Value Directed Exploration in Multi-Armed Bandits
with Structured Priors

Bence Cserna Marek Petrik

Reazul Hasan Russel

Wheeler Ruml

University of New Hampshire
Durham, NH 03824 USA
bence, mpetrik, rrussel, ruml at cs.unh.edu

Abstract

Multi-armed bandits are a quintessential ma-
chine learning problem requiring balancing ex-
ploration with exploitation. While there has
been progress in developing algorithms with
strong theoretical guarantees, there has been
less focus on practical near-optimal finite-time
performance. In this paper, we propose an al-
gorithm for Bayesian multi-armed bandits that
utilizes approximate value functions. Build-
ing on previous work on UCB and Gittins
index, we introduce linearly-separable value
functions that capture the benefit of exploration
when choosing the next arm to pull. Our al-
gorithm enjoys a sub-linear performance guar-
antee and our simulation results confirm its
strength in problems with structured priors.
The simplicity and generality of our approach
makes it a strong candidate for use in more
complex multi-armed bandit problems.

1 INTRODUCTION

In the multi-armed bandit setup, a decision-maker re-
peatedly chooses from a finite set of actions. A reward
is generated independently from a probability distribu-
tion associated with the action. The underlying reward
distribution for each action is unknown to the decision-
maker, but each action-reward pair can further inform
future choices. Strong performance in this setup crit-
ically depends on the balance between exploring less
well-understood actions and exploiting actions thought
to provide high reward. In this sense, the problem cap-
tures the quintessence of the interplay between learning
and decision-making.

Many approaches to the multi-armed bandit problem

have achieved impressive theoretical and empirical re-
sults [Bubeck and Cesa-Bianchi, 2012; Kuleshov and
Precup, 2014]. There is, however, growing recognition
that more wide-spread practical use will require algo-
rithms that can better exploit structured prior informa-
tion [Russo and Roy, 2014; Lattimore and Szepesvari,
2016]. For example, consider a bandit problem in which
the arms represent different levels of customer discounts
such as 5% or 10%. The conversion probabilities for the
discounts are not known before the promotion starts, but
one can safely assume that more customers choose to buy
the product when offered a 10% rather than a 5% dis-
count. Such prior information should ideally be used to
increase the efficiency of exploration in particular when a
large number of discounts is considered. While in some
problems such prior information can be captured using
parametric models, like GLM-UCB [Filippi et al., 2010],
such models make many additional assumptions that are
difficult to verify when little or no data is available.

In this paper, we propose a Bayesian bandit algorithm
designed to use structured prior information in order to
achieve good short-term performance with a small num-
ber of arm pulls. We take an approach based on on-
line planning, using lookahead search to consider states
to which each possible sequence of actions might lead.
Relying on lookahead search makes it possible to easily
exploit structured prior information when it is available.
Because the state space grows exponentially with the
number of arms, it is impossible to enumerate all reach-
able states to the problem horizon. Thus, this formulation
of the problem relies crucially on having a value function
that can be applied at a modest depth cut-off in lieu of
further state search.

Many methods for computing approximate value func-
tions have been developed in reinforcement learning and
some have been used to solve some multi-armed ban-
dit problems [Whittle, 1988; Adelman and Mersereau,
2008]. But they can be computationally intensive and
cumbersome to use. As our main contribution, we de-

rive in Section 3 a new method for computing linearly-
separable value functions that, when used in concert with
lookahead search, performs as well as state-of-the-art-
algorithms. The method computes value functions by
exploiting existing algorithms and the weakly-coupled
property of multi-armed bandit problems. It also enjoys
sublinear regret as we show in Section 4. Our algorithm
is simple to implement and, as we demonstrate in Sec-
tion 5, performs well in bandit problems with structured
prior information.

Given the fundamental simplicity of our approach and
its empirical success, we are optimistic that it may pro-
vide a basis for addressing more complex problems, such
as contextual bandits, in the future. Our approach also
opens the door to bandit algorithms that can yield im-
proved performance when additional computation time
is available.

2 BACKGROUND

We begin by describing the Bayesian multi-armed ban-
dit problem in more detail. We focus on the case of
Bernoulli bandits, deferring discussion of more complex
models to Section 5.2. We then briefly review previously
proposed algorithms before turning to our new method.

2.1 PROBLEM FORMULATION

The decision-maker in the standard multi-armed bandit
problem aims to maximize the cumulative return by re-
peatedly choosing one of N arms: A = {aqy,...,an}.
Choosing an arm a; results in receiving a reward R; €
{0,1} distributed according to a Bernoulli distribution
with a mean g,;. The mean p; is not known in advance.
To achieve the maximal cumulative return over a hori-
zon of T steps, the decision-maker must balance explo-
ration to learn about the expected returns of arms with
exploitation in order to learn which arms are more likely
to provide high rewards.

