spectral analysis framework that enables data oviogns-
vately store and analyze big graphs with untrusted pubbaads.
We consider graph spectral analysis as a particular aréaima
possibly benefit from more efficient privacy-preserving noets
for computing with public clouds. Graph spectral analysigni-
portant to many applications such as community detectiai, [2
PageRank [5], and spectral clustering [15].

In our framework, data contributors, who are distributedrdate



Internet (e.g., users using mobile apps provided by theaater),
agree to contribute to a graph database in the cloud. Typizah-
ples that fit in this framework include social interactiohsough
instant messengers and social media forming person-pérsan
action graphs, location updates that form person-locagiaphs,
and user ratings of products that form person-product prete
graphs. These graph data are encrypted with a certain st
momorphic encryption (AHE) scheme, such as Paillier scHe®le
and pairing scheme [7] that have much lower costs than therur
FHE schemes. The data owner interacts with the cloud to run ou
proposed privacy-preserving graph spectral analysigighgas and
get analytic results. The data owner may authorize trustedein
consumers (e.g., a data mining team in the data owner’s izayan
tion) to use the analytic results via a service interfaces gtaphs
might be periodically updated and so do the analytic results
There are three major challenges to this proposed framework

e How to develop the cloud-side algorithms that solely relies
on the partially homomorphic operations allowed by an AHE
scheme?

e How to desigrpractical cloud-client algorithms that preserve
cloud economics and utilize cloud-side scalability?

e How to define data privacy in cloud-centric storage and com-
putation, and design mechanisms to protect it?

We focus on the core operation of graph spectral analyses: th
approximate eigendecomposition of graph matrix, and addfee
challenges with the following key ideas.

Our approach uses pseudo homomorphic multiplicaticemd
random data masking mechanism to enable cloud-side hormomor
phic matrix computations. Specifically, an AHE scheme alyea
enables (a+ () = f(E(a), E(B)), wheref () is some algorithm
that works on the encrypted version of two integer operant{s:)
and E(B) without decrypting them. The pseudo homomorphic
multiplication for E(«3) can be achieved by applying additions
3 times, e.g.,E(Zf:1 «), with one of the operands, s& un-
encrypted. With these two fundamental operations, we caxele
pseudo homomorphic matrix-vector operations. The keylprob
with this technique becomes protecting the unencryptedanpls
in pseudo homomorphic operations, for which we design rando
data masking algorithms that work with the approximate raiige
composition algorithms.

For anN-node graph, we consider a practical cloud-client col-
laborative algorithm which should enable the data owneotwlact
expensive core operations of complexi®y N?) in the cloud with
scalable algorithms, while limiting the client-side commzation
and computation costs t©(/N). The presented secure Lanczos
algorithm and Nystrém algorithm satisfy these requiremeit/e
also reveal the intricate relationships between the gualitesults,
and the computation and communication costs for the two-algo
rithms, in a typical application of spectral analysis - drapectral
clustering.

Our framework addresses the major privacy threat from osrio
but-honest cloud providers, who may try to learn privateinfa-
tion, such as an interaction between two nodes, the presdrece
specific node in the graph, and the eigen-structure of thphgra
by snooping on the graph data or the intermediate resuilts fre
computations done in the cloud. It protects data privacytatics
storage with the AHE encryption schemes and the differeptia
vacy mechanism, and the privacy of the intermediate comguié-
sults with the pseudo homomorphic computation and randden da
masking algorithms.

We also design an efficient privacy-preserving data subiamiss
algorithm to simultaneously preserve the sparsity of graptrices
and allow the contributors to achieve differential privd¢]. It
allows the data contributor to disguise node degrees aneselg
injecting randomly selected fake links. The fake links arergpted
so that they are indistinguishable from the real links. Thmber
of fake links are selected via-differential privacy, with the user-
tunable privacy parameter Our algorithm completely preserves
data authenticity and provides differential privacy whileeping
low costs. The preserved sparsity helps reduce the cloudggo
cost and the costs of the Nystrém algorithm.

In summary, our work has the following unique contributions

e We develop the secure Lanczos algorithm and the secure
Nystrom algorithm to allow practical privacy-preserving
graph spectral analysis on untrusted public clouds. The
pseudo homomorphic operations and random data masking
algorithms are designed to protect data privacy in computa-
tion.

We design a privacy-preserving distributed sparse grafgh da
submission algorithm that allows the data contributors to
employ personalized differential privacy mechanism, ehil
fully preserving data authenticity and sparsity. The pnes
sparsity help reduces the costs of cloud storage and privacy
preserving graph analysis algorithms.

We have studied the intricate relationships among data pri-
vacy, costs, scalability, and result quality, with realgjra
datasets and using graph spectral clustering as the applica
tion.

The remaining part of the paper is organized as follows: Sec-
tion 2 gives background knowledge about the proposed approa
including a brief description on differential privacy, tA&lE meth-
ods such as the Paillier encryption system, and graph spectal-
ysis. Section 3 describes the design of cloud-centric detdce
framework and the threat model we consider. Section 4-Grithesc
the core algorithms and their properties. Section 7 prestm
results of experimental evaluation. Section 8 shows soragect
work on privacy-preserving computation with the cloud.

2. PRELIMINARIES

In the following, we briefly describe our notations, and pras
background knowledge on the applicable encryption schedikes
ferential privacy, the approxiamte eigendecompositiothaes of
Lanczos and Nystrém, and the basic graph spectral analggis a
rithm. For clear presentation, we will use Greek charadtersp-
resent scalars; lower case letters for vectors; indexeérmase
letters for the vector elements; capital letters for magjcsubma-
trices, or sets; and indexed capital letters for matrix rows

Agraphis represented 84V, E), whereV is the set of vertices
and E is the set of edges. We ugé and|E| to represent the set
sizes of V' and E respectively. In additionZ, which is used
by the encryption schemes, represents the groug-dimensional
vectors of integers modulg.

Additive Homomorphic Encryption Schemes. Our approach
will use additive homomaorphic encryption (AHE) schemesne e
crypt graph matrices and enable homomorphic computatidien
cloud. There are several AHE schemes such as the Palillier en-
cryption [29], the pairing-based encryption [7], and thadRLWE
based encryption [8]. The additive homomorphic propertgds
scribed as follows. 1f£() denote the encryption function, then for



two integersy and 3, the homomorphic addition is notated as:
E(a+ B) = E(a) + E(B)

For simplicity, we re-use ‘+' inE(«) + E(B) to represent the
additive homomorphic operation, which may be implemented a
some algorithmf(E(«), E(3)). We consider that’(a,3) can be
implemented agle E(«) if one of the operands, s&is unen-
crypted - we call itpseudo homomorphic multiplicatiofror n-bit
integer 8, encoded a$,,_1 ... bo, this can be implemented effi-
ciently with the double-and-add algorithm, i.e., recuesivcom-
puting E(2a), ..., E(2"*«) and theny "} E(2'a), which re-
quiresO(log n) additions. For Paillier encryption, it can be more
efficient as

E(ap) = E(a) mod_powers,
wheremod_powemeans the modulo power operation [21]. For
simplicity of presentation, we usB(«a)g to represent this opera-
tion. Based on these notations, we can extend partial hompirico

operations to vector dot-product. For tweelement vectors and
y, we have

E(z"y) = E(z")y = 2" E(y),
with one of the operand unencrypted.

