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Abstract

High-dimensional representations, such as ra-
dial basis function networks or tile cod-
ing, are common choices for policy evalua-
tion in reinforcement learning. Learning with
such high-dimensional representations, how-
ever, can be expensive, particularly for matrix
methods, such as least-squares temporal differ-
ence learning or quasi-Newton methods that
approximate matrix step-sizes. In this work,
we explore the utility of sketching for these
two classes of algorithms. We highlight issues
with sketching the high-dimensional features
directly, which can incur significant bias. As a
remedy, we demonstrate how to use sketching
more sparingly, with only a left-sided sketch,
that can still enable significant computational
gains and the use of these matrix-based learn-
ing algorithms that are less sensitive to param-
eters. We empirically investigate these algo-
rithms, in four domains with a variety of repre-
sentations. Our aim is to provide insights into
effective use of sketching in practice.

1 INTRODUCTION

A common strategy for function approximation in re-
inforcement learning is to overparametrize: generate a
large number of features to provide a sufficiently com-
plex function space. For example, one typical represen-
tation is a radial basis function network, where the cen-
ters for each radial basis function are chosen to exhaus-
tively cover the observation space. Because the environ-
ment is unknown—particularly for the incremental learn-
ing setting—such an overparameterized representation is
more robust to this uncertainty because a reasonable rep-
resentation is guaranteed for any part of the space that

might be visited. Once interacting with the environment,
however, it is likely not all features will become active,
and that a lower-dimensional subspace will be visited.

A complementary approach for this high-dimensional
representation expansion in reinforcement learning,
therefore, is to use projections. In this way, we can over-
parameterize for robustness, but then use a projection to
a lower-dimensional space to make learning feasible. For
an effectively chosen projection, we can avoid discarding
important information, and benefit from the fact that the
agent only visits a lower-dimensional subspace of the en-
vironment in the feature space.

Towards this aim, we investigate the utility of sketch-
ing: projecting with a random matrix. Sketching has been
extensively used for efficient communication and solv-
ing large linear systems, with a solid theoretical foun-
dation and a variety of different sketches (Woodruff,
2014). Sketching has been previously used in reinforce-
ment learning, specifically to reduce the dimension of the
features. Bellemare et al. (2012) replaced the standard bi-
ased hashing function used for tile coding Sutton (1996),
instead using count-sketch.! Ghavamzadeh et al. (2010)
investigated sketching features to reduce the dimension-
ality and make it feasible to run least-squares tempo-
ral difference learning (LSTD) for policy evaluation. In
LSTD, the value function is estimated by incrementally
computing a d X d matrix A, where d is the number of
features, and an d-dimensional vector b, where the pa-
rameters are estimated as the solution to this linear sys-
tem. Because d can be large, they randomly project the
features to reduce the matrix size to k x k, with k < d.

For both of these previous uses of sketching, however,
the resulting value function estimates are biased. This
bias, as we show in this work, can be quite significant,
resulting in significant estimation error in the value func-
tion for a given policy. As a result, any gains from us-

!They called the sketch the tug-of-war sketch, but it is more
standard to call it count-sketch.



ing LSTD methods—over stochastic temporal difference
(TD) methods—are largely overcome by this bias. A nat-
ural question is if we can benefit from sketching, with
minimal bias or without incurring any bias at all.

In this work, we propose to instead sketch the linear sys-
tem in LSTD. The key idea is to only sketch the con-
straints of the system (the left-side of A) rather than the
variables (the right-side of A). Sketching features, on the
other hand, by design, sketches both constraints and vari-
ables. We show that even with a straightforward linear
system solution, the left-sided sketch can significantly
reduce bias. We further show how to use this left-sided
sketch within a quasi-Newton algorithm, providing an
unbiased policy evaluation algorithm that can still ben-
efit from the computational improvements of sketching.

The key novelty in this work is designing such system-
sketching algorithms when also incrementally comput-
ing the linear system solution. There is a wealth of lit-
erature on sketching linear systems, to reduce compu-
tation. In general, however, many sketching approaches
cannot be applied to the incremental policy evaluation
problem, because the approaches are designed for a static
linear system. For example, Gower & Richtarik (2015)
provide a host of possible solutions for solving large
linear systems. However, they assume access to A up-
front, so the algorithm design, in memory and compu-
tation, is not suitable for the incremental setting. Some
popular sketching approaches, such as Frequent Direc-
tions (Ghashami et al., 2014), has been successfully used
for the online setting, for quasi-Newton algorithms (Luo
et al., 2016); however, they sketch symmetric matrices,
that are growing with number of samples.