In the Bayesian variant of the problem, the decision-
maker has access to a prior distribution over the expected
reward pq, pt2, - .., pn for each arm aq, a9, ..., an. We
use i = (1, ..., N) to represent the prior parameters
of the bandit; each p; is distributed according to a Beta
distribution. As in most machine learning settings, the
Bayesian approach has both advantages and disadvan-
tages —a proper discussion is beyond the scope of this
paper and we refer to Kaufmann et al. [2012a]; Russo
and Van Roy [2014]; Kim and Lim [2015] and the refer-
ences therein for details.

The Bayesian multi-armed bandit problem can be mod-
eled as a Markov Decision Process (MDP). The state in
this MDP represents the sufficient statistic of the history
of the observed rewards for each arm. We denote the
state space of the MDP that represents the multi-armed
bandit problem as S = &1 U S; U... U Sy, where S;
is the set of states at time ¢. The actions in this MDP are
simply the pulls of arms of the bandit. Fig. 1 shows a
fragment of the MDP for a two-arm bandit, illustrating
the transition from one state to the four possible succes-
sors.

In order for the Markov property to hold, each state of
the MDP must represent the posterior distribution of p;
given the history of rewards for every arm a;. The poste-
rior estimate fi; of p; is distributed according to the Beta
distribution Beta(a, 8) with some parameters «, 3 since
it is the conjugate prior to Bernoulli distribution (e.g.,
[Gittins et al., 2011]). Any state s € S can, therefore, be
represented as

s = ((a1,51)7 (a2, 82), .-, (OéNvﬁN)))

where «;, B; represent the Beta distribution parameters
for each arm i. We use o?, 3 to denote the param-
eters of the prior Beta distributions and generally as-
sume that o = 8% = 1 which corresponds to the uni-
form prior. The parameters «, 5 of the Beta distribution
have a convenient interpretation: after observing ns suc-
cesses (value 1) and ny failures (value 0) for R; then
fii ~ Beta(a? +ng, 8 + ny). Thus the transition, after
pulling an arm a;, consists of merely adding one to the
appropriate «; or 3; based on the observed reward.

When the bandit is in state s; and the decision maker
chooses arm a;, the subsequent state is represented
by a random variable S;ii1(s¢ a;). When s =

(..., (as Bi),...), the random variable Sii1(s:,a;) is
distributed as
Q;
P =(... +1,6),...)] = 1
[St+1 (7<az + 767,)3)] o +5'L) ()
B o B
P[StJrl_(...7(a“ﬁl+1>’“.)]_ai+5i7 (2)

where the transition probabilities follow from the defi-
nition of the mean of the Beta distribution. To reduce
clutter, we omit s; and a; when they are obvious from
the context. The rewards received in transitions (1) and
(2) are 1 and 0 respectively.

By specifying which arm to pull at any given state, a
multi-armed bandit algorithm defines a policy for this
bandit MDP. The decision rule at time ¢ is denoted as
m : S — A and the policy is the collection of the de-
cision rules 7 = {m; | t = 1...T} for each time step ¢.
The celebrated Gittins index defines the optimal policy

[(a1,8) || (a2, B) |

(a1 +1,81) [(02,8) | [(e1,81+1) [(02, 8)

(1,8 1 (02 +1,8) | [(e1,81) Il (02, 82+ 1) |

' '

' '

Figure 1: A single transition of the Bernoulli multi-armed bandit problem.

for the discounted infinite-horizon version of the bandit
problem, but that method is not based on directly solving
the MDP. In most practical problems, it is impossible to
compute the optimal policy because the number of states
grows exponentially with the number of arms. Unfortu-
nately, while Gittins index may be optimal, it provably
does not generalize to most other bandit problems [Git-
tins et al., 2011].

The established performance measure for classic bandit
algorithms is the regret, sometimes referred to as pseudo-
regret [Bubeck and Cesa-Bianchi, 2012], which is de-
fined for a particular realization of the bandit parameters
1 and policy 7 as

T
Regret(ﬂ,T, M) = Z(zgaXN Hi — E [Rﬂ(St) | M]))

where S; is a random variable that represents the state of
the bandit process. In Bayesian bandits, it is natural to
instead evaluate Bayesian regret:

BayesRegret(m,T) = E,, [Regret(m, T, 1)] .

We aim to minimize Bayesian regret with a particular
focus on the regret in the first few steps. While the guar-
antees provided by a small bound on the Bayesian regret
are somewhat weaker than that of regular regret, it is a
very reasonable measure in most circumstances.

