
Weak randomness in Android’s DNS resolver
CVE-2012-2808

Roee Hay & Roi Saltzman
<roeeh,roisa@il.ibm.com>

IBM Application Security Research Group

July 24, 2012

Android’s stub resolver is vulnerable to DNS poisoning due to weak randomness in its implementation.
We show how an attacker can successfully guess the nonce of the DNS request with a probability that
is sufficient for a feasible attack. We begin by defining the problem of DNS poisoning, then we explain
some internals of the DNS resolver in Android, describe the vulnerability, and finally dive into a probability
analysis.

1 The problem of DNS poisoning

A DNS request holds a unique identifier (’nonce’) which consists of two 16 attributes: the TXID and the
UDP source port. Ideally the two attributes are hard to predict, thus providing 32 bits of random data.

If a DNS response is received, and its nonce does not match the request’s, it is dropped by the resolver.
Let Rtxid and Rport be the random values which the TXID and UDP source port are generated from,

and let R?txid and R?port be the attacker’s guesses, then ideally

p = Pr(R?txid = Rtxid,R?port = Rport) = 2−32

Considering the geometric properties of the attack, the expected time, T, for a successful attack is

E(T) =
X

pN

where X is the time per try, and N is the number of spoofed responses the attacker can inject before the
legitimate response has arrived from the DNS server. N depends on various parameters, such as the latency
between the DNS resolver and the server.

The system is vulnerable to DNS poisoning if E(T) is low. Ideally, when p = 2−32 (and N,X have
reasonable values) , the expected attack time is in magnitude of years. Notice that each random bit the that
nonce loses, reduces E(T) with a factor of 2.

1

2 DNS resolution in Android

Android provides its own libc implementation under codename ’Bionic’ [1].
The DNS resolver implementation is located at libc/netbsd/resolv.
A bind wrapper is used in order to enhance Linux’s source port randomization:

1 stat ic int
2 random bind (int s , int f ami ly)
3 {
4 . . .
5 /∗ f i r s t t r y to bind to a random source por t a few t imes ∗/
6 for (j = 0 ; j < 10 ; j++) {
7 /∗ f i n d a random por t between 1025 . . 65534 ∗/
8 int port = 1025 + (res randomid () % (65535−1025)) ;
9 i f (fami ly == AF INET)

10 u . s i n . s i n po r t = htons (port) ;
11 else
12 u . s i n6 . s i n 6 po r t = htons (port) ;
13
14 i f (! bind (s , &u . sa , s l e n))
15 return 0 ;
16 }
17
18 /∗ noth ing a f t e r 10 t r i e s , our network t a b l e i s p robab l y busy ∗/
19 /∗ l e t the system dec ide which por t i s b e s t ∗/
20 i f (fami ly == AF INET)
21 u . s i n . s i n po r t = 0 ;
22 else
23 u . s i n6 . s i n 6 po r t = 0 ;
24
25 return bind (s , &u . sa , s l e n) ;
26 }

Listing 1: res send.c!random bind

The DNS query TXID is set in the file res mkquery.c under the function res nmkquery, as can be seen
below:

1 int
2 res nmkquery (r e s s t a t e statp ,
3 int op , /∗ opcode o f query ∗/
4 const char ∗dname , /∗ domain name ∗/
5 int c l a s s , int type , /∗ c l a s s and type o f query ∗/
6 const u char ∗data , /∗ resource record data ∗/
7 int datalen , /∗ l e n g t h o f data ∗/
8 const u char ∗newrr in , /∗ new rr f o r modify or append ∗/
9 u char ∗buf , /∗ b u f f e r to put query ∗/

10 int buf l en) /∗ s i z e o f b u f f e r ∗/
11 {
12 . . .
13 hp = (HEADER ∗) (void ∗) buf ;
14 hp−>id = htons (res randomid ()) ;

2

15 . . .
16 }

Listing 2: res mkquery.c!res nmkquery

Afterwards, the wrapper tries to randomly acquire a port with its own implementation and if it fails 10
times in doing so, it delegates it to Linux, which chooses a port in the range 32768-61000.

As it can be seen, both functions make use of res_init.c!res_randomid, which is listed below:

1 u in t
2 res randomid (void) {
3 struct t imeval now ;
4
5 gett imeofday(&now , NULL) ;
6 return (0 x f f f f & (now . t v s e c ˆ now . tv usec ˆ getp id ())) ;
7 }

Listing 3: res init.c!res randomid

Hence the TXID and source port are chosen using the following formula:

RID = WORD(timesec ⊕ timeµfrac ⊕ pid)

where

txid = Rtxid

port = 1025 + (Rport % (65535− 1025))

3 Vulnerability

Let ttxid be the time of which the victim generates Rtxid by calling res randomid, and let tport be the time
that Rport is generated. Both time values are in µsec precision, and both random values are generated by
calling res_randomid. Since that function is used twice, in a very short time, ttxid and tport become very
much correlated which has a direct impact on the correlation between Rtxid and Rport.