This paper is organized as follows. We first introduce
the policy evaluation problem—Iearning a value function
for a fixed policy—and provide background on sketch-
ing methods. We then illustrate issues with only sketch-
ing features, in terms of quality of the value function ap-
proximation. We then introduce the idea of using asym-
metric sketching for policy evaluation with LSTD, and
provide an efficient incremental algorithm that is O(dk)
on each step. We finally highlight settings where we ex-
pect sketching to perform particularly well in practice,
and investigate the properties of our algorithm on four
domains, and with a variety of representation properties.

2 PROBLEM FORMULATION

We address the policy evaluation problem within rein-
forcement learning, where the goal is to estimate the
value function for a given policy?. As is standard, the

To focus the investigation on sketching, we consider the
simpler on-policy setting in this work. Many of the results,

agent-environment interaction is formulated as a Markov
decision process (S, A,Pr,r), where S is the set of
states, A is the set of actions, and Pr S x A x
S — [0,00) is the one-step state transition dynamics.
On each time step t = 1,2, 3, ..., the agent selects an
action according to its policy m, Ay ~ w(St,-), with

m: 8 x A — [0,00) and transitions into a new state

Si+1 ~ Pr(St, Ay, ) and obtains scalar reward Ry41 &

'I’(St7 At, St+1).

For policy evaluation, the goal is to estimate the value
function, v, : & — R, which corresponds to the ex-
pected return when following policy 7

v (s) E EL[Gy]S: = s],

where E is the expectation over future states when se-
lecting actions according to 7. The return, G; € R is
the discounted sum of future rewards given actions are
selected according to 7:

Gy o Rt + i Rego + Vo1 Vego Regs + .. (1)
e Rt+1 + '}/t-l—th-‘rl

where v:11 € [0,1] is a scalar that depends on
St, At, St4+1 and discounts the contribution of future re-
wards exponentially with time. A common setting, for
example, is a constant discount. This recent general-
ization to state-dependent discount (Sutton et al., 2011;
White, 2016) enables either episodic or continuing prob-
lems, and so we adopt this more general formalism here.

We consider linear function approximation to estimate
the value function. In this setting, the observations are
expanded to a higher-dimensional space, such as through
tile-coding, radial basis functions or Fourier basis. Given
this nonlinear encoding = : S — RY, the value is approx-

imated as v, (S;) ~ w ' x; for w € R? and x; e x(S).

One algorithm for estimating w is least-squares tempo-
ral difference learning (LSTD). The goal in LSTD()\)
(Boyan, 1999) is to minimize the mean-squared pro-
jected Bellman error, which can be represented as solv-
ing the following linear system
A o Ex[es(x; — ’Yt+1Xt+1)T}
def

b= Eﬂ- [Rt+1et].

where e; o Yer1Aer—1 + x; is called the eligibility
trace for trace parameter A € [0, 1]. To obtain w, the
system A and b are incrementally estimated, to solve
Aw = b. For a trajectory {(S;, A¢, St11, Rev1) }ieg's
however, generalize to the off-policy setting, where data is gen-
erated according to a behavior policy different than the given
target policy we wish to evaluate.



def
let d; = X — Vt+1X¢+1, then the above two expected
terms are usually computed via sample average that can
be recursively computed, in a numerically stable way, as

1
At+1 = At + m (etd.;r - At)

biyi =b; +

P (eth+1 - bt)
with Ag = 0 and by = 0. The incremental estimates A
and b, converge to A and b. A naive algorithm, where
w = A;'b; is recomputed on each step, would result
in O(d?) computation to compute the inverse A, . In-
stead, A, is incrementally updated using the Sherman-
Morrison formula, with Ag" = £ for a small £ > 0

_ t—1 1 o
At L (tAtl + tetd:)

t _
ST (At—ll +

requiring O(d?) storage and computation per step. Un-
fortunately, this quadratic cost is prohibitive for many
incremental learning settings. In our experiments, even
d = 10,000 was prohibitive, since d*> = 100 million.