2.2 PREVIOUS WORK

The literature on bandit problems is enormous, so we will
focus only on the most relevant algorithms. The UCB
family of algorithms [Auer ef al., 2002] use the prob-
lem structure to derive tight optimistic upper bounds.
While these algorithms are simple and have been used
in various applications with success, they lack the abil-
ity to incorporate structured prior information such as

arm dependency or different reward policies without re-
quiring complex and difficult re-analysis of the upper
bounds. Kaufmann et al. [2012a] propose Bayes-UCB, a
Bayesian index policy that improves on UCB in Bayesian
bandits by taking advantage of the prior distribution.

Russo and Roy [2014] describe a method that improves
on the optimistic approach taken by UCB algorithms.
Their method considers the information gain from taking
an action to optimize the exploration-exploitation trade-
off. They provide a strong Bayesian regret bound that
applies for a general class of models. Our new method is
based on a similar principle but uses additive value func-
tions to estimate the information gain.

Thompson sampling works by choosing an arm based on
its probability of being the best arm. Specifically, the
method draws a sample from the decision maker’s cur-
rent belief distribution for each arm and then chooses the
arm that yielded the highest sample. The performance
of Thompson sampling has been proved to be near opti-
mal, and it is simple and efficient to implement. Thomp-
son sampling can easily be adapted to a wide range of
problem structures and prior distributions [Agrawal and
Goyal, 2012; Leike et al., 2016; Kaufmann et al., 2012b].
For example, one can reject sets of samples that contra-
dict contextual information. However, the simplicity of
the method makes it also difficult to improve its perfor-
mance.

Gittins indices exploit the weak dependence between ac-
tions to compute the optimal action in time that is linear
in the number of arms [Gittins, 1979; Chakravorty and
Mahajan, 2014]. Gittins indices, however, are guaran-
teed to be optimal only for the basic multi-armed ban-
dit problem, require a discounted infinite-horizon objec-
tive, and provably cannot be extended to most interesting
practical problems which involve correlations between
arms or an additional context [Gittins et al., 2011].

3 SEPARABLE VALUE FUNC-
TIONS

We now turn to our new approach, which we call
“ELSV” (Exploration via Linearly Separable Value
Functions). As described above, our main goal is
a method that is flexible and takes advantage of the
complex problem structure or prior knowledge in or-
der to reduce the regret. We achieve this by taking a
state-space search-based approach and by leveraging the
exploration-exploitation trade-off behavior of existing al-
gorithms to build good value functions.

The ELSV algorithm, as described in this section, does
not improve the performance of existing methods when
applied to Bernoulli bandits. In Section 5, we describe
how it can be extended easily to settings with prior infor-
mation in which it significantly outperforms state-of-the-
art methods.

Algorithm 1: One-step lookahead algorithm

Input: Current time step ¢, current state s;, and
value function vy : Sy — R
Qutput: Arm to pull at time step ¢
1 fora € Ado
// q(sg,a) is the expected value
for action a in state s
2 qi(st,a) < E[7(s,a,Si41) + ve41(Si41) | 5

3 return arg maxge 4 ¢+ (8¢, a);

Our general approach is based on an n-step lookahead
guided by a specific value function. This is an instance
of receding horizon control, a common approach to solv-
ing online planning and reinforcement learning prob-
lems [Sutton and Barto, 1998]. The state space is enu-
merated to depth n, at which point a value function is
evaluated at the frontier states to avoid further expansion.
Note that, because there are multiple ways of reaching a
state in the MDP, the state space forms a graph and it
is important to detect and merge duplicate states. The
values are backed up to the current state at the root and
the best-looking action is chosen. After the outcome of
pulling the arm is observed, the cycle repeats again with
a fresh lookahead. A simplified version of the algorithm,
depicted in Algorithm 1, estimates the value of each ac-
tion by computing the expected value for the next step.

Since Algorithm 1 does not rely on any complex confi-
dence bounds, one would expect that it can easily gen-
eralize to many different problems. Choosing a longer
lookahead horizon also offers the promise of trading off
computational time for more efficient exploration. The
quality of this algorithm will clearly depend on whether

it is supplied with a good value function v.

There has been little previous work that considered a
value function-driven approach to bandit problems, with
Adelman and Mersereau [2008] being one notable ex-
ception. This is perhaps because UCB is simple and
efficient, while computing value functions via approxi-
mate dynamic programming requires complex computa-
tion and can be unreliable. We show, however, that it
is possible to efficiently construct good value functions
directly from UCB and other popular bandit algorithms.
Surprisingly, such value functions are simple and linearly
separate over the individual arms.

