
Practical divide-and-conquer algorithms for polynomial arithmetic

William Hart1? and Andrew Novocin2??

1 University of Warwick, Mathematics Institute, Coventry CV4 7AL, UK
W.B.Hart@warwick.ac.uk – http://maths.warwick.ac.uk/~masfaw

2 LIP/INRIA/ENS, 46 allée d’Italie, F-69364 Lyon Cedex 07, France
Andrew.Novocin@ens-lyon.fr – http://andy.novocin.com/pro

Abstract. We investigate two practical divide-and-conquer style algorithms for univariate polynomial
arithmetic. First we revisit an algorithm originally described by Brent and Kung for composition of
power series, showing that it can be applied practically to composition of polynomials in Z[x] given in
the standard monomial basis. We offer a complexity analysis, showing that it is asymptotically fast,
avoiding coefficient explosion in Z[x]. Secondly we provide an improvement to Mulders’ polynomial
division algorithm. We show that it is particularly efficient compared with the multimodular algorithm.
The algorithms are straightforward to implement and available in the open source FLINT C library.
We offer a practical comparison of our implementations with various computer algebra systems.

Introduction

Univariate integer polynomials are important basic objects for computer algebra systems. In this paper we
investigate two algorithms for univariate polynomial arithmetic over Z. In particular, we study divide-and-
conquer style algorithms for composition and division of polynomials.

Given two polynomials f, g ∈ Z[x] the polynomial composition problem is to compute f(g(x)) ∈ Z[x]. Stan-
dard approaches include Horner’s method [10], ranged Horner’s method (which we describe in section 1.1),
algorithms for composition of polynomials in a Bernstein basis (see [2]), and algorithms based on point
evaluation followed by coefficient interpolation (see [13]).

Given f, g ∈ Z[x] the division problem is to find polynomials q, r ∈ Z[x] such that f = gq + r where the
deg(r) <= deg(f), but the coefficients of terms of r whose degree is at least deg(g) are reduced modulo the
leading coefficient of g.

Standard approaches to the division problem are the naive O(n2) “school-book” method, a divide-and-
conquer approach based on the middle product and a multimodular approach (see for example Victor Shoup’s
NTL [14] which employs the latter approach). The approach we present has the advantage of being simpler
to implement than the middle product approach with comparable performance but much better performance
than the “school-book” or multimodular approaches in real-world cases.

Some important applications include: i) exact division, i.e. where r = 0, ii) division by g with leading
coefficient ±1, iii) divisibility testing, i.e. to test if f = gq for some q ∈ Z[x], with the algorithm returning
false if (and as soon as) a non-zero coefficient is detected in the remainder r and iv) a basecase for power
series division (with normalised divisor).

1 Polynomial Composition

We begin with a divide-and-conquer approach to polynomial composition.
? Author was supported by EPSRC Grant number EP/G004870/1

?? Author was partially supported by ANR project LaRedA

Our Contribution. We present and analyze the divide-and-conquer technique of Brent and Kung [5],
originally a component of a power series composition algorithm, applied instead to the composition of two
polynomials f, g ∈ Z[x] given in the standard monomial basis. We give a theoretical complexity bound which
is softly optimal in the size of the output and show that the algorithm is highly practical.

Problem Statement:

Given: f = anx
n + an−1x

n−1 + · · ·+ a0 and g = bmx
m + · · ·+ b0 in Z[x].

Find: a full expansion of h = f(g(x))

Assumptions: In our analysis we assume the use of fast arithmetic (see [1]), which is available in FLINT [9].
Also, only for the simplicity of bit-complexity analysis, we will assume throughout that coefficients of f and
g are of O(m) bits, where m is the degree of g, the inner polynomial in the composition f(g). We note that
the algorithm still works when the coefficients are larger, but depending on the implementation of the fast
polynomial arithmetic, the bit complexity will go up by some factor which is a quasilinear expression in the
size of the coefficients.

The algorithm is simple to implement and works in the standard monomial basis. We will show that the
algorithm performs well in practice by providing timings against the MAGMA computer algebra system [6].
We also provide a theoretical complexity analysis showing that, in the worst case, the algorithm uses
O(nm log(n) log(nm)) operations in Z and has a bit-complexity of O(n2m2 log(nm)).