At_—lletd;rAt_—ll
t—1+d] A e

A natural approach to improve computation to solve for
w is to use stochastic methods, such as TD()\) (Sut-
ton, 1988). This algorithm incrementally updates with
w1 = Wy + adge; for stepsize o« > 0 and TD-error
8¢ = Ryy1 + (ye41Xe41 — X¢) | wy. The expectation of
this update is E[6:e:] = b — Awy; the fixed-point solu-
tions are the same for both LSTD and TD, but LSTD cor-
responds to a batch solution whereas TD corresponds to
a stochastic update. Though more expensive than TD—
which is only O(d)—LSTD does have several advan-
tages. Because LSTD is a batch method, it summarizes
all samples (within A), and so can be more sample ef-
ficient. Additionally, LSTD has no step-size parameter,
using a closed-form solution for w.

Recently, there has been some progress in better balanc-
ing between TD and LSTD. Pan et al. (2017) derived a
quasi-Newton algorithm, called accelerated gradient TD
(ATD), giving an unbiased algorithm that has some of the
benefits of LSTD, but with significantly reduced compu-
tation because they only maintain a low-rank approxi-
mation to A. The key idea is that A provides curvature
information, and so can significantly improve step-size
selection for TD and so improve the convergence rate.
The approximate A can still provide useful curvature in-
formation, but can be significantly cheaper to compute.
We use the ATD update to similarly obtain an unbiased
algorithm, but use sketching approximations instead of
low-rank approximations. First, however, we investigate
some of the properties of sketching.

3 ISSUES WITH SKETCHING THE
FEATURES

One approach to make LSTD more feasible is to
project—sketch—the features. Sketching involves sam-
pling a random matrix S : R¥*? from a family of ma-
trices S, to project a given d-dimensional vector x to
a (much smaller) k-dimensional vector Sx. The goal in
defining this class of sketching matrices is to maintain
certain properties of the original vector. The following is
a standard definition for such a family.

Definition 1 (Sketching). Letr d and k be positive inte-
gers, 0 € (0,1),ande € R*. Then, S C R¥*4 s called a
family of sketching matrices with parameters (e, 0), if for
a random matrix, S, chosen uniformly at random from
this family, we have that ¥x € R?

P[(l —o)llx[l3 < [ISx[l3 < (1 +€)[x[|3| =1~
where the probability is w.r.t. the distribution over S.

We will explore the utility of sketching the features with
several common sketches. These sketches all require k£ =
Qe 21In(1/6) Ind).

Gaussian random projections, also known as the JL-
Transform (Johnson & Lindenstrauss, 1984), has each

entry in S i.i.d. sampled from a Gaussian, A (0, %)

Count sketch selects exactly one uniformly picked non-
zero entry in each column, and sets that entry to either
1 or —1 with equal probability (Charikar et al., 2002;
Gilbert & Indyk, 2010). The Tug-of-War sketch (Alon
et al., 1996) performs very similarly to Count sketch in
our experiments, and so we omit it.

Combined sketch is the product of a count sketch matrix
and a Gaussian projection matrix (Wang, 2015; Boutsidis
& Woodruff, 2015).

Hadamard sketch—the Subsampled Randomized
L

Hadamard Transform—is computed as S = mDHdP,

where D € R?*9 is a diagonal matrix with each di-
agonal element uniformly sampled from {1,—1},
H,; € R%*? is a Hadamard matrix and P € R4*¥ is a
column sampling matrix (Ailon & Chazelle, 2006).

Sketching provides a low-error between the recovery
STSx and the original x, with high probability. For the
above families, the entries in S are zero-mean i.i.d. with
variance 1, giving E[STS] = I over all possible S. Con-
sequently, in expectation, the recovery ST Sx is equal to
x. For a stronger result, a Chernoff bound can be used
to bound the deviation of STS from this expected value:
for the parameters (e, d) of the matrix family, we get that

P[(176)1<sTs< (1+e)f} >1-4.
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Figure 1: Efficacy of different
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for LSTD, with k 50. The
RMSE is w.r.t. the optimal value
function, computed using rollouts.
LSTD()) is included as the baseline,
with w A'b, with the other

curves corresponding to different
sketches of the features, to give

0 0
0 1000 2000 3000 0 1000

Steps

4000 5000

(a) Mountain Car, tile coding

80 80

|
70

70 I\ hadamard hadamard

60| 60
Root
Mean

Square | |
Error

30F |\ \

Root
Mean
Square
Error

30

countskt
gaussian

\ countskt
\_LSTD

20 20+

2000

(b) Mountain Car, RBF

w = (SAST)'Sb as used for the
random projections LSTD algorithm.
The RBF width in Mountain Car
is ¢ = 0.12 times the range of the
state space and in Puddle World is
o = +/0.0072. The 1024 centers
for RBFs are chosen to uniformly
cover the 2-d space in a grid. For tile
coding, we discretize each dimension
by 10, giving 10 x 10 grids, use 10
tilings, and set the memory size as
1024. The bias is high for tile coding
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These properties suggest that using sketching for the
feature vectors should provide effective approximations.
Bellemare et al. (2012) showed that they could use these
projections for tile coding, rather than the biased hashing
function that is typically used, to improve learning per-
formance for the control setting. The efficacy, however,
of sketching given features, versus using the unsketched
features, is less well-understood.