Before describing how we construct the value function,
consider what it is supposed to represent. Consider, for
example, a state s = ((2, 3), (10, 10)) in a two-arm ban-
dit problem with 10 steps remaining until the end of the
horizon T is reached. The expected returns of the two
arms are 2/5 - 10 = 4 and /2 - 10 = 5 respectively. One
could simply assign v19(s) = max{4,5} = 5, but this
would not be precise. The first arm, while apparently
having a lower expected mean, is far less certain than the
second arm (because of a smaller number of pulls). In or-
der to achieve good results, and in particular a sub-linear
regret guarantee, the value function must consider not
only the expected return but also the confidence of the
estimates. Another way to put it is that the value func-
tion must model both the expected return (exploitation)
and the benefit of exploration.

Algorithm 2: Index Policy

Input: Current time step ¢, current state s;, and
index function z; : S; x A — R
Output: Arm to pull at time step ¢
1 return arg max,e 4 2¢ (8%, a;);

We seek to take advantage of the implicit value of ex-
ploration that is encoded by existing multi-armed bandit
index algorithm. Algorithm 2 shows a canonical exam-
ple of an index-based algorithm. UCB, Gittins index, and
many other methods fit this basic mold. Note that the in-
dex (st a;) is computed for each arm separately. The
notation s} denotes the component of state s, that cor-
responds to arm a;, that is si = (a, 3;). For example,
if s, = ((5,2),(4,6)) then s? = (4,6). An important
property of the index function z;(s?, a;) is that it is com-
pletely independent of the states of other arms and can
thus be computed efficiently.

The challenge when constructing an index algorithm is
how to define the index value z;. If we use the Bayesian
expectation of the immediate return in place of the stan-
dard frequentist one, then the value of the index for the

«-UCB algorithm for each arm a € A is

UCB

i i alogt
ze o (st,a:) = (s, a:) + s

T;(s})

= T(Siaai) +bECB(Si7ai)
—— ——

3

Immediate reward ~ Exploration bonus

where 7(si, a;) = E [r(si, a;, 57, 1) | = @i/aits: is the
expected reward after pulling arm a;, T;(s%) = a;+5;—2
is the number of times the arm has been pulled (recall
that the initial states is o = 8 = 1), and by is the
exploration bonus.

The classic UCB algorithm uses o = 2, but sub-linear
regret can be in fact shown with o > 1 [Bubeck and
Cesa-Bianchi, 2012]. Lower values of « typically lead to
better empirical performance but also make it more diffi-
cult to bound the regret. We use @ = 1 unless otherwise
specified.

Another celebrated example of an index policy is the Git-
tins index, see for example [Gittins et al., 2011]. While
UCB is only asymptotically optimal (up to a constant fac-
tor), following the Gittins index is truly optimal in some
simple bandit settings. For example, Gittins indices are
optimal for an infinite-horizon discounted Bernoulli ban-
dit problem. We generally use discount v = 0.99 and the
horizon of 1000 when approximating the infinite horizon.

Unlike UCB, Gittins index does not have a closed-form
expression, but it must be precomputed. Since the index
is computed for each arm independently, it can be com-
puted and used efficiently regardless of the number of
arms in the bandit problem [Niflo-Mora, 2011]. We use
281(st a) to denote the value of the Gittins index and
bl (st a;) = 281%(st a;) — r(si, a;) to denote the ex-
ploration benefit that it assigns to the arms. Many other
multi-armed bandit methods have been proposed, some
examples are Bayes-UCB [Kaufmann et al., 2012a] or
UCB-V [Audibert et al., 2009] to name a few.

We are now ready to describe ELSV, the new method
for constructing linearly-separable value functions. A
linearly-separable value function for components v} :
Sti — R is such that, for each t € T and for each state
st €8y,

vls) = 3 vilsh) . 4)

a; €A

Linearly separable value functions are attractive due
to their simplicity and have been used widely in rein-
forcement learning and approximate dynamic program-
ming [Powell, 2008; Powell et al., 2004; Rust, 1996] and
previously for approximating the value function in bandit
problems [Adelman and Mersereau, 2008].

We begin with an arbitrary bandit index function z{ and
the corresponding exploration bonus function b;. Each

component v} must satisfy the following condition for
every a;, t,and 7 < t:

’Uz+1(53) =E [Ui+1(5i+1)} + T(Sj—7ai) - Zt(si7ai)

. . , (5)

= E [0} (8ha0) | = be(shya)
where S%_, is short for S, (s,,a;), the random vari-
able that represents the state following the pull of arm a;.
It is important to note that all v’s involved use the same
time index ¢ 4+ 1 while the states are over two time steps
Tand 7 + 1.

To understand the requirement in (5) more intuitively, we
can rewrite it as

E [Ué+1(si+1)] - U§+1(Si) = bt(si,ai) .

The term E [v}, (S,) | represents the expected value
of the state at time ¢ + 1 after pulling the arm a;; Sr41
is a random variable. In contrast, the term v;_ , (s%.) rep-
resents the expected value of the state s’ at time ¢ 4 1
when arm a; is not pulled. The difference between these
two terms is the change in the value of the current state,
or in other words, how much we have learned about the
arm after pulling it. And this increase in information
about the arm should be equal to the exploration bonus
assigned by the index.