It can be further extended to matrix-vector multiplicati¢tor a
k by k matrix A and ak-element column vectar, we have

@)

E(Az) = E(A)z, @

with z unencrypted. This property will be used in developing the
secure Lanczos algorithm. It can also be extended to miataitxix
multiplication. AssumeR is an unencrypted matrix. We have

E(AR) = E(A)R, ®)

which will be used in developing the secure Nystrém alganith
For this set of operations, we name thpseudo homomaorphic op-
erations

query function, such as the COUNT function, i.e., the query r
sult plus a random noise. The noise in the output is engideere
SO as to approximately preserve the utility of the query fiamc

yet prevent the distinguishability of any individual redsrin the
database. Laplacian noise is of popular choice, where & nois
is drawn from the Laplace distribution Laplace{, the PDF of
which is % exp(—%). The parameteb is determined by the
user-specified parameterand the sensitivity of query function:
A =max |M (A1) — M(Asg)|, i.e.,b = A/e. For example, for the
COUNT function, the sensitivit\ is 1 and thus, the parameter

is set tol /e. In general, smaller thesetting (i.e., the stronger pri-
vacy preferences) and larger thevalue, higher the level of noise
that is added to achieve the desired level of privacy.

In the non-interactive setting where the dataset is operubs p
lic eyes, a synthesized database is published that prasboth
the desired data utility and differential privacy [6]. Thesilience
of non-interactive method depends on whether all possittéela
queries are considered when designing the synthesizebadata
The non-interactive setting fits our case. We will desigrke fadge
addition method to achieve differential privacy againsineations
of node degrees and identification of real links, while castedly
preserving data authenticity for outsourced graph dataarcioud.

Graph Spectral Analysis. When graphs are represented in ma-
trix forms, e.g., adjacency matrix or Laplacian matrix [18e
spectral properties of the matrices play an important nolmany
analytics tasks such as PageRank [5], community detec&d] [
and clustering [15]. The key operation of spectral analigstsgen-
decomposition [14], which is generally expensive: the clatep
eigendecomposition of & x N matrix has a time complexity of
O(N?). Therefore, approximate algorithms, such as the power iter
ation methods (e.g. Lanczos method) [11], and the samplisgd
Nystrom method [15, 22], are often used to reduce the time-com
plexity for large graphs. These algorithms typically retapproxi-
mate top-k eigenvalues and eigenvectors. The core and mueste
sive operation in these algorithms are matrix-vector mlittation
(for iterative methods) and matrix-matrix multiplicati¢for Nys-
trdm methods). See algorithm 1 and 2 for the fundamentassiep

Because one operand in these operations has to be unewcrypte | 4nezos and Nystrém methods respectively.

finding a way to maintain the confidentiality of the unencegpt
operand will be one key problem in our algorithms.

We will use the Paillier encryption in our implementationedu
to its efficiency in ciphertext size and homomorphic opersi It
is a public-key system, which enables more practical uses fo
large number of distributed data contributors. Paillieciption
has proven strong security guarantees. It is indistingdihunder
an adaptive chosen-plaintext attack (IND-CPA), and thesehis
probabilistic, meaning that two equal values are mappedffier-d
ent ciphertexts uniformly at random. Table 1 summarizesbtie
sic costs for Paillier encryption. In our experiment setwp, use
1024-bit Paillier encryption key, the security of which guévalent
to 80-bit AES encryption.

Differential Privacy. Differential privacy [13] is a standard no-
tion in data privacy which protects any individual recordrfr pri-
vacy breach in databases via database querying. For tweetisita
A1 and A, that differ in exactly one recordy/ (A;) be the mech-
anism that outputs noisy statistiesc R of the datasets, thest
differential privacy is satisfied if the following conditiogiven in
[13] holds:

Pr[M(A:1) =r] <=exp® Pr[M(Az) =] 4)

It is popularly applied in interactive databases to presefata
privacy while allowing anybody to query the database. Thehne
anism M is defined as the additive perturbation of a specific

Algorithm 1 Lanczos Method for Eigen-approximation

. bg + randomN -dimensional vector;
for i <~ 1totdo
b,; < Ab171
other vector-based processing
end for
. Post-processing with the vectofs; , ¢ = 0..t} to get topk approximate eigen-
vectors

QR wNhE

Algorithm 2 Nystrém Method for Eigen-approximation

1. s « generate random index set such thal| = m < N
. CnN xm 4+ getthe corresponding: column vectors fromA
. Wi x m  submatrix ofA with rows and column indices in
4: decomposéV,,, x . to get topk eigenvalues\ x , and eigenvectors/,, x

5. computeC'n s im Um x kMg o i

These algorithms reduce the complexity with some sacrifice i
accuracy. Greater number of Lanczos iterations, and greats-
pling rate for Nystrém account for better accuracy, howeugr
crease the computation cost. In subsequent sections, serpi@ur
framework that privately processes user-submitted nesrigith
untrusted public cloud platforms to conduct eigen-ankysiVe
will develop the secure versions of these approximate #lgos
for working with encrypted graph matrices in the cloud.



Table 1: Parameter setting and costs for Paillier encrgptio bits, B:bytes, ms: milliseconds

Keysize(b) | Cipher-size(B)| Enc(ms)| Add(ms) | Mult(ms) | Dec(ms)
1024 256 3.173 0.005 0.052 2.096
2048 512 16.481 0.014 0.160 15.165
3. FRAMEWORK AND SECURITY Social graphs often include sensitive interactions betwee

OVERVIEW

In this section we describe the primary elements of the mego
framework, the threat model, and security guarantees.

E(A) e
—>
) Srderand Data Owner
—————————————— Processing
% F—(Ak) Cluster l Models
Model

Cloud

Data contributors consumers

Figure 1. Framework for privacy-preserving graph
spectral analysis with the cloud.

Figure 1 shows our framework, which involves four partid® t
public cloud, the data owner, data contributors, and aizédr
model consumer. We also use the client side to represersreith
the data owner or the data contributors that may involve doiat!
client interactions. The data owner will generate a pubdig &nd
a private key, and distribute the public key to the data doutors.
Data contributors then upload the encrypted data to thedctou
gain the data owner’s incentives using a web applicationmoa
bile App provided by the data owner. The graph data can be the
data contributor’'s personal interactions with other dbotors in
an online social network, or relationships with other itesush as
locations and products, which make bipartite graphs. A&gvely,
the data owner can also upload any in-house graph datasétz¢h
collected via other channels. Data consumers are autlidsizéhe
data owner to use the graph analysis service. The data owther w
provide analytic results to the model consumers.