We investigate the properties of sketching the features,
shown in Figure 1 with a variety of sketches in two
benchmark domains for RBF and tile-coding represen-
tations (see (Sutton & Barto, 1998, Chapter 8) for an
overview of these representations). For both domains, the
observations space is 2-dimensional, with expansion to
d = 1024 and k& = 50. The results are averaged over 50
runs, with &, A swept over 13 values, with ranges listed
in Appendix C. We see that sketching the features can
incur significant bias, particularly for tile coding, even
with a reasonably large k£ = 50 to give O(dk) runtimes.
This bias reduces with &, but remains quite high and so
is likely too unreliable for practical use.

4 SKETCHING THE LINEAR SYSTEM

All of the work on sketching within reinforcement learn-
ing has investigated sketching the features; however,
we can instead consider sketching the linear system,
Aw = b. For such a setting, we can sketch the left

2000
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(d) Puddle World, RBF

000 features, and much better for RBF
features, though still quite large. The
different sketches perform similarly.

3000 4000
PS

and right subspaces of A with different sketching ma-
trices, S;, € RF:*? and S € R*#*9, Depending on
the choices of k7, and kg, we can then solve the smaller
system S AS}Sgrw = Spb efficiently. The goal is to
better take advantage of the properties for the different
sides of an asymmetric matrix A.

One such natural improvement should be in one-sided
sketching. By only sketching from the left, for example,
and setting Sp = I, we do not project w. Rather, we only
project the constraints to the linear system Aw = b. Im-
portantly, this does not introduce bias: the original solu-
tion w to Aw = b is also a solution to SAw = Sb
for any sketching matrix S. The projection, however, re-
moves uniqueness in terms of the solutions w, since the
system is under-constrained. Conversely, by only sketch-
ing from the right, and setting S;, = I, we constrain the
space of solutions to a unique set, and do not remove any
constraints. For this setting, however, it is unlikely that
w with Aw = b satisfies ASTw = b.

The conclusion from many initial experiments is that
the key benefit from asymmetric sketching is when
only sketching from the left. We experimented with all
pairwise combinations of Gaussian random projections,
Count sketch, Tug-of-War sketch and Hadamard sketch
for Sy and Si. We additionally experimented with only
sketching from the right, setting S; = I. In all of these
experiments, we found asymmetric sketching provided
little to no benefit over using S; = Sp and that sketch-



ing only from the right also performed similarly to using
S;, = Sg. We further investigated column and row selec-
tion sketches (see Wang (2015) for a thorough overview),
but also found these to be ineffective. We therefore pro-
ceed with an investigation into effectively using left-side
sketching. In the next section, we provide an efficient
O(dk) algorithm to compute (S;A)', to enable compu-
tation of w = (S LA)TS 1.b and for use within an unbi-
ased quasi-Newton algorithm.

We conclude this section with an interesting connection
to a data-dependent projection method that has been used
for policy evaluation, that further motivates the utility
of sketching only from the left. This algorithm, called
truncated LSTD (tLSTD) (Gehring et al., 2016), incre-
mentally maintains a rank k£ approximation of A matrix,
using an incremental singular value decomposition. We
show below that this approach corresponds to projecting
A from the left with the top k left singular vectors. This
is called a data-dependent projection, because the pro-
jection depends on the observed data, as opposed to the
data-independent projection—the sketching matrices—
which is randomly sampled independently of the data.