Section 3.1 exploits the weak randomness of

∆ , tport − ttxid

Section 3.2 exploits the weak randomness of

χ , tport ⊕ ttxid

Our PoC [2] shows that the attack is feasible.

3

3.1 Scenario I: The attacker knows the PID of the target process

Notice the following relation between Rport and Rtxid:

Rport = (∆ +Rtxid ⊕ timesec ⊕ pid)⊕ timesec ⊕ pid

We assume the attacker knows timesec since clocks are usually synchronized beyond the second precision.
Therefore

Pr(R?port = Rport|R?txid = Rtxid) ≥ Pr(∆? = ∆) , p∆

where ∆? is the attacker’s guess for ∆. If the attacker has little knowledge of the distribution of ∆ (only
its max value), then the best he/she can do is a blind uniform guess.

Evidence (see the appendix) approves that the boundary for ∆ is very small, thus p∆ � 2−16 . Moreover
∆ is far from being uniform, therefore the attacker can choose ∆? in a sophisticated manner.

Let ∆max be the x s.t. Pr(∆ = x) gets its maximum value.
Since

Pr(∆
? = ∆) =

∑
x

Pr(∆
? = x) · Pr(∆ = x) ≤ Pr(∆ = ∆max)

we can conclude that the best strategy for the attacker would be to simply choose ∆? = ∆max.
Thus

p = Pr(R?txid = Rtxid,R?port = Rport) = 2−16 · Pr(∆ = ∆max)

See Appendix I; for the second environment, we have

p = 2−20.71137

or 20.71137 random bits, which is much lower than the optimal value.

3.2 Scenario II: The attacker is unaware of the PID

Notice that we can lose the dependence on the PID, because

Rport ⊕Rtxid = ttxid ⊕ tport = χ

or

R{txid,port} = R{port,txid} ⊕ χ

Therefore, the attacker only needs to predict one of the random values and take the χ value with the highest
probability (as explained in section [3.1]):

p = Pr(R?txid = Rtxid,R?port = Rport) = 2−16 · Pr(χ = χmax)

Again, evidence approves that χ is very small is far from the uniform distribution. In one environment,
we can predict χ with probability p = 0.022891 hence that value has a total of 5.45 random bits.

Therefore the success probability is

p = 2−21.45

or 21.45 random bits, which is much lower than the optimal value.

4

4 Impact

As usual, DNS poisoning attacks may endanger the integrity and confidentiality of the attacked system. For
example, in Android, the Browser app can be attacked in order to steal the victim’s cookies of a domain
of the attacker’s choice. If the attacker manages to lure the victim to browse to a web page controlled by
him/her, the attacker can use JavaScript, to start resolving non-existing sub-domains. Upon success, a sub-
domain points to the attacker’s IP, which enables the latter to steal wildcard cookies of the attacked domain,
and even set cookies. In addition, a malicious app instantiate the Browser app on the attacker’s malicious
web-page. If the attacker knows the PID (for example, a malicious app can access that information), the
attack expected time can be reduced furthermore, as shown above.

5 Vendor Response

Android 4.1.1 has been released, and patches are available on AOSP. The random sample is now pulled from
/dev/urandom, which should have adequate entropy by the time network activity occurs:

1 #ifdef ANDROID CHANGES
2 stat ic int
3 rea l randomid (u in t ∗ random value) {
4 /∗ open the nonb lock ing random device , r e tu rn ing −1 on f a i l u r e ∗/
5 int random device = open (”/dev/urandom” , O RDONLY) ;
6 i f (random device < 0) {
7 return −1;
8 }
9

10 /∗ read from the random device , r e tu rn ing −1 on f a i l u r e (or too
many r e t r i e s) ∗/

11 u in t r e t r y = 5 ;
12 for (r e t r y ; r e t r y > 0 ; re t ry−−) {
13 int r e t v a l = read (random device , random value , s izeof (

u in t)) ;
14 i f (r e t v a l == s izeof (u in t)) {
15 ∗ random value &= 0 x f f f f ;
16 c l o s e (random device) ;
17 return 0 ;
18 } else i f ((r e t v a l < 0) && (errno != EINTR)) {
19 break ;
20 }
21 }
22
23 c l o s e (random device) ;
24 return −1;
25 }
26 #endif /∗ ANDROID CHANGES ∗/
27
28 u in t
29 res randomid (void) {
30 #ifdef ANDROID CHANGES
31 int s t a tu s = 0 ;