The core spectral analysis algorithms work on the encrypted
data and guarantee that the most expensive computatiansie.
O(N?) complexity) are performed in the cloud, while both the
storage and computation costs on the client-side stay layy, (@
O(N) complexity). Upon updated graphs, the data owner will pe-
riodically start the cloud-client spectral analysis altfons to gen-
erate updated models.

3.1 Threat Model

We make practical threat assumptions and focus on confadenti
ity breaching by honest-but-curious cloud providers - 1% Hata
contributors operate through secure systems and no infnmia
leaked by themselves. 2) The data owner’s in-house infrestres
are secure. An adversary who can compromise data owner's fire
wall cannot be protected by our framework. 3) All commurnimat
channels are secure and data in transit is always encryfteoir
framework is not meant to ensure integrity, freshness, oiptete-
ness of results returned to data owners, but to efficienttiress
the secure storage and processing of large datasets in 8ptitie
data owner is a trusted party who will manage all they keyscamd
read all data submitted by data contributors.

Threat 1: Data contributors’ privacy.

data contributors. Although data contributors’ real IDsvéna
been removed, attackers can still utilize node degrees {87]
de-anonymize and then reveal sensitive links between the de
anonymized data contributors [36]. Our design will protectie
degree and linkswith encryption and a bin-based randomized
anonymization scheme that satisfiedifferential privacy.

Threat 2: Privacy of data in computation.

Since the cloud provider is untrusted, not only the dataan-st
age, but also the data in computation needs to be protected. O
framework lets the cloud perform heavy tasks of eigendecminp
tion over protected data, with no additional informatioratthe
matrix or the analytic results revealed to the cloud pravideny
intermediate data generated during computations andairttens
are in encrypted form or masked by randomization.

4. DENSE VECTOR DATA SUBMISSION

In this section, we first present our graph data encoding odeth
and basic dense vector submission that breaches no informat
but demands high storage costs. Later, in Section 6 we will in
troduce the personalized privacy-preserving data sulionisdgo-
rithm that allows the contributor to reduce the size of sigsion
with personalized privacy setting.

Representation of Data. In order to use the AHE schemes all
values need to be convertedrton-negative integerd-or matrices
in the real value domain, a valid method to preserve the el pire-
cision, e.g.d decimal places, is to multiply the original value by
10% to scale up the values and drop the remaining decimal places.
In addition, we also need to shift the values so that the donsai
positive. The conversion can be represented as an affingfdran
mation: for a real value,

g(a) = 10%a + 7, ()

wherer is a large positive value that converts the smallest nega-
tive value to non-negative. This process is clearly retéedor the
result of the discussed matrix-vector operations.

Encoding Graph as Dense Matrix.We first present the method
that encodes the whole graph as a dense matrix. It will fules p
serve the confidentiality of the entire graph, but the steragd
computation costs will be much higher than the sparse metteod
will discuss later. We use theormalized graph Laplacian matrix
for spectral clustering [32] as an example. Other graphiogstican
use a similar method to encode. Below we describe the engodin
method for a Laplacian matrix.

For an undirected graph, |12 be the diagonal matrix with node
degrees on its diagonal P;; represents the degree of node
1 = 1.N. Let W be the adjacency matrix witi;; =1 if and
only if the edge(s, j) exists, and¥;; = 0 otherwise. For undi-
rected graphsiV is a symmetric matrix, where each row(column)
of W represents the corresponding node’s adjacency edges. The
normalized graph Laplacian matrixis L = I — D~'W,

where[ is the N by N identity matrix. Specifically, for each
row of the Laplacian matrix, say;, its element;;, j = 1..N is

1Compared to links, the no-link relationship is less sewsitind
thus not protected in our method



ifi=j

0 otherwise

Each data contributor may represent one node (or a few nodes)
in the graph, and contribute the corresponding row(s) of tyda-
cian matrix. To encode the entire vector in the dense forine,
straightforward to apply Eq. 5 to convert each element of tiae

5. PRIVACY-PRESERVING APPROXI-
MATE EIGENDECOMPOSITION AL-
GORITHMS

A major motivation for using the cloud to store and procesggr
data is to move the expensive processing algorithms to thelcl
for good scalability and cost-saving. Specifically, we expbe
cloud-side handles th@(/N?) computations in a scalable manner,
while the client-side costs are limited @(N). Meanwhile, the
algorithm should not reveal any information additional toatever
the adversary already knows, e.g., the information discldsy the
personalized data submission algorithm.

We design our algorithms based on two major methods for ap-
proximate eigendecomposition: the Lanczos method [11]thad
Nystrom method [22]. These two methods have been used to ef-
fectively reduce the computational costs for eigendecaitipa of
large matrices. The challenge is to design the secure dbent
collaborative algorithms to meet the cost and privacy negpents.

In the following, we will briefly describe the original algtrms
and then present the secure versions working on encryptgahgr
matrices.

5.1 Privacy-preserving Lanczos Algorithm

The Lanczos method is based on matrix power iteration[11].
The Lanczos iteration for a matrid y « v initiates with the gen-
eration of a randomV dimensional vectobo, then the operation
b; = Ab;—1/||Ab;—1|| is performed in each iteration The most
expensive computation is the matrix-vector multiplicafiand it is
also essential to preserve the privacy of the vetidrecause the
eigenvectors are derived from the $ét, 7 = 0..t} for ¢ iterations.

With an AHE scheme, we use pseudo homomorphic matrix-
vector multiplication to computé (Ab;_1), whereb;_1 has to be
in plaintext. The challenge here is to efficiently protéct; and
recoverAb;_; afterwards.

We describe our random data masking algorithm for AHE
schemes. Paillier encryption is used as the representatite
scheme for its fast computation speed and small cipherizxt s

The core data masking and result recovery algorithm canefst
three key steps: preparation, random masking, and recovery

Preparation. This step consists of two substeps. (1) The data
owner selectd N dimensional random vector$s; }, whereh is
small which is related to complexity for estimates with higinfi-
dence as described in [30], and send them to cloud. Thesermand
vectors will be used to protect the vectadtsn each iteration. The
cloud will compute EAs;) and send back the results to the data
owner. (2) The data owner also generates a random véagtand
distribute Ebo) to data contributors. Each data contribut@om-
putes EA;by) = Z;\Ll E(A;jboj) using pseudo homomorphic
multiplication with A;; in plaintext, and sends back the single en-
crypted scalar EA;bo) to the data owner.