Proposition 1. Ler A = UXV " be singular value de-
composition of the true A. Assume the singular values
are in decreasing order and let 3y be the top k sin-
gular values, with corresponding k left singular vectors
Uy and k right singular vectors V. Then the solution
w =V ELU;b (used for tLSTD) corresponds to LSTD
using asymmetric sketching with Sy, = U}l and Sg = L.
Proof. We know U = [uy, ..., uy] for singular vectors
w; € R? with u/ u; = 1 and u/ u; = 0 for i # j. Since
Uy = [ug,...,u], we get that UJ U = [Ty 04-4] €
R¥*4 for k-dimensional identity matrix I;, and zero ma-
trix 0g_j € RF*(=FK) Then we get that Spb = Uka
and SLA = [Ik Od,k]EVT = EkVT = EkV,I

Therefore, w = (SLA)'S.b = V, 21U/ b. O

S LEFT-SIDED SKETCHING
ALGORITHM

In this section, we develop an efficient approach to use
the smaller, sketched matrix SA for incremental pol-
icy evaluation. The most straightforward way to use
SA is to incrementally compute SA, and periodically
solve w = (SA)Sb. This costs O(dk) per step, and
O(d?k) every time the solution is recomputed. To main-
tain O(dk) computation per-step, this full solution could
only be computed every d steps, which is too infrequent
to provide a practical incremental policy evaluation ap-
proach. Further, because it is an underconstrained sys-
tem, there are likely to be infinitely many solutions to
SAw = Sb; amongst those solutions, we would like to
sub-select amongst the unbiased solutions to Aw = b.

We first discuss how to efficiently maintain (SA)T, and
then describe how to use that matrix to obtain an unbi-
ased algorithm. Let A & SA € R¥*4_ For this under-
constrained system with f) Sb the minimum norm
solution to Aw = bis> w = AT(AAT)'b and
Af = AT(AAT)™ € R¥*. To maintain A] incre-
mentally, therefore, we simply need to maintain At in-
crementally and the k x k-matrix (A;A/)™" incremen-
tally. Let €; & Se;, d; o d; and h; & Atdt. We can
update the sketched system in O(dk) time and space

A=A+ 74 (étd: - At)
E)t+1 b, + t+1 (éth-H - Bt)

To maintain (A,A;) ™
normalized update is

incrementally, notice that the un-

AaAl, = (A +8d])(Ay+8d])
= AA] +eh) +hel +[|dif3]lee .

Hence, (A1 A/, ;)" can be updated from (A; A1)~
by applying the Sherman-Morrison update three times.
For a normalized update, based on samples, the update is

~ ~ 2 - -
AqAlL = (#) AA] + (75_%)2 (&h +h&)
+ el 3 lee)

We can then compute w; = A, (AtA )‘th on each step.

This solution, however, will provide the minimum norm
solution, rather than the unbiased solution, even though
the unbiased solution is feasible for the underconstrained
system. To instead push the preference towards this un-
biased solution, we use the stochastic approximation al-
gorithm, called ATD (Pan et al., 2017). This method is a
quasi-second order method, that relies on a low-rank ap-
proximation At to Ay; usm% this approximation, the up-
date is w1 = wy + (oA} + nI)d.e;. Instead of being
used to explicitly solve for w, the approximation matrix
is used to provide curvature information. The inclusion
of n constitutes a small regularization component, that
pushes the solution towards the unbiased solution.

We show in the next proposition that for our alternative
approximation, we still obtain unbiased solutions. We
use results for iterative methods for singular linear sys-
tems (Shi et al., 2011; Wang & Bertsekas, 2013), since

3We show in Proposition 2, Appendix A, that A is full row
rank with high probablhty This property is required to ensure
that the inverse of AA T exists. In practice, this is less of a

concern, because we initialize the matrix AOAO with a small
positive value, ensuring invertibility for A, A/ for finite ¢.



A may be singular. A has been shown to be positive
semi-definite under standard assumptions on the MDP
(Yu, 2015); for simplicity, we assume A is positive semi-
definite, instead of providing these MDP assumptions.
Assumption 1. For S € R¥*? and B = a(SA)'S + 11
with B € R4%? the matrix BA is diagonalizable.
Assumption 2. A is positive semi-definite.
Assumption 3. « € (0, 3) and 0 <1 < gy—x5
Amax(A) is the maximum eigenvalue of A.

where

Theorem 1. Under Assumptions 1-3, the expected up-
dating rule w1 = w; + E[Bdies] converges to a
fixed-point w* = A'b.

Proof. The expected updating rule is E,[Bd;e;] =
B(b — Aw;). As in the proof of convergence for ATD
(Pan et al., 2017, Theorem 1), we similarly verify the
conditions from (Shi et al., 2011, Theorem 1.1).

Notice first that BA = a(SA)'SA + nA.