Assuming that h = f(g) does not have special structure (i.e. h is dense with few cancellations) then this out-
put has O(nm) coefficients each with bit-length O(nm). Simply writing down the output requires O(n2m2)
CPU-operations making our theoretical bound optimal, up to a factor O(log(mn)).

Related works. The presented algorithm is an application of the divide-and-conquer technique of Brent and
Kung [5], originally developed as a component of an algorithm for composition of power series. In the original
application the bit complexity was not considered, however we show that the algorithm is asymptotically
fast for polynomial composition in Z[x]. The algorithm was rediscovered while implementing the number
theory library FLINT [9], and we are grateful to Joris van der Hoeven for pointing out its first occurrence
in the literature.

In [11] an algorithm is presented which is asymptotically fast for composition of polynomials in a Bernstein
basis. However for polynomials presented in the usual monomial basis one must first perform a conversion
to Bernstein basis to make use of this algorithm.

Conversion of orthogonal polynomials can be done in time O(n log2 n log log n), assuming the use of Fast
Fourier Transform techniques (see [3]), however Bernstein bases are not orthogonal.

A standard method for converting from a Bernstein basis to a monomial basis involves computing a difference
table, which costs O(n2) operations for a polynomial of length n (degree n−1) in the Bernstein basis (see [4,
Sect.2.8]). Thus to convert the eventual solution from Bernstein basis to monomial basis in our case will cost
O((mn)2) operations, each of which involves a subtraction of quantities of O(mn) bits. Thus the total bit
complexity of the conversion alone is already significantly greater than that of our algorithm.

A different method is given in [13, Prob 3.4.2]. In this method, K = 2k is computed such that mn+1 ≤ K <
2mn+2. If possible compute ω, a primitiveKth root of unity, and theK = 2k points, ωi for all i = 0, . . . ,K−1.
Evaluate h = f(g) at those K points (using fast arithmetic) and interpolate the coefficients of h. If a Kth

root of unity is unavailable then use K other values for evaluation. Pan suggests that this method uses
O(nm[log(n) + log(m) + log2(n)]) operations in Z when roots of unity are available and O(nm[log2(nm)])
operations in Z otherwise.

In order to apply Pan’s method to polynomials in Z[x] one may work in a ring Z/pZ where p = 22K + 1.
There are then sufficiently many roots of unity, and moreover, the coefficients of f(g(x)) may be identified
by their values (mod p).

Interpolation of h is performed using the inverse FFT. To evaluate f(g(x)) at the roots of unity, Pan first
evaluates g(x) at the roots of unity using the FFT. This gives K values at which f(x) must then be evaluated.

2

The Moenck-Borodin algorithm (see Algorithm 3.1.5 of [13]) evaluates f(x) of degree n at n arbitrary points
in O(n log2 n) operations. If the points are w1, w2, . . . , wn, one first reduces f(x) mod (x−w1)(x−w2) · · · (x−
wn). One then splits this product into two balanced halves and reduces mod each half separately. This process
is repeated recursively until one has the reduction of f(x) modulo each of the factors (x− wi).
Of the O(n log2 n) operations there are O(n log n) multiplications. Each can be performed in our case using
fast arithmetic in O(mn logmn) bit operations (up to higher order log factors).

As we have O(mn) roots of unity to evaluate at, not n, we must perform this whole operation O(m) times.
Thus the bit complexity of Pan’s algorithm is O((mn)2 log n logmn), which exceeds that of our algorithm
by a factor of log n.

Road map. In section 1.1 we present Horner’s method and Ranged Horner’s method along with a complexity
analysis. In section 1.2 we present the algorithm itself. In subsection 1.2 we provide a worst-case asymptotic
complexity analysis. Finally, in section 1.3 we provide practical timings of our FLINT implementation and
a comparison with MAGMA’s polynomial composition algorithm.

Notations and notes: Given two polynomials of length n, with coefficients of n bits, the Schönhage and
Strassen Algorithm (SSA) for multiplying polynomials has a bit complexity of O(n2 log(n) log log n) (for
more see [7, Sect.8.3]). We will ignore log log n factors throughout the paper. Various standard tricks allow
us to multiply polynomials of degree n with coefficients of m bits in time O(mn log(mn)) using SSA (again
ignoring lower order log factors). For each algorithm we given both the bit-complexity model cost and the
number of operations in Z.

1.1 Horner’s Method

In this section we apply Horner’s algorithm for evaluating a polynomial f at a point p, to the problem of
polynomial composition.