Random Masking. The perturbed vectdr; is given as

b; =b; +7r; mod gq (6)

whereq is a big random prime large enough to contain all val-
ues and computation results in the application domain rang
designed from the seed vectassas:

h i—1
ri = Z @181 + Z ﬂz‘jbj mod q, (7)
=1 j=0
where a;;; and j;; are randomly drawn fron¥, . This ap-

proach protect$; and the security depends on the randomness of
ri. Knowing s;, I = 1..h to reveal information about; vectors is
a learning with error (LWE) problem, and hence our pertudnais
secure under the intractability of the LWE problem, whichi twé
discussed in more detail later.

Recovery. Recovery ofAb; is performed at data owner a;
from the cloud is the result ollb; + Ar;. Because

i—1

ZﬁjkAbj mod ¢,

§=0

h
Ar; = ZaikASk +

k=1

®)

The set of vectorsds;, As, are precomputed by cloud. Let
c; = As;. Then computation oftr; = >-"_, aje; + Y i—( B;b;
involves onlyh + 4 vector-scalar multiplications ankl + ¢ vec-
tor additions. Ab; can be recovered with only &(N) cost:
Ab; = Ab; — Ar; mod q.

Algorithm 3 gives the detail. The client side communicatiom
computation costs are limited ©©(tN). The cloud-side pseudo
homomorphic computation df(Ab;_) with the encrypteds(A)
and the plaintexb;_; can be easily cast to a matrix-row based par-
allel algorithm. For example, with MapReduce processirgj,[1
each map function handlgs(A4;b;1) for a row A;, which gen-
erates one element in the result vector; the reduce funstioply
assembles the elements by their indices.

Algorithm 3 Privacy-preserving Lanczos Algorithm with AHE
schemes

1. bg + randomN-dimensional vector and encrypt(bo) // data owner
2: downloadE (bg ), computeE (A; bo ), and send back to data owngf each data
contributor
fori + 1tot do:
. b;_1 <+ perturbation based ofbo, .., b;—2 } and seed vectors
{s1,.., s} and upload; _ // data owner
computeE(Ab;_1) // cloud
download and decrypE’ (Ab; 1) // data owner
recoverb; from Ab;_1 // data owner
a;—1 + bFb;_1 // data owner
wi_—1 by —azbi_1 — Bi_1bi_2
whereb; = 0 fors < 0 // data owner
9 Bi < ||lw;_1| // data owner
10: bi < w;_1/B: // data owner
11: endfor

oNOgR W

Privacy Analysis. Since the adversary only sees the plaintext
b; in the cloud-side computation, while the rest part of cleidtk
computation does not leak any additional information, thg is
how wellb; protectsh;. Note that the adversary also knows the seed
random vectorgs;}, for j = 1..h, s; € ZY, as they were sent in
plaintext in the preparation step. We want to show the falhgw
proposition.

PROPOSITION 1. {b;}, ¢ = 0..t, cannot be distinguished from
uniformly random vectors, with the knows;, j = 1..h}.

PrRooOF We will prove theb, case. Other cases are similar.
Leta; = (as,...,qx)" be the random parameter vector, and
C = (s1,..., sn) be the matrix consisting of; as the column vec-
tors. We represent the Equation 6 with matrix operations fer0:



Data
Contributor <

Data Owner

Figure 2: Lanczos for AHE scheme

bo = bo + 1o = Cao + bo mod g, with knownC' and unknowrug
andbo. If C, ao, andby are drawn uniformly at random, the prob-
lem of distinguishing< C, by > from uniformly random samples
overZY*™ x 71 is exactly the decision version of thearning
with Errors (LWE) problem [30]. The existing results on the LWE
problem have shown thag cannot be distinguished from any uni-
formly random vectors iby is a random vector and, is secret
[30]. Thereforepy is securely protected. The same conclusion can
be extended to the case% 1 with more unknowns included.[]

5.2 Privacy-preserving Nystrom Algorithm

The Nystrém method has been applied to handle large matricesqo

for spectral analysis [15, 22]. It uses a small sample sutixnait

a large matrix to compute approximate eigenvectors. '@t
bem (m <« N) column vectors randomly sampled from the orig-
inal matrix A. Let .S be the set of the sampled column indices and
Wmxm be a reduced matrix with the corresponding rows of the
matrix C' with row indices inS. TheW matrix represents the sam-
pled subgraph consisting of the nodesSin Let the eigendecom-
position of W be W = UAU7T, whereU, an orthogonal matrix
and A, a diagonal matrix contain the eigenvectors and eigensalue
of W, correspondingly. Lel,.x be the topk eigenvectors and

Arxx be the corresponding eigenvalues. The Nystrom method uses

OUmxkA;Xlk to approximate the tog-eigenvectors of the original
matrix A.

Let's consider a basic version without encryption and myva
protection. The cloud gets the matiix and W, and send$V to
the client. The client decompos&E and sends back,, xx and
Ak xx. Finally, the cloud computes the resit = UmxkA;Xlk
andC'V, and sends it back. This algorithm moves the most expen-
sive computations to the cloud. Basically, the cloud-sioleguta-
tion cost isO(Nmk), the client-side computation cost@¥ km?),
and the communication cost @(kN 4 m?). The costs are ac-
ceptable only whem:? is O(IN). However, this cannot be simply
transformed to AHE-encrypted data, as the cloud-side ctatipn
of CUmX;cA,gxl,c will require Uy, xx and A« in plaintext, which
reveals the eigen-structure & and thus significantly breaches
privacy.

The key idea of the privacy-preserving version is to repkhee
stepE(CV) inthe cloud withE(C'R), whereR is am x k random
matrix. The problem is then to recov€fl” with the result ofC' R.
This can be done by the following operation:

CR(RTR)™'R™V, if (RTR)™'RTV is provided. SinceR is
a random matrix, it can be the unencrypted operand in pseado h
momorphic multiplication. Furthermord? can be transferred in
plaintext, or encrypted with AES in the same size as the f@ain

Algorithm 4 shows the detail. Leb = C'R. The client down-
loadsE (W), R andE(®) in one batch; there is no uploading cost.
The cloud sideE(CR) is computed with pseudo homomorphic
matrix-matrix multiplication and can be done in a scalabnmer
with a MapReduce program.

Data

Contributor Data Owner

Figure 3: Nystrom for AHE scheme

Algorithm 4 Secure Nystrém Method for AHE schemes

1. preset parametefs and the sampling number. //data owner

. s < generate random index setwf items from[1..N] //cloud
E(CnNxm) « getthe corresponding: column vectors fron¥ (A) //cloud
E(Wyxm)  areduced matrix fronC with rows and column indices in
// cloud

. generate a random matrik,,, x . // cloud

. computeE(®) = E(CR); /I cloud

. download matriced? (W, xm ), Rm xk, andE (P n x 1) // data owner

. decryptE(W) and E(®) // data owner

. decomposéV to getW = U, xm Am x Ut /I data owner

m X m
10: get top k eigenvaluesA x, and eigen vector§/,,, . of Wi, x ., //data
owner
11: Vixk < UmxiAgy, //data owner
© M« (RTR)"*RTU, A, ; Iidata owner

13: computed M; // data owner

©ONOUT BWN

It is straightforward to analyze the involved costs in thigoa
rithm. The cloud-to-client transmission consists of threatri-
ces: E(W), E(®), and R, which is O(kN + m?). The algo-
rithm involves only this download cost. The client-side gam
tation costs consist of (kN + m?) decryption operations, and
O(k*(m + N) + k*) on matrix computation. Since both < N
andk < m, the client side computation cost is highly accept-
able. The cloud-side pseudo homomorphic matrix operatians
be easily implemented with a MapReduce program with sd#habi
preserved.