For singular value decomposition, SA = UXVT,
we have that (SA)'SA = VXIUTUZVT =
ViI; 04 1]V, where k < k is the rank of SA. The

maximum eigenvalue of (SA)'SA is therefore 1.

Because (SA)TSA and A are both positive semidefinite,
BA is positive semi-definite. By Weyl’s inequalities,

Amax(BA) < aAmax ((SA)'SA) + nAmax (A ).

Therefore, the eigenvalues of I—B A have absolute value
strictly less than 1, because 7 < (2A\pax(A)) ™" and o <
1/2 = (2Amax ((SA)TSA)) ™" by assumption.

For the second condition, since BA is PSD and diagonal-
izable, we can write BA = QAQ™" for some matrices
Q and diagonal matrix A with eigenvalues greater than
or equal to zero. Then (BA)? = QAQ 'QAQ™' =
QA2Q" has the same rank.

For the third condition, because BA is the sum of two
positive semi-definite matrices, the nullspace of BA is
a subset of the nullspace of each of those matrices in-
dividually: nullspace(BA) = nullspace(a(SA)'SA +
nA) C nnullspace(nA) = nullspace(A). In the other
direction, for all w such that Aw = 0, its clear that
BAw = 0, and so nullspace(A) C nullspace(BA).
Therefore, nullspace(A) = nullspace(BA). O

6 WHEN SHOULD SKETCHING HELP?

To investigate the properties of these sketching ap-
proaches, we need to understand when we expect sketch-
ing to have the most benefit. Despite the wealth of liter-
ature on sketching and strong theoretical results, there

seems to be fewer empirical investigations into when
sketching has most benefit. In this section, we elucidate
some hypotheses about when sketching should be most
effective, which we then explore in our experiments.

In the experiments for sketching the features in Section
3, it was clear that sketching the RBF features was much
more effective than sketching the tile coding features. A
natural investigation, therefore, is into the properties of
representations that are more amenable to sketching. The
key differences between these two representations is in
terms of smoothness, density and overlap. The tile cod-
ing representation has non-smooth 0,1 features, which do
not overlap in each grid. Rather, the overlap for tile cod-
ing results from overlapping tilings. This differs from
RBF overlap, where centers are arranged in a grid and
only edges of the RBF features overlap. The density of
RBF features is significantly higher, since more RBFs are
active for each input. Theoretical work in sketching for
regression (Maillard & Munos, 2012), however, does not
require features to be smooth. We empirically investigate
these three properties—smoothness, density and overlap.

There are also some theoretical results that suggest
sketching could be more amenable for more distinct
features—Iless overlap or potentially less tilings. Balcan
et al. (2006) showed a worst-case setting where data-
independent sketching results in poor performance. They
propose a two-stage projection, to maintain separability
in classification. The first stage uses a data-dependent
projection, to ensure features are not highly correlated,
and the second uses a data-independent projection (a
sketch) to further reduce the dimensionality after the or-
thogonal projection. The implied conclusion from this re-
sult is that, if the features are not highly correlated, then
the first step can be avoided and the data independent
sketch should similarly maintain classification accuracy.
This result suggests that sketching for feature expansions
with less redundancy should perform better.

We might also expect sketching to be more robust to
the condition number of the matrix. For sketching in re-
gression, Fard et al. (2012) found a bias-variance trade-
off when increasing k, where for large k, estimation er-
ror from a larger number of parameters became a fac-
tor. Similarly, in our experiments above, LSTD using
an incremental Sherman-Morrison update has periodic
spikes in the learning curve, indicating some instability.
The smallest eigenvalue of the sketched matrix should be
larger than that of the original matrix; this improvement
in condition number compensates for the loss in informa-
tion. Similarly, we might expect that maintaining an in-
cremental singular value decomposition, for ATD, could
be less robust than ATD with left-side sketching.
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Figure 3: Change in performance when increasing k, from 25 to 75. Two-sided projection (i.e., projecting the features)
significantly improves with larger &, but is strictly dominated by left-side projection. At k& = 50, the left-side projection
methods are outperforming TD and are less variant. ATD-SVD seems to gain less with increasing k, though in general
we found ATD-SVD to perform more poorly than ATD-P particularly for RBF representations.

7 EXPERIMENTS

In this section, we test the efficacy of sketching for LSTD
and ATD in four domains: Mountain Car, Puddle World,
Acrobot and Energy Allocation. We set k& = 50, un-
less otherwise specified, average all results over 50 runs
and sweep parameters for each algorithm. Detailed ex-
perimental settings, such as parameter ranges, are in Ap-
pendix C. To distinguish projections, we add -P for two-
sided and -L for left-sided to the algorithm name.