Algorithm 3: ELSV: Computing linearly separable
value functions that satisfy (5).

Input: Arm a;, timestept € 1,...,7, and
exploration bonus function b; : Sy x A — R
Output: Value function v! for arm a; at time ¢
S {(@p)eNylatp-2<t-1};
2 vi(s) 0 VseS;
// T = num. of pulls of a; so far
sforr=t—2to1do

// Iterate possible histories
foreach (o,) e {s €S, |a+8—-2=71}do

-

IS

5 p<—aiﬁ, 4 355
6 vi(a, B)

pU%(Oz—i—l,ﬂ)—kqU%(a,ﬂ—kl)—bt(a,ﬂ),

7 return v}

Theorem 3.1. Let 7 represent Algorithm 2 with index
function Z;. Suppose a policy my represents Algorithm 1
with value function U, as defined in (4)—(5) using an in-
dex function 2. Then my (s;) = m(s¢) for each s; € S;.

We defer the proof of Theorem 3.1 to Appendix A.1. It
follows by comparing the value of pulling an arm with
the value of a hypothetical state which would have re-
sulted from not pulling any arm. The argument relies on

the fact that a policy is not affected by adding or subtract-
ing a constant from the value function for all states in S;
for any t.

The simplest arm index would simply ignore the explo-
ration bonus by setting it to b;(si,a;) = 0. The value
function for this setting will be a constant and the 1-step
lookahead policy will simply be greedy. Having no ex-
ploration bonus, therefore, leads to no exploration and
pure exploitation.

The value function in Theorem 3.1 induces the same pol-
icy as the index, but it is still an approximation of the true
value of each state. Therefore, a value function v con-
structed from the Gittins index will lead to the optimal
policy (for the discounted infinite-horizon bandit) but it
is not the optimal value function.

Algorithm 3 describes a dynamic programming method
that can be used to compute a value function that satis-
fies (5). The following proposition, which can be shown
readily by algebraic manipulation, states the complexity
of the algorithm.

Proposition 3.1. The linearly separable value function
vi can be computed using dynamic programming with
computational complexity O(t3).

Since the values v are computed independently for each
t they do not have to be pre-computed ahead of time but
can be computed on as needed basis and only for the
states relevant to choosing an action. It is also important
to note that the complexity in Proposition 3.1 is indepen-
dent of the number of arms and the complexity of the
1-step lookahead in Algorithm 1 is linear in the number
of arms. ELSV can scale to a large number of arms with
no significant difficulties.

Fig. 2 depicts value functions computed by ELSV for
Gittins index at ¢ = 10 and ¢ = 200 for each state. The
states in S are mapped to a 2-dimensional space and the
contours indicate the value function at that state. The
number of arm pulls on the vertical axis can be smaller
than ¢ since the arm may not be pulled in every time step.
Fig. 3 shows the value function computed by ELSV for
UCB index for comparison. As noted above, the constant
offset of the value functions is irrelevant to the quality of
the policy. The value functions in the plots are offset to
satisfy,

Uz(St) 2> max {r(si,ai) +E [v§+1(52+1)] 7U2+1(5i)}

which leads to more reasonable value estimates without
influencing the policy.

The value function of UCB is notably simpler than the
one for Gittins index. As expected, the UCB value func-
tion is concave and increasing but independent of the

expected success probability. This indicates that explo-
ration in UCB is really driven just by the immediate re-
ward and the certainty in it—the potential long-term ben-
efits of the arm are ignored. On the other hand, the value
function for the Gittins index value exhibits a curious
structure: it increases toward both low and high proba-
bilities. This is counterintuitive as one would expect the
value function to monotonically increase with the suc-
cess probability. In a multi-armed bandit, however, it
is also valuable to learn that an arm is not good which
reduces the need for further exploration. Arms with
medium success probabilities do not provide high re-
wards and yet require significant exploration. Notice also
that this property is much more exaggerated at ¢ = 200.

In the remainder of the paper, we discuss regret bounds
ELSYV and evaluate its performance experimentally on a
bandit problem with additional problem structure.

4 ANALYSIS OF REGRET

In this section, we prove that ELSV with the UCB value
function has sublinear regret. The sublinear bound on the
regret is not surprising; Theorem 4.1 shows that ELSV
with such a value function behaves identically to UCB
which enjoys sublinear regret bounds. Instead, the main
goal of this section is to establish a new methodology
that can be used to analyze regret of multi-armed bandit
algorithms driven by value functions.