Privacy Analysis. Because this algorithm does not ask the client
to upload any information, and the cloud side works with eith
the encrypted data or the random mati;, it does not leak any
additional information.

5.3 Transmission-Cost and
Trade-off

As we have shown, for both algorithms the client-side compu-
tation costs are all linear to the number of no@éswhich can be
comfortably handled by the data owner. The key cost diffezsn
are on cloud-client data transmission and data decryption.

The secure Lanczos method has both upload and download costs
The total transmission cost is linear to the number of Lagdtzy-
ations,t. The upload stream contains only the plaintext vectors,
which incurs much lower costs than the download stream that ¢
tains the encrypted vectors. The overall transmission isosvV
encrypted elements.

In comparison, the Nystréom method has only the download cost
The key factor for the Nystrom method is the sampling rate
m/N, which is intrinsically related to the density of the graplet
A = 2|E|/N? be the density of the graph, which is the percentage
of the non-empty items in the graph matrix. Let's conside¥ th
cost of the transmitted matricds(W), E(®), andR. The cost
of the plaintext matrix,R, is ignorable. The average number of
elements inE (W) is around(rN)?A, and E(®) has a fixed cost

Comparison



kN. Therefore, the total transmission cost of encrypted etgsne
is (rN)?A + kN = 2r%|E| + kN.

The decryption costs are similarV for the lanczos method and
kN + 2r%|E| for the Nystrém method.

Sincek has to be smaller thanin the Lanczos method, the Nys-
trdm method saves the costs if and only if

2r’|E| < (t — k)N. 9)

As we will show in experiments, around certain sampling tiage
result quality for the Nystrom reaches a stable level; sirhilthere
is an approximate range farto reach a stable level in Lanczos

method. The Nystrém method can be cheaper than the Lanczos

method with lower sampling rates and low graph density, Gafig

when the Lanczos method needs a large number of iterations to

selection ofk; to satisfy differential privacy.

6.1 Data Sparsification

First, we use a transformation to preserve the eigen-simict
which makes it possible to use a sparse encoding methody het
a sufficiently large positive integer such that/ D;; |, whereD;; is
the degree of nodg for alli = 1..N are also positive integers with
necessary precision preserved. Eet= (I — L) and lettop-k (or
bottom-k) eigenvectorsf H be the eigenvectors corresponding to
the largest (or smallesf) eigenvaluesk = 1..N. We have the
following Proposition.

PrRoPOSITION 1. The top-k eigenvectors éf are the same as
the bottom-k eigenvectors bf

PROOF. Let eigendecomposition df be L = UAU”, where

converge. However, we also observed that the Nystrém method U is the eigenvector matrix andi is the diagonal eigenvalue ma-

often converges to a lower-quality result. Thus, when siglgthe
algorithm to use, the user needs to consider the compli¢etdd-
offs between costs and result quality.

6. PRIVACY-PRESERVING SPARSE DATA
SUBMISSION

For a big graph with many nodes, each row of the matrix is nor-
mally very sparse. An appealing solution is to skip some efzro
entries but still provide enough protection to privacy. Vésidn an
algorithm to protect node degrees and links with differanpiri-
vacy, while also preserving the sparsity of data and theesmtitity
of data. The problem setting and data encoding method gissh
our method from previous studies [24, 37] on privacy-preser
graph publishing in two aspects. (1) Previous studies aish&oe
data and models with curious parties. In contrast, we ptedaia
and models sharing with curious parties. (2) Most existirghm
ods change the authenticity of graph data by adding or remgovi
nodes or edges. Our method will preserve the authenticitlatd
completely. (3) In our framework, data disguising is dondivid-
ually by each data contributor who only knows a little bit ¢dtogl
information (i.e., a histogram of node degree distributimmer-
ated from sample nodes and distributed by the data ownerjyMa
existing methods work on the entire graph to determine thetyr
perturbation scheme [37], which is impractical for big datsting
in the cloud.

Regardless how the elements are encrypted, the sparsearpre
tation of graphs reveals node degrees and edge existenea8rih
zero entries represent the edge weights from which we caveder

trix: Ay is thei-th largest eigenvalue;. Then~(I — L) =
U(y(I — A)UT. Therefore,U is also H's eigenvector matrix.
However, H's eigenvalue matrix;y (I — A) reverses the order of
L’s eigenvalues.

|

Now, let H; be the:-th row of H and
its elementh;;,j = 1..N is

h"_{ ’Y—L’Y/DiiJ if Wijzlandiij

Y10 otherwise

It allows us to develop a concise sparse encoding schemeHvith
for data contributog and every element, j = 1..N, if W;; = 1
ands # j, it outputs(i, 7, E(v — |v/Da:])); otherwise, with some
probability p; (to be described) it outputg, j, £(0)) for ¢ # j.

6.2 Disguising Node Degrees and Edges with
Differential Privacy

We propose a bin-based graph disguising algorithm. We wst fi
describe the method to protect node degrees and then digruss
protection on edges. Specifically, we sort the nodes by tiaie
degrees and then partition the distribution by bins. Theesdd the
same bin add randomly selected fake edges to achieve neele-le
differential privacy.

The node degree distribution can be estimated with the nede d
grees of randomly sampled nodes. This can be achieved hbygaski
some randomly selected data contributors to submit eredypdde
degrees before them submitting the graph data. The data @ane

node degrees. The known node degrees and edges open doors touild a histogram to approximate the node degree distohuthp-

several effective privacy attacking methods [4, 37]. Owibaea
to address the issue is by adding randomly selected faks (ark
crypted zero entries) to disguise node degrees and real livikich
does not change the authenticity of the graph. The goal isaleem
groups of nodes that have close node degrees indistindplisha-
der the definition of differential privacy, after adding tlade links.
Furthermore, by using a probabilistic encryption scheneh<sas
the Paillier encryption, the encrypted zero entries cabeddistin-
guished from non-zero ones.

parently, this additional cost is quite low.