We conclude that 1) two-sided projection—projecting
the features—generally does much worse than only pro-
jecting the left-side of A, 2) higher feature density is

more amenable to sketching, particularly for two-sided
sketching, 3) smoothness of features only seems to im-
pact two-sided sketching, 4) ATD with sketching de-
creases bias relative to its LSTD variant and 5) ATD with
left-sided sketching typically performs as well as ATD-
SVD, but is significantly faster.

Performance and parameter sensitivity for RBFs and
Tile coding. We first more exhaustively compare the al-
gorithms in Mountain Car and Puddle World, in Figures
2 and 3 with additional such results in the appendix. As
has been previously observed, TD with a well-chosen
stepsize can perform almost as well as LSTD in terms
of sample efficiency, but is quite sensitive to the stepsize.
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Figure 4: The effect of varying the representation properties, in Puddle World with d = 1024. In (a) and (b), we
examine the impact of varying the overlap, for both smooth features (RBFs) and 0-1 features (Spline). For spline, the
feature is 1 if ||x — ¢;|| < o and otherwise 0. The spline feature represents a bin, like for tile coding, but here we
adjust the widths of the bins so that they can overlap and do not use tilings. The x-axis has four width values, to give a
corresponding feature vector norm of about 20, 40, 80, 120. In (¢) and (d), we vary the redundancy, where number of
tilings is increased and the total number of features kept constant. We generate tilings for RBFs like for tile coding, but
for each grid cell use an RBF similarity rather than a spline similarity. We used 4 x 16 x 16,16 x 8 x 8 and 64 x 4 x 4.

Here, therefore, we explore if our matrix-based learning
algorithms can reduce this parameter sensitivity. In Fig-
ure 2, we can indeed see that this is the case. The LSTD
algorithms look a bit more sensitive, because we sweep
over small initialization values for completeness. For tile
coding, the range is a bit more narrow, but for RBFs, in
the slightly larger range, the LSTD algorithms are quite
insensitive for RBFs. Interestingly, LSTD-L seems to be
more robust. We hypothesize that the reason for this is
that LSTD-L only has to initialize a smaller & X k sym-
metric matrix, (SA(SA)T)™" = 7¢I, and so is much
more robust to this initialization. In fact, across settings,
we found initializing to I was effective. Similarly, ATD-
L benefits from this robustness, since it needs to initialize
the same matrix, and then further overcomes bias using
the approximation to A only for curvature information.

Impact of the feature properties. We explored the
feature properties—smoothness, density, overlap and
redundancy—where we hypothesized sketching should
help, shown in Figure 4. The general conclusions are
1) the two-side sketching methods improve—relative to
LSTD—with increasing density (i.e., increasing overlap
and increasing redundancy), 2) the smoothness of the
features (RBF versus spline) seems to affect the two-
side projection methods much more, 3) the shape of the
left-side projection methods follows that of LSTD and 4)
ATD-SVD appears to follow the shape of TD more. In-
creased density generally seemed to degrade TD, and so
ATD-SVD similarly suffered more in these settings. In
general, the ATD methods had less gain over their corre-
sponding LSTD variants, with increasing density.

Experiments on high dimensional domains. We finally
apply our sketching techniques on two high dimensional
domains to illustrate practical usability: Acrobot and En-
ergy allocation. The Acrobot domain (Sutton & Barto,
1998) is a four dimensional episodic task, where the goal

is to raise an arm to a certain height. The Energy alloca-
tion domain Salas & Powell (2013) is a five-dimensional
continuing task, where the goal is to store and allocate
energy to maximize profit. For Acrobot, we used 14, 400
uniformly-spaced centers and for Energy allocation, we
used the same tile coding of 8192 features as Pan et al.
(2017). We summarize the results in the caption of Fig-
ure 5, with the overall conclusion that ATD-L provides
an attractive way to reduce parameter sensitivity of TD,
and benefit from sketching to reduce computation.

8 CONCLUSION AND DISCUSSION

In this work, we investigated how to benefit from sketch-
ing approaches for incremental policy evaluation. We
first showed that sketching features can have significant
bias issues, and proposed to instead sketch the linear sys-
tem, enabling better control over how much information
is lost. We highlighted that sketching for radial basis
features seems to be much more effective, than for tile
coding, and further that a variety of natural asymmetric
sketching approaches for sketching the linear system are
not effective. We then showed that more carefully using
sketching—particularly with left-side sketching within a
quasi-Newton update—enables us to obtain an unbiased
approach that can improve sample efficiency without in-
curring significant computation. Our goal in this work
was to provide practical methods that can benefit from
sketching, and start a focus on empirically investigating
settings in which sketching is effective.