Horner’s Evaluation Algorithm

Given: f = anx
n + an−1x

n−1 + · · ·+ a0 in Z[x], p in Z.

Find: ans := f(p) in Z

1. ans := an
2. For i = n− 1 down to i = 0 do:

(a) ans := ans · p+ ai
3. Return ans

This algorithm computes anpn + an−1p
n−1 + · · · + a0 using n multiplications and n additions. When the

point p is a polynomial g, n polynomial multiplications and n polynomial additions are performed.

Ranged Horner Composition We will need a variant of this approach which we call Ranged Horner’s
algorithm for polynomial composition. We restrict the algorithm to use only l coefficients of f , from ai to
ai+`−1, and replace p by a polynomial g. If one chooses i = 0 and ` = n + 1 then this algorithm returns
a complete expansion of h = f(g). The algorithm is always a direct application of Horner’s method to the
degree `− 1 polynomial F := ai+`−1x

`−1 + · · ·+ ai+1x+ ai.

Algorithm 1 Ranged Horner Compose

Input: f, g ∈ Z[x], i, a starting index, and ` the length of the ranged composition.

Output: An expansion of F (g) := ai+`−1g
`−1+· · ·+ai+1g+ai, where F is f divided by xi without remainder

then reduced modulo x`, a shifted truncation of f .

3

1. ans := ai+`−1

2. For j = `− 2 down to j = 0 do:
(a) ans := ans · g
(b) ans := ans+ ai+j

3. Return ans

Bit-Complexity We will now outline the bit-complexity analysis of Ranged Horner Composition.

Theorem 1. Algorithm 1 terminates after O(`2m log (`m)) operations in Z with a bit-complexity bound of
O(`3m2 log (`m)) CPU operations.

Proof. Let us analyze the cost of the kth loop where k = 1, . . . , ` − 1. First we compute the degree and
coefficient size of ans in the kth loop.

Lemma 1. At the beginning of the kth loop of step 2 in Algorithm 1 we have the degree of ans = (k − 1)m
and ‖ ans ‖∞≤ 2O(km+(k−1) log(m+1)).

Proof. The degree of ans begins at 0 and increases by m in each loop giving degree (k−1)m at the beginning
of the kth loop.

Now for an arbitrary loop let’s suppose that ‖ ans ‖∞≤ 2x and ans = cNx
N + · · · + c0 where N is the

current degree of ans. Recall that g = bmx
m + · · · b0 and ‖ g ‖∞≤ 2m. The product ans · g can be written as

s=N+m∑
s=0

xs[
∑

{0≤i≤N,0≤j≤m|s=i+j}

(ci · bj)].

In this form it can be seen that the largest coefficients of ans · g are the sum of m + 1 numbers of norm
≤ 2m+x. Thus after this loop the coefficients are boundable by 2x+m+log2(m+1). So the size of the coefficients
of ans begin at m-bits and increase by m+ log2(m+ 1) finishing the proof of the lemma.

Now using fast polynomial multiplication the bit complexity of loop k is O(k2m(m+log(m) log(km)) and uses
O(km log(km)) operations in Z. Summing this over k = 1, . . . , `−1 gives a bit-complexity of O(`3m2 log(`m))
and O(`2m log(`m)) operations in Z.

1.2 Divide and Conquer Algorithm

In this section we describe the main algorithm for polynomial composition. First we divide f of degree n
into k1 := d(n + 1)/`e sub-polynomials of length ` for some experimentally derived (and small) value of `
such that:

f := f0 + f1 · x` + f2 · x2` + · · ·+ fk1−1 · x(k1−1)`.

In the first iteration of the algorithm we compute the k1 compositions, h1,i := fi(g) for 0 ≤ i < ki using
(Ranged) Horner’s method and we also compute g`. In the ith iteration we start with g2i−2` and compute
the ki := d(ki−1)/2e polynomials: hi,j := hi−1,2j + g2i−2` · hi−1,2j+1 then compute g2i−1`. Thus in iteration i
our target polynomial h = f(g) can be written:

hi,0 + hi,1 · (g2i−1`) + hi,2 · (g2i−1`)2 + · · ·+ hi,ki−1 · (g2i−1`)ki−1.

In each iteration the number of polynomials is halved while the length of the polynomials we work with is
doubled. We experimentally determined that a value of ` = 4 works well in practice.