Let's generate an equi-height histogram with the sampleenod
degrees, e.g., for a 100-bin histogram, each bin contaiostd®
of the nodes. The number of bins is chosen so that each bin con-
tains a moderate number of nodes, for example, a value iri (&),
to provide satisfactory indistinguishability. Lé&f; be the maxi-
mum node degree in theth bin, andL; be the minimum degree
in the 4-th bin. Our purpose is to make the nodes in this bin in-
distinguishable in terms of node degree, which is impleegnia

Compared to the dense vector submission method, our sparse—differential privacy. Let the query functiof’() about node de-

method will disclose some additional information. ld&tbe the
node degree of nodg andk; be the number of added zero entries.
(1) The actual node degrek must be smaller than the number of
submitted entries, i.ed; + k;. (2) The probability of one submitted
entry to be a non-zero entry is increased frofV to 1/(d; + k;).

If this is acceptable to the data contributor, their costulifreission
can be reduced fro(N) to O(d; + k;). In the following, we
will first discuss the sparsification technique and then idesche

gree be quite general, say finding the node degree rankidnat
the bin. LetA and A’ be theneighboring graphwhich differ from
each other by only one node in the bin. We can derive the $atsit
A; = max{F(A) — F(A")} = U; — L;. Note that without bucke-
tizationA; can be very large, possibly up to the number of nodes in
the graph. Thus, the bucketization mechanism helps redunz f
tion sensitivity and results in much less fake links to lrgiteserve
the sparsity.



According to the noise design of differential privacy, weide
that the parametérof Laplace noise to b&J; — L;)/e. This noise

MapReduce program is tested on an in-house Hadoop cluster co
figured with 14 slave nodes running Apache Hadoop versio31.0

can be negative, which suggests we remove some edges and thuEach slave node is configured with 16 GB of RAM, four quad-core

destroy the authenticity of data. To avoid this problem, we an
offset to the noise to make it positive. For a speclfiove can
always identify the bound for Pr(z < ¢) <= 0.01. That means,

if we add an offselq| to the distribution, we can make sure the
majority of population(> 99%) positive. With such an offset, the
number of fake linksk;, ; is chosen as follows

kij = lqil + i,

where|q¢;| is the offset and);,; is a random integer drawn from
Laplac€0, (U; — L;)/e) to makek; ; > 0. With such a noise
design, the nodes in the same bin satisflifferential privacy.

By preserving node-degree differential privacy, edgeedéhtial
privacy is also satisfied. We definé and A’ as a pair of neigh-
boring graphs, if they only differ by one edge. The problem of
checking the existence of an edge can be transformed to an edg
counting query function. Let’s look at any arbitrary edgemiing
functions. Clearly, the sensitivity of such a function is Thus,
Laplace0, 1/¢) is used to generate the noisy edges. Since the pa-
rameter(U; — L;)/e used for disguising node degrees is no less
than1/e, the fake links generated for protecting the privacy of node
degrees also protect edge privacy.

Algorithm 5 gives the details of our privacy preserving sear
submission algorithm. Here, we only discuss two types oftions
for querying node degrees and edges that are already usesigmd
privacy attacks. However, our result can be easily extenol@sy
new types of query functions.

Algorithm 5 Privacy preserving sparse submission {Hi; ;).

. input: H: histogram provided by the data owner. user selected parameter for
e-differential privacy.d; ;: the actual node degree.

. find the bin that containd; ;, whose upper bound and lower bound &fgand
L;, respectively;

b+ (U7 — Li)/e;

q + bx*3.912;// for b = 1 theq value is at 3.912, which scales with

. draw a valuey;, ; from the distribution Laplac€o, b);

Dkiy gl + 65

. add thed; ; real links to the list with the sparse encoding;

. randomly choosé; ; edges from the resW — d; ; edges and encode them as
the encrypted zero entries;

. submit thed; ; + k; ; items.

7. EXPERIMENTS

To show the practicalness of the proposed approach, weatgalu
the computation, storage, and communication costs asedaidgth
the data contributors, the cloud, and the data owner. Wepeszral
clustering as an application of graph spectral analysik©itwsthe
result quality and related trade-offs of the two eigendguosition
methods.

Table 2: Statistics of the graph datasets.

Dataset N |E| AvgDegree | Density
Facebook| 3,959 84,243 42 0.0107
Twitter 76,244 1,242,390 32 0.0004
Gplus 102,100 | 12,113,501 237 0.0023
7.1 Setup

Resources. The client machine is configured with 128 GB
of RAM and four quad-core AMD processors. The cloud-side

AMD processors, 16 map slots, 12 reduce slots, and a 64MB HDFS
block size. The MapReduce program is implemented with Jagla a
Java native library and accesses the GMP library (gmpti.for
fast encryption/decryption. We also implement a custothire
put/output MapReduce format classes for efficiently hamdthe
encrypted sparse matrix. Local algorithms for proxy sideiar-
plemented in the Linux environment with C++ and variousdiies
such as Armadillo (arma.sourceforge.net)for matrix cotaton,
and the GMP for encryption.

Datasets.

We use three graph datasets from the SNAP database
(snap.stanford.edu). Table 2 shows some statistics o thesisets
after some pre-processing. The original datasets weretastddy
some kind of social circles in the three popular social net&o
[26]. Only the original Facebook data is undirected while dther
two are directed. We did some preprocessing to convert the di
rected graphs to undirected ones and removed the danglaofesno
that do not link to any other node. Note that this converssoonily
meaningful for testing our algorithms.

We define the graph density %%—‘ for undirected graphs, which
is the proportion of non-empty elements in the graph maben-
sity is one of the factors affecting the cost and effectigsnaf the
Nystrém algorithm. We also give the average degidg| /N as it
is related to the data contributor’s cost.

Evaluation Method. Both the Lanczos and Nystrém methods
involve the trade-off between costs and result quality. cSiwe
focus on graph spectral analysis, we use the results of adlypi
application, graph spectral clustering, to measure théitgua\l-
though there are several variations of the graph specuratering
algorithm [32], they all follow the same general steps asaleg
in Algorithm 6.

Algorithm 6 Graph spectral clustering algorithm

. Input: a normalized/unnormalized Laplacian

. Compute the last eigenvectorsiy, ...uy of L;

: LetU € R™** be the matrix containing vectots , ...uy as columns;

I Fori =1,...,n, lety; € R* be thei-th row of U;

. Cluster the row vectorg,;, ¢« = 1, ..., n with the k-means algorithm into clusters
Ci,...,Ckg.

b wWNE

Itis clear that the most expensive step is the eigendecatigros
of the Laplacian matrix. The remaining steps can be dondljoca
by the client withO(N') complexity.

We will use the quality of graph spectral clustering as thality
measure, which is computed based on the matching between the
baseline cluster labels generated by using precise eigengm-
sition, and the labels generated by using the Lanczos ordiyst
method. Note that the quality of the result is affected ndy duy
the result of eigendecomposition, but also by the k-meags-al
rithm. In particular, k-means results can be significanffgeced
by the selection of the initial centroids. To eliminate thiscer-
tainty, we use the kmeans++ algorithm [2] in experiments.