Our goal is, in particular, to derive regret bounds that
depend on some property of the value function used by
ELSV. We need additional notation to describe such a
property concisely. Let ¢;(s,a) stand for the expected
value after pulling an action a in state s;:

qt(st,a) =r(ss,a) + E |:'Ut+1 (St+1(8t, a)) } .

As we show below, to bound regret it is sufficient to es-
tablish an upper bound on:

©t(Hs 8t i) = qe(5t,ai) — (i +vea(se)) . (6)

This value ¢, compares the estimate of the expected
value ¢;(s¢, a;) with a more precise estimate of the same
value (p; + viy1(s¢)). The more precise estimate uses
the unknown parameter p. One could also interpret oy
as a finite-horizon form of the Bellman residual used
in bounds on performance loss in reinforcement learn-
ing (e.g. [Petrik and Zilberstein, 2011]).

The following lemma plays a key role in establishing the
regret bounds. It shows how the regret of ELSV can be
decomposed into two components: one is independent
of the algorithm and the other one is independent of the
optimal action.

GittinsIndex ¢ = 10

10

F8-2)

Number of Arm a Pulls (v

==

0
0.0 0.2 0.4 0.6 0.8 1.0
Expected Arm a Success Probability (%)

GittinsIndex # = 200

Number of Arm a Pulls (a + /3 — 2)

Q

0.0 0.2 04 0.6 08 1.0
Expected Arm a Success Probability (=2)

Figure 2: Value functions for Gittins index at ¢ = 10 and ¢ = 200 (after 10 and 200 pulls of some arm).

UCB ¢ =10
10

+8-2)

Number of Arm a Pulls (o

0
0.0 0.2 0.4 0.6 0.8 1.0
Expected Arm a Success Probability (=)

Figure 3: Value function for UCB index at ¢ = 10 (after
10 pulls of some arm).

Lemma 4.1. The regret for any policy w; computed us-
ing 1-step lookahead with respect to value function vy is
upper bounded as follows:

T
Regret(m, T,) < Z [t (1, St m(St)) | —

_ZESt {

where Sy is the random variable representing the state

at time t under policy w and i}, = arg maxX;e A ji; is the

optimal action for the unknown parameter [i.

MaStval)} ’

The proof of the lemma, deferred to Appendix A.2, fol-
lows readily from the fact that ELSV chooses actions that
maximize q;.

The actual regret bound depends, of course, on the value
function that is used. We now use Lemma 4.1 to bound

the regret of the policy that uses UCB derived value func-
tion vYCB as described in (5).

Theorem 4.1. The regret of policy my of Algorithm 1
that uses 0V (with oo > 1) is bounded as:

Regret(my, T,) < O(v/T log(T)) .

The proof of the theorem can be found in Appendix A.3.
Note that this bound is not tighter than existing bounds
on UCB algorithms, but it does establish sublinear regret
of ELSV.

To establish the bound in Theorem 4.1, it is necessary
that the difference of the residuals (6) for the arm chosen
by ELSV and the optimal arm are not only small but must
also decrease at least quickly 1/+/. In other words, it is
not sufficient for the errors in (6) to be small, they also
must decrease as more information about the returns of
the arms becomes available.

S EXPERIMENTAL RESULTS

In this section, we compare the performance of ELSV
to that of UCB, Bayes-UCB, Thompson sampling, and
Gittins indices in simulation. We first analyze in Sec-
tion 5.1 the impact of the lookahead horizon on the per-
formance in the plain Bernoulli bandit setting. Then, in
Section 5.2, we describe the application to a problem in
which structured prior information is available.

Unlike UCB and Thompson sampling, Gittins index
must be pre-computed in advance. It is also optimal
only for infinite-horizon discounted problems. The in-
dex that we use in our experiments was computed with
a discount factor v = 0.99 and horizon of 1000 to ap-
proximate the infinite-horizon value. We computed the
index using the calibration method with the step size of

—— ELSV-Gittins lookahead = 1
c

-

Bayesian Regret

0 50 100 150 200 250
Timestep

Figure 4: Bernoulli bandit regret with lookahead of 1 and
3 steps.

0.001 as described, for example, in Nifio-Mora [2011].
Other approximations for computing the index have been
proposed recently [Gutin and Farias, 2016; Lattimore,
2016].

5.1 BERNOULLI BANDITS

Our first set of experiments is in the standard Bernoulli
bandit setting as described above in Section 2.1. As
shown in Theorem 3.1, ELSV’s performance will be
identical to the index algorithm it is based upon. And
our experiments indeed confirm this fact.

The main purpose of the experimental evaluation in this
section is to understand the effect of the size of the looka-
head on the performance of the algorithm. A reasonable
assumption in online planning algorithms is that their
performance generally improves with an increasing hori-
zon size. Fig. 4 compares the Bayesian regret of 1-step
and 3-step lookaheads in a 3-armed problem with value
functions computed by ELSV. We use two value func-
tions, one computed from the Gittins index and another
one from a-UCB with o = 0.4 (this « is unrelated to
the « value used in each state). The results are averaged
over 5200 problem instances with arm success probabil-
ities drawn from the uniform Beta distribution and the
shaded areas around the curves show 95% confidence in-
tervals.