4

Algorithm 2 Polynomial Composition Algorithm

Input: f, g ∈ Z[x]

Output: An expansion of h := f(g)

1. let ` := 4, i := 1, and ki := dn+1
` e

2. for j = 0, . . . , ki − 1
(a) compute hi,j := Algorithm 1(f, g, j`, `)

3. compute G := g`.
4. while (ki > 1) do:

(a) ki+1 := dki/2e;
(b) for j = 0, . . . , ki+1 − 1 do:

i. hi+1,j := hi,2j + hi,2j+1 ·G.
ii. clear hi,2j and hi,2j+1

(c) if ki+1 > 1 then G := G2

(d) i := i+ 1
5. return h := hi,0

Complexity Analysis

Theorem 2. Algorithm 2 terminates after O(nm log(n) log(mn)) operations in Z with a bit-complexity
bound of O(n2m2 log(nm)) CPU operations.

Proof. Although we chose ` = 4 we will make this proof using any constant value of `. The cost of step 2
is that of d(n + 1)/`e calls to Algorithm 1 using ` coefficients. Thus theorem 1 tells us that step 2 costs
O(nm log(m)) operations in Z with bit complexity bound O(nm2 log(m)).

Step 3 involves a constant number of multiplications (or repeated squarings) of g. By using the same logic
as the proof of lemma 1 these multiplications are of polynomials with degree O(m) and coefficients of
O(m+ log(m)) bits, this gives O(m log(m)) operations in Z and bit complexity bound of O(m2 log(m)) for
step 3.

In the ith loop of step 4 creating the hi+1,j involves ki+1 polynomial multiplications each of degree O(2i−2m`)
polynomials with coefficients bounded of O(2i−1m`) bits (and ki+1 polynomial additions). This will cost
O(ki+12im log(2im)) operations in Z with bit-complexity bound O(ki+122im2 log(2im)). The cost of the
ith iteration of step 4c involves squaring a polynomial of degree m`2i−1 and whose coefficients are smaller
than m`2i. The cost of this is O(m2i log(m2i)) operations in Z and O(m222i log(2im)) bit operations. It can
be shown without much difficulty that ki ≤ (n + 1)/(` · 2i−1) + 1. To sum these costs over the O(log(n))
iterations of step 4 gives O(

∑log(n)
i=1 ki+12im[i+ log(m)]) which is O(nm[log(n)2 + log(n) log(m)]) operations

in Z and a bit-complexity bound of O(
∑log(n)
i=1 22im2[i+ log(m)]) which is O(m2n ·

∑log(n)
i=1 [2ii+ 2i log(m)]).

It is trivial to show via induction that
∑k
i=1 2ii = 2 + 2k+1(k − 1). This gives the bit-complexity bound as

O(m2n[n log(n) + n log(m)]) proving the theorem.

1.3 Practical Timings

In this section we present a timing comparison of the main algorithm as implemented in FLINT and
MAGMA’s polynomial composition algorithm. These tests are provided as evidence that our algorithm
is indeed practical. These timings are measured in seconds and were made on a 2400MHz AMD Quad-core
Opteron processor, using gcc version 4.4.1 with the -O2 optimization flag, although the processes only uti-
lized one of the four cores. Each composition performed is of a polynomial, f , of length n with randomized

5

n\m 20 40 80 160 320 640 1280

20 .0009 .0038 .016 .077 0.41 1.96 8.9
40 .0036 .015 .071 0.40 2.0 9.4
80 0.02 .072 .412 2.09 9.63
160 0.072 0.415 2.1 9.7
320 0.44 2.1 9.7
640 2.05 9.64
1280 9.46

Table 1. Divide-and-conquer polynomial composition in FLINT

coefficients of bit-length ≤ m, and a polynomial, g, of degree m with randomized coefficients of bit-length
≤ m and returns an expansion of h = f(g).

We also compared these timings with the function

(mn)2 ln(mn)/(.95 · 109).

In this case the function accurately models the given timings, in all cases, up to a factor which varied between
0.71 and 1.29. This model matches our bit-complexity bound given in Theorem 2.

n\m 20 40 80 160 320 640 1280

20 .006 .053 .160 .630 2.55 12.47 64.0
40 .04 .32 1.09 4.67 21.7 110
80 .47 2.0 8.52 38.0 196.4
160 3.6 15 70 360
320 28 133 659
640 238 1267
1280 2380

Table 2. Polynomial composition in Magma

We compared the MAGMA timings with the function

n3m2 ln(mn)/(2.94 · 109).