7.2 Data Contributor’s Costs

Each data contributor in the framework will generate one row
of the graph matrix, encrypt the elements, and transmit thkem
the cloud. In the dense format, the submitted vector cansfsyv
elements. In the sparse format, the element will be encadétki
sparse formati, j, E(.)), whereE(.) is the encrypted non-zero or
zero items. The encryption and transmission costs arerdeted
by the encryption method and the number of elements in the row



Table 3: The perturbation parameters and results.

Dataset | nbins [ nodes perbin| original |[E| | |E]| after perturbation| % increase
Facebook| 100 40 84243 99965 18.66

Twitter 1000 76 1242390 1527286 22.93

GPlus 2000 52 12113501 13228599 9.21

In the sparse format, the total number of elements variesrdity
to the personalized privacy parameteas described in Section 4.

handle 3.15GB of sparse GPlus data in one wave. The optirial se
ting of MapReduce system can be achieved with some optiioizat

We select the number of bins so that the number of nodes in eachmethods [18], which is out of the scope of our paper.

bin is in [50, 100] to provide sufficient indistinguishability within
the bin. Withe = 1.0, we have the results in Table 3, which shows
that the size of increased edges are quite manageable.

7.4 Costs for Data Owner
We consider the overall costs for the data owner to run thedLan

Table 4 shows a comparison between dense and sparse schemess and Nystrom methods. These costs are determined by the pa

using 1024-bit Paillier encryption for the three graphsemnts of
the average cost for a data contributor. The actual restikach
data contributor varies according to their original nodgrde. The
sparse result is based on the settings in Table 3, which isimuc
lower than the dense format. Even with the dense format,dbtsc
are still acceptable.

Table 4: Contributor’s Average Cost

Format EncryptA; (s) Upload E(4;) (MB)
FB Twitter | GPlus B Twitter | GPlus

dense 12.60 | 241.92 | 324.00 | 0.97 | 18.61 24.93

sparse | 0.08 | 0.06 0.41 0.01 | 0.01 0.03

7.3 Cloud-side Costs

The cloud side storage cost is the sum of all data contrib@tor
contribution. Table 5 shows the storage costs for the dende a
sparse formats respectively.

Table 5: The cloud storage and parallel computing costs. :(MB
megabytes, GB: gigabytes, TB: terabytes)

Format | Facebook| Twitter GPlus
dense | 3.78GB 1.35TB 2.43TB
sparse | 24.41MB | 372.87MB | 3.15GB

We also experiment with the MapReduce implementation of the
cloud-side matrix-vector homomorphic multiplication. érmatrix
is partitioned by rows in the MapReduce processing. Each Map
function handles the homomorphic dot produ&t&A ;)b;, and the
Reduce function sorts the results from the Map output. Glethue
major computation cost occurs in the Map phase, which isrdete
mined by the number of Map waves, which in turn is determined
by the amount of input data and the available resourcese®ach
Map process handles one data block, which is 64MB by defdugt,
maximum number of parallel Map processedig64M B, where
M is the total size (in MB) of the encrypted matrix(A). With
sufficient processing resources, saf/64M B Map slots, all the
Map processes can be done in one wave. Figure 4 shows the tim
costs for matrix-vector multiplication with different densions in
the in-house cluster for dense encoding of large graphsh e
increase of Map waves, the cost increases slightly nomdinelue
to the additional scheduling cost [35]. Overall, the averaer-
wave cost is about 50-60 seconds. That says, with sufficemalp
lel processing resources, the MapReduce program can beidone
pretty short time. Our in-house cluster has about 224 mag.slo
With the same block setting and similar worker node confitjoma
to handle 2.7TB for the dense GPlus matrix, about 2632 simila
worker nodes are needed to achieve the lowest cost. In spntra
with the sparse format, our small in-house cluster is sefficto

€

rameterg, the number of Lanczos iterations amchumber of sam-
ples in Nystrom method. The parameters are intricatelyelinto
the quality of approximation and the specific dataset. Tloeeewe
use the spectral clustering results to determine the aet®f set-
tings oft andm for each dataset and then derive the corresponding
costs for the data owner.

Spectral Clustering Results. We use theeigs_synfunction in
the Armadillo library, which in turn calls the standard ARPR
library function [23], to find top-k eigenvectors of the uceypted
sparse matrix. Note that it is more numerically stable to fimel
top-k eigenvectors (corresponding to the largest k eidapgathan
to find the bottom-k eigenvectors that are required by specius-
tering. Since we have done the transformation on Laplaciainixn
H = ~(I — L) for encoding (Section 4), the top-k eigenvectors
of H are what we need in practice. With these eigenvectors re-
turned byeigs_synwe conduct the spectral clustering algorithm to
establish the standard labels. For simplicity, we chdose10 for
all datasets Figure 5 and 6 shows the accuracy change over the
number of iterations and the sampling rate for these two austh
respectively. Table 6 gives the appropriate parameteingstfor
each dataset to achieve the same level of accuracy. Noteer®ur
cryption framework does not affect the quality of results ioth
Lanczos and Nystrém methods.

Table 6: Number of iterationg) for Lanczos and sampling size
(m) for Nystrom to attain satisfactory clustering accuracy

Datasets N Accuracy [ t m

Facebook| 3959 82% 30 [ 396
Twitter 76244 90% 25 | 3050
Gplus 102100 92% 30 | 8168

Costs of the Lanczos method.According to the settings df,
we give the aggregated cost<iiterations for the Lanczos method.
The major costs include uploadifg; }, downloading{ £ (Ab;)},
and decryptind E(Ab;)}. Note that all these vectors are dense, re-
gardless of the sparse or dense representation of the nitry.
Table 7 shows the aggregated costsfdterations. Overall, the
communication costs are moderate while the decryption pemex
sive. It still allows the data owner to monitor the change @i
spectral structures in every couple of hours.

Costs of the Nystrom method. The major client-side costs
of the Nystrdm method consist of downloading (W, xm),
E(®nxk), and R, and decryptinge (W) and E(®). Other costs
are comparably small and skipped in the discussion. Notéttbae
costs are determined not only by, but also by the sparsity of the
matrix, which determines the size &f(W). Table 8 shows the
costs for the dense format and the sparse format with thegett

2The optimalk should depend on the actual graph clustering struc-
tures. However, the simplified setting is enough for our gioal
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The cost is approximately determined by Figure 5: Clustering accuracy vs. the numFigure 6: Clustering accuracy vs. the sam-

the number of Map waves.