Fig. 4 highlights a surprising finding: longer lookahead
does not reduce the regret. We observed virtually no im-
provement in the regret up to a horizon 10 at which point
the search becomes computationally intractable. We hy-
pothesize that a more careful, focused, and deeper search

would be more likely to yield improvements.

5.2 CONSTRAINED BANDITS

Algorithm 4: Constrained single step lookahead al-
gorithm using rejection sampling

Input: Current time step ¢, current state s;, and
value function v; : S; — R
Output: Arm to pull at time step ¢
X0
(o, B) s¢
for k € 1...SampleCount do
Sample 0; ~ Beta(a;, 8;) for each a; € A
lfgl 202 > ... 29nthen
L X XU{(91,92,...,9N)}

Y B e S N

// compute average
i a7 2 Ois
fex
s foricl...Ndo
// value of success
o | scr(se,ai, (a+1,8)) v (ai +1,8:) 5
// value of failure
10 fl < vi 4 (as, B; +1);
// action value
1 qe(sg,a;) < fu;-sc+ (1 — fi;) - sc;

=

-

2 return arg maxge 4 g¢(S¢, a) ;

The constrained Bernoulli bandit problem represents a
more challenging case that is not handled well by ex-
isting algorithms. As described in the introduction, this
problem is motivated by an application when trying to
optimizing the level of personalized discount offers to
customers in an e-commerce setting. It has been studied
extensively in operations research using customer choice
models [Train, 2003]. Although such choice models can
be combined with UCB methods, their application with
no historical data is often problematic. For the purpose
of these experiments, we simply assume that the success
probabilities do not increase with a decreasing discount
percentage: (1 > po > ... > un. Arm ¢ + 1 represents
a smaller discount than arm ¢: the experimental results
use discount levels of 20%, 10%, 0% for arms 1, 2, 3 re-
spectively. Our approach can be used also with a much
more complex set of possible prior assumptions.

Unlike in regular Bernoulli bandits, the rewards r; de-
pend on arm ¢. That is, after pulling an arm (choosing
a discount level) we received reward r; if the customer
decides to purchase the product and 0 otherwise. Since
the arm discount decreases with the index ¢, the rewards
satisfy: r; <rg < ... <rn.

— Gittins
—— Bayes-UCB
— TS

=== ELSV-UCB Constrained o = 0.4
ELSV-Gittins Constrained

TS Constrained

8

Bayesian Regret

0 50 100 150 200 250
Timestep

Figure 5: Bayesian Regret of constrained Bernoulli ban-
dit.

Adapting Algorithm 1 to this constrained setting is rel-
atively straightforward. We use the linearly separable
value function computed by ELSV and only modify the
lookahead to respect the constraints on p. In particu-
lar, we use rejection sampling to appropriately adjust the
transition probabilities when updating the values in the
lookahead. As Algorithm 4 shows, we essentially com-
pute the conditional probability distribution for each p;
given the observations for that arm as well as the ob-
servations for other arms. This probability distribution
must be estimated empirically as it does not have a closed
form. The algorithm is only a heuristic in this setting and
we have no regret bounds yet.

Fig. 5 shows the regret of ELSV (with 1-step looka-
head) compared with several state-of-the-art algorithms
on the constrained bandit problem with 3 arms and av-
eraged over 5300 problem instances and with 95% con-
fidence intervals. ELSV-UCB and ELSV-Gittins use a
value function computed from UCB and Gittins index
respectively. We omit the regret of UCB from the plot
because its regret was much higher than that of the other
algorithms. TS stands for regular Thompson sampling
that ignores the constraints on , while “TS Constrained”
samples from the constrained posterior distribution using
rejection sampling similarly to Algorithm 4.

Our results show that ELSV-Gittins outperforms all other
algorithms even in a problem with 3 arms. The magni-
tude of improvement in ELSV-Gittins over Gittins index
grows as the number of arms in the problem increases
since the constraint becomes more important and more
informative. ELSV-UCB performs a bit worse, it but
still represents a very significant improvement over plain
UCB.

6 CONCLUSION

We have proposed a new approach to bandit problems fo-
cused on good short-term performance in problems with
structured prior information. The approach is based on a
new kind of linearly separable value function that incor-
porates the value of exploration and can be used in con-
cert with online planning methods. Our method, ELSYV,
performs close to optimal on basic Bernoulli bandits and
can significantly outperform existing methods in prob-
lems with prior information. The results on simple ban-
dit problems are promising and we hope to extend the
approach also to contextual bandits. We also believe that
ELSV is a good first step in developing more sophisti-
cated value-directed methods in the future.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for detailed com-
ments that helped to improve this paper significantly.
This work was in part supported by the National Science
Foundation under Grant No. IIS-1150068.