This function accurately models the given timings, in all cases, up to a factor which varied between 0.54 and
1.46. This model matches our estimate for Horner’s method given by Theorem 1 in the case when ` = n.

2 Divide and conquer division

In his paper [12], Mulders describes recursive divide-and-conquer type algorithms for the short product of
polynomials (returning only the low degree terms of the product) and the opposite short product (returning
only the higher degree terms).

Suppose two polynomials of length at least N are multiplied, but one only wishes to compute the terms of
the product of degree less than N . We will denote such a short product by SM(N).

A basic algorithm for computing SM(N) is to compute a full N ×N product using a standard polynomial
multiplication algorithm and discard the unwanted terms. But this is often wasteful. For example, the

6

Karatsuba algorithm breaks the full product up into three half sized products, but in two of the half sized
products, one again doesn’t require all the terms.

This leads naturally to a recursive Karatsuba-type algorithm where a short product SM(N) is replaced by
one full product with polynomials of half the size, FM(N/2), and two short products SM(N/2). At the
bottom of the recursion, below some cutoff, the short products are computed using classical multiplication,
computing only the required terms.

Mulders’ algorithm for the short product, denoted SMβ(N) for some parameter 1
2 ≤ β ≤ 1, is a generalisation

of this technique, also breaking the short product up into three multiplications. But this time there is a full
βN × βN product FM(βN) and two short products SMβ((1− β)N). The Karatsuba-type algorithm above,
is the special case β = 1

2 .

In general, the recursion for Mulders’ algorithm can be expressed:

SMβ(N) = FM(βN) + 2SMβ((1− β)N). (1)

This is completely general in that the full multiplications FM(βN) can be performed using any algorithm
for ordinary polynomial multiplication.

When the full products are computed using Karatsuba multiplication, Mulders derives the optimal value
β = 0.694 for his algorithm.

In their paper [8], Hanrot and Zimmermann give a slight variant of Mulders algorithm in which the original
product is split into a full k× k product and two short (N − k)× (N − k) products, where the cutoff k now
depends on N . Their method gives a significant improvement over Mulders’ original fixed cutoff k = βN .

Mulders, In section 7 of his paper, gives a brief description of a recursive divide-and-conquer technique for
performing what he calls short division, namely division of a polynomial of length at most 2n − 1 by a
polynomial of length n without computing a remainder. This algorithm is faster than a long division, in
which one computes a quotient and remainder, and is based on the same principle as his short multiplication
algorithm.

Mulders’ short division algorithm reduces the problem recursively to one long division, one short multipli-
cation and one short division. As with his short multiplication algorithm, Mulders uses a fixed cutoff, not
depending on the length of the polynomials.

Mulders reported that the optimal cutoff for his algorithm was very nearly β = 1/2 and that there was little
practical benefit in introducing a different cutoff.

In this paper we describe a variant of Mulders’ algorithm which uses a variable cutoff in the manner of Hanrot
and Zimmerman. In addition, instead of computing a remainder directly, we compute only the product of
the quotient and divisor (from which the remainder is easily obtained by subtraction from the dividend). We
show that this simple variant of Mulders’ algorithm has very good performance in practice whilst remaining
simple to implement. We call this algorithm Mulders’ algorithm for simplicity.

We also give a slightly faster variant of this algorithm in which we replace the full division in Mulders
recursion with a third recursive algorithm which returns only a short product of divisor and quotient. We
optimistically call this half full division.

We provide details of timing experiments below, performed with our implementation of these algorithms.
Our implementation is included in the FLINT (Fast Library for Number Theory) package.

We compare an implementation Mulders’ algorithm, with parameter β = 1
2 , with our improved algorithm

(with the same parameter). We then show that if the parameter is allowed to vary with the size of the
polynomials, a further improvement is possible on some architectures. The optimal parameter can then often
be quite far from β = 1/2.

We compare our short division implementation with the implementations of polynomial division in the
packages NTL [14] and Magma [6].

7

2.1 Description of the short division algorithm

We assume throughout the following that we have available an algorithm Mul(f, g) for computing a full
product of polynomials. We also require the classical algorithms for long and short division, Div(f, g) and
Div short(f, g) respectively, returning a quotient q and remainder r (or in the case of short division, just
the quotient) such that f = gq + r.