Sketching has been used for quasi-Newton updates in on-
line learning; a natural question is if those methods are
applicable for policy evaluation. Luo et al. (2016) con-
sider sketching approaches for an online Newton-update,
for general functions rather than just the linear func-
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Figure 5: Results in domains with high-dimensional features, using £ = 50 and with results averaged over 30 runs.
For Acrobot, the (left-side) sketching methods perform well and are much less sensitive to parameters than TD. For
runtime, we show RMSE versus time allowing the algorithms to process up to 25 samples per second, to simulate a
real-time setting learning; slow algorithms cannot process all 25 within a second. With computation taken into account,
ATD-L has a bigger win over ATD-SVD, and does not lose relative to TD. Total runtime in seconds for one run for
each algorithm is labeled in the plot. ATD-SVD is much slower, because of the incremental SVD. For the Energy
Allocation domain, the two-side projection methods (LSTD-P, ATD-P) are significantly worse than other algorithms.
Interestingly, here ATD-SVD has a bigger advantage, likely because sketching the tile coding features is less effective.

tion approximation case we consider here. They similarly
have to consider updates amenable to incrementally ap-
proximating a matrix (a Hessian in their case). In general,
however, porting these quasi-Newton updates to policy
evaluation for reinforcement learning is problematic for
two reasons. First, the objective function for temporal
difference learning is the mean-squared projected Bell-
man error, which is the product of three expectations. It
is not straightforward to obtain an unbiased sample of
this gradient, which is why Pan et al. (2017) propose a
slightly different quasi-Newton update that uses A as a
preconditioner. Consequently, it is not straightforward to
apply quasi-Newton online algorithms that assume ac-
cess to unbiased gradients. Second, the Hessian can be
nicely approximated in terms of gradients, and is sym-
metric; both are exploited when deriving the sketched on-
line Newton-update (Luo et al., 2016). We, on the other
hand, have an asymmetric matrix A.

In the other direction, we could consider if our approach
could be beneficial for the online regression setting. For
linear regression, with v = 0, the matrix A actually
corresponds to the Hessian. In contrast to previous ap-
proaches that sketched the features (Maillard & Munos,
2012; Fard et al., 2012; Luo et al., 2016), therefore, one
could instead sketch the system and maintain (SA)'.
Since the second-order update is A~ 'g; for gradient g;
on iteration ¢, an approximate second-order update could
be computed as ((SA)'S + 71)g;.

In our experiments, we found sketching both sides of A
to be less effective and found little benefit from modi-
fying the chosen sketch; however, these empirical con-
clusions warrant further investigation. With more under-

standing into the properties of A, it could be possible
to benefit from this variety. For example, sketching the
left-side of A could be seen as sketching the eligibility
trace, and the right-side as sketching the difference be-
tween successive features. For some settings, there could
be properties of either of these vectors that are particu-
larly suited to a certain sketch. As another example, the
key benefit of many of the sketches over Gaussian ran-
dom projections is in enabling the dimension k to be
larger, by using (sparse) sketching matrices where dot
product are efficient. We could not easily benefit from
these properties, because SA could be dense and com-
puting matrix-vector products and incremental inverses
would be expensive for larger k. For sparse A, or when
SA has specialized properties, it could be more possible
to benefit from different sketches.

Finally, the idea of sketching fits well into a larger theme
of random representations within reinforcement learn-
ing. A seminal paper on random representations (Sutton
& Whitehead, 1993) demonstrates the utility of random
threshold units, as opposed to more carefully learned
units. Though end-to-end training has become more pop-
ular in recent years, there is evidence that random rep-
resentations can be quite powerful (Aubry & Jaffard,
2002; Rahimi & Recht, 2007, 2008; Maillard & Munos,
2012), or even combined with descent strategies (Mah-
mood & Sutton, 2013). For reinforcement learning, this
learning paradigm is particularly suitable, because data
cannot be observed upfront. Data-independent represen-
tations, such as random representations and sketching ap-
proaches, are therefore particularly appealing and war-
rant further investigation for the incremental learning set-
ting within reinforcement learning.
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