REFERENCES

Daniel Adelman and AJ Mersereau. Relaxations of
weakly coupled stochastic dynamic programs. Opera-
tions Research, 56(3):712-727, 2008.

Shipra Agrawal and Navin Goyal. Analysis of Thompson
sampling for the multi-armed bandit problem. In An-
nual Conference on Learning Theory (COLT), pages
39.1-39.26, 2012.

Audibert, Rémi Munos, and Csaba
Szepesvari. Exploration-exploitation tradeoff us-
ing variance estimates in multi-armed bandits.
Theoretical Computer Science, 410(19):1876-1902,
2009.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Fi-
nite time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235-256, 2002.

Sébastien Bubeck and Nicold Cesa-Bianchi. Regret
Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems. Foundations and Trends in Machine
Learning, 5(1):1-122, 2012.

Jhelum Chakravorty and Aditya Mahajan. Multi-Armed
Bandits, Gittins Index, and Its Calculation. In Methods

and Applications of Statistics in Clinical Trials, pages
416-435.2014.

Sarah Filippi, Olivier Cappe, Aurelien Garivier, and
Csaba Szepesvdri. Parametric Bandits: The Gener-

Jean Yves

alized Linear Case. In Neural Information Processing
Systems (NIPS), 2010.

John Gittins, Kevin Glazerbrook, and Richard Weber.
Multi-Armed Bandit Allocation Indices. John Wiley
& Sons, 2nd edition, 2011.

John Gittins. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society. Series
B, 41(2):148-177, 1979.

Eli Gutin and Vivek F. Farias. Optimistic Gittins Indices.

In Conference on Neural Information Processing Sys-
tems (NIPS), 2016.

Emilie Kaufmann, Olivier Cappé, and Aurélien Gariv-
ier. On Bayesian upper confidence bounds for bandit
problems. International Conference on Artificial In-
telligence and Statistics, pages 592—600, 2012.

Emilie Kaufmann, Nathaniel Korda, and Rémi Munos.
Thompson Sampling: An Asymptotically Optimal Fi-
nite Time Analysis. Algorithmic Learning Theory,
(1):15,2012.

Michael Jong Kim and Andrew E.B. Lim. Robust
Multiarmed Bandit Problems. Management Science,
62(1):264-285, 2015.

Volodymyr Kuleshov and Doina Precup. Algorithms for
multi-armed bandit problems. Technical report, 2014.

Tor Lattimore and Csaba Szepesvari. The End of Opti-
mism? An Asymptotic Analysis of Finite-Armed Lin-
ear Bandits. Technical report, 2016.

Tor Lattimore. Regret Analysis of the Finite-Horizon
Gittins Index Strategy for Multi-Armed Bandits. In
Annual Conference on Learning Theory (COLT).
arXiv, 2016.

Jan Leike, Tor Lattimore, Laurent Orseau, and Marcus
Hutter. Thompson Sampling is Asymptotically Opti-
mal in General Environments. In Uncertainty in Arti-
ficial Intelligence (UAI), 2016.

José Nifio-Mora. Computing a classic index for finite-
horizon bandits. INFORMS Journal on Computing,
23(2):254-267, 2011.

Marek Petrik and Shlomo Zilberstein. Robust approx-
imate bilinear programming for value function ap-
proximation. Journal of Machine Learning Research,
12(1):3027-3063, 2011.

Warren Powell, Andrzej Ruszczynski, and Huseyin
Topaloglu. Learning Algorithms for Separable Ap-
proximations of Discrete Stochastic Optimization
Problems. Mathematics of Operations Research,
29(4):814-836, 2004.

Warren B Powell. Value Function Approximation us-
ing Multiple Aggregation for Multiattribute Resource

Management. Journal of Machine Learning Research,
9:2079-2111, 2008.

Daniel Russo and Benjamin Van Roy. Learning to Opti-
mize Via Information-Directed Sampling. pages 1-34,
2014.

Daniel Russo and Benjamin Van Roy. Learning to Opti-
mize via Posterior Sampling. Mathematics of Opera-
tions Research, 39(4):1221-1243, 2014.

John Rust. Numerical dynamic programming in eco-
nomics. Handbook of computational economics,
(November), 1996.

Richard S Sutton and Andrew Barto.
learning. 1998.

Reinforcement

Kenneth E. Train. Discrete Choice Methods with Simu-
lation. 2003.

P. Whittle. Restless Bandits: Activity Allocation in
a Changing World. Journal of Applied Probability,
25(1988):287, 1988.