5

32 u in t output = 0 ;
33 s t a tu s = rea l randomid(&output) ;
34 i f (s t a tu s != −1) {
35 return output ;
36 }
37 #endif /∗ ANDROID CHANGES ∗/
38 struct t imeval now ;
39 gett imeofday(&now , NULL) ;
40 return (0 x f f f f & (now . t v s e c ˆ now . tv usec ˆ getp id ())) ;
41 }

Listing 4: The patched function in AOSP

6 Timeline

07/24/2012 Public disclosure.
06/05/2012 Issue confirmed by Android Security Team and patch provided to partners.
05/21/2012 Disclosed to Android Security Team.

7 Acknowledgments

• We would like to thank the Android Security Team for the efficient way in which they handled this
security issue.

• We are grateful to the following people for their contribution to this paper:

– Lotem Guy

– Omer Tripp

– Omri Weisman

– Jonathan Cohen

8 Appendix: Distributions of ∆ and χ in various environments

8.1 Environment 1

Device Galaxy S I9000
Android version CyanogenMod 9 20120620 Nightly, Android 4.0.4
Network 802.11g, under attack.
Application Browser
Number of samples 15662
Histograms

6

0 500 1000 1500 2000
d_port

0

500

1000

1500

2000

2500

3000

3500

4000

O
cc

u
rr

e
n
ce

s

d_max=(0.024262546290384369, 48)

∆ Pr

48 .024263
88 .022411
49 .021326
50 .019729
32 .019218
96 .019155
72 .018644
40 .017686
87 .017622
108 .017558

0 500 1000 1500 2000
chi

0

500

1000

1500

2000

2500

O
cc

u
rr

e
n
ce

s

chi_max=(0.017913659956956578, 32)

χ Pr

32 .017914
33 .010508
72 .010444
88 .009811
96 .008735
48 .008735
80 .008419
73 .008229
97 .007279
35 .007216

8.2 Environment 2

Device Galaxy S I9000
Android version CyanogenMod 7.2, Android 2.3.7

7

Network 802.11g, under attack.59646
Application Browser
Number of samples 16688
Histograms

0 500 1000 1500 2000
d_port

0

500

1000

1500

2000

2500

3000

3500

4000

O
cc

u
rr

e
n
ce

s
d_max=(0.038171140939597316, 36)

∆ Pr

36 .038171
20 .037931
90 .026366
110 .024149
111 .022771
89 .022591
112 .022052
91 .019595
109 .018516
113 .017318

0 500 1000 1500 2000
chi

0

500

1000

1500

2000

O
cc

u
rr

e
n
ce

s

chi_max=(0.022890699904122722, 36)

χ Pr

36 .022891
100 .013363
37 .011865
44 .010606
28 .009767
35 .008150
64 .008150
108 .008090
66 .007610
65 .007550

8

8.3 Environment 3

Device Galaxy SIII I9300
Android version I93000BULF1, Android 4.0.4
Network 802.11g, under attack.
Application Browser
Number of samples 16335
Histograms

0 500 1000 1500 2000
d_port

0

1000

2000

3000

4000

5000

6000

O
cc

u
rr

e
n
ce

s

d_max=(0.02675237220691766, 44)

∆ Pr

44 .026752
42 .026018
40 .024120
41 .024059
43 .022834
39 .020875
60 .020753
59 .020631
61 .020569
45 .019712

9

0 500 1000 1500 2000
chi

0

500

1000

1500

2000

2500

3000

3500

O
cc

u
rr

e
n
ce

s

chi_max=(0.010835629017447199, 71)

χ Pr

71 .010836
68 .010774
67 .010285
69 .010101
70 .009795
66 .009672
65 .009305
42 .008815
90 .008754
95 .008020

9 References

[1] Bionic (Software). http://en.wikipedia.org/wiki/Bionic_(software).

[2] Roee Hay and Roi Saltzman. Video demo: Android dns poisoning: Randomness gone bad (cve-2012-
2808), July 2012. http://youtu.be/ffnF7Jej7l0.

10

http://en.wikipedia.org/wiki/Bionic_(software)
http://youtu.be/ffnF7Jej7l0

	1 The problem of DNS poisoning
	2 DNS resolution in Android
	3 Vulnerability
	3.1 Scenario I: The attacker knows the PID of the target process
	3.2 Scenario II: The attacker is unaware of the PID

	4 Impact
	5 Vendor Response
	6 Timeline
	7 Acknowledgments
	8 Appendix: Distributions of and in various environments
	8.1 Environment 1
	8.2 Environment 2
	8.3 Environment 3

	9 References