Table 7: The aggregated costs of the lanczos method. mims: mi

utes
Datasets | ¢ Upload | Download | Decryption
Facebook| 30 | 960KB 30MB 4 mins
Twitter 25 14MB 488MB 66 mins
Gplus 30 | 23MB 783MB 107 mins

given by Table 3. The result shows that the costs for denseaast
are very high, while the costs for sparse matrices are mweérlo

ber of iterations for the Lanczos algorithm.pling rate for the Nystrom algorithm.

it requires that the entire unencrypted matrix be presetheatlient
side. Secondly, the client side must perform a problem foams-
tion step with a computation cost 6¥(N?). These weaknesses
render Wang'’s approach impractical for big matrices.
Privacy-preserving graph data publishing [37] is somewkat
lated to our work. However, it has a totally different prablset-
ting than ours. Graph data publishing wants to share théengtaa
but needs to address the privacy attacks from the curioasndiat
ers. It normally publishes perturbed graph structures lgyragdor
removing edges and nodes to disguise some graph structbres w

Comparing these two methods, we find that to achieve the samepyts dents to the graph authenticity. In our problem, wedisbar-

level of model quality the Nystrom method with sparse masic

ing of the graph data and we ensure the graph authenticitflys f

yields lower costs than the Lanczos method. However, as&igu preserved.

5 and 6 show, with more Lanczos iterations, the model quadty
improve further, while the Nystrom method converges to aelow
quality level with higher sampling rate. This representoteptial
trade-off between the costs and model quality.

8. RELATED WORK

The attacks to anonymized graph data have been extensisely d
cussed [4, 37] and several methods such as k-degree an@aymiz
tion [24] have been proposed to address the attacks. Howagver
tacks with background knowledge cannot be thoroughly e
and understood. Thus, differential privacy for graph asialye-
comes popular in recent years. Differential privacy hasihesed

Numerous graph mining algorithms have been developed dur- in graph spectral analysis in [34] in the interactive seftimowever

ing the past decade for analyzing the web, social netwoids; s
ware bugs, and biological networks [1]. With the emergerfdag
graphs, several scalable algorithms or toolkits have tgceeen

fails to consider the use of cloud infrastructures for atiedy Ka-
siviswanathan et al. [20] studied the application of défaral pri-
vacy in graph analysis about node and edge differentiahpyivn

developed dedicated to graph mining, for e.g. PEGASUS [19], interactive setting. Our method differs from these workeuesal

Pregel [25], Giraph (giraph.apache.org), and parallettsgkclus-
tering algorithms [10]. However, the data privacy problemrhin-
ing graph data in public clouds is not addressed yet.

aspects. We apply the non-interactive setting of diffeadnri-
vacy which perfectly fits the cloud-client computing pacadi We
protect the data authenticity completely, and allow distiéd data

Fu”y homomorphic encryption (FHE) schemes have been con- ContributOI’S to Submit data individua"y, Wlth a I|tt|e mnation

sidered an ideal solution for privacy-preserving compaietf out-
sourced data, but the current most efficient solutions [BJrssult
in large ciphertext size and expensive homomorphic midagbn.
Another generic solution is the garbled circuits (GC) [131] $e-
cure multiparty computation, which suffers from high conmiza-
tion costs. A recent study [28] uses the optimized impleutsomn
FastGC [17] to implement iterative privacy-preserving rixafac-
torization for recommender systems. It shows that onetitara
of computation with al096 x 4096 matrix costs about 40GB in
communication. Somewhat homomomorphic encryptions peovi
semantic security to the plaintext being masked, howe\ar &ép-
plication alone is not enough for protecting sparse graphsga as
we describe in our paper.

Atallah et al. [3] present secure outsourcing solutions &na
specific to large-scale systems of linear equations andxmatdti-
plication applications. These solutions fall short as tleak private
information, depend on multiple non-colluding servers] eequire
a large communication overhead. Wang et al. [33] use artiitera
approach for solving linear equations via client-cloudlatmbra-
tion; however, their approach possesses several weakndssst,

from the data owner about the distribution of overall nodgrdes.

9. CONCLUSION

In this paper, we present a cloud-centric privacy-preservi
graph spectral analysis framework. The graph datasetsakre ¢
lected from distributed data contributors, encrypted vaithaddi-
tive homomorphic encryption scheme, and stored in the clgvel
develop two privacy-preserving eigendecomposition atlyors:
the Lanczos and Nystrom methods to generate approximate top
eigenvectors and eigenvalues for conducting the spectedysis.
These two algorithms are designed to meet three requirem@nt
the cloud side processes the expensive operatioa dF) com-
plexity with great scalability, (2) the client side coste dinear to
the number of noded/, and (3) these algorithms do not leak data
privacy to adversaries. We also design a personalizedespats
submission algorithm for data contributors to preserve dparsity
while still allowing the contributors to achieve persorati privacy
with solid guarantees provided via differential privacye$erving
sparsity significantly reduces the cloud storage costs andimn-



Table 8: Costs of the Nystrom method

Dataset m Dense Sparse

Download | Decryption | Download Decryption
Facebook| 396 48.0MB 7.0 mins 10.1 +/-0.5MB | 1.5 mins +/- 4.1 secs
Twitter 3050 | 2.4GB 351.6 mins | 187.4 +/-0.9MB | 26.8 mins +/- 1.0 secs|
Gplus 8168 | 16.2GB 2366.2 mins| 290.3 +/- 1.6MB | 42.5 mins +/-13.4 sec

portantly the costs for the Nystrdm method. 99(PrePrints), 2010.

We have done extensive experiments with real graph datasets[11] J. K. Cullum and R. A. WilloughbyL.anczos Algorithms for
to show the storage and computation costs for the data bantri Large Symmetric Eigenvalue ComputatioBambridge
tors, the cloud, and the data owner. A comparative study bas b University Press, 1985.
done between the two privacy-preserving eigendecomposit- [12] J. Dean and S. Ghemawat. Mapreduce: Simplified data
gorlthms to understand the trade-q_ff between costs antt rpsal- processing on large clusters.@8D|, pages 137-150, 2004.
ity. The result shows that the Nystrom method with sparsaslah-  [13] . Dwork. Differential privacy. Irinternational Colloquium
mission may have lower costs, however with lower qualityltss on Automata, Languages andProgrammiBgringer, 2006.
when compared to the Lanczos method. In contrast, the Lanczo [14] L. Elden.Matrix Methods in Data Mining and Pattern

method is not affected by data sparsity. Overall, we showttiea Recognition SIAM, 2007.

COStS. for both proposed methods are practllcal.. . [15] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spéctra
This work can be extended to several directions. First, wg ma grouping using the nystrém methd&EE Transactions on

consider new methods to further reduce data transmissistrf@o - . -
both algorithms, especially for the Lanczos method. Secard [16] Eatéeg:tgn?ﬁ;shinr:OMmag;&i Z;il:;%?%ﬁg%’gzgitl
will explore into issues governing dynamically updatedpips Fi- lattices. InAnnual ACM Symposium on Theory of

nally, we will also extend the core operations of our framewo .
other graph mining algorithms. Computing pages 169-178, New York, NY, USA, 2009.

ACM.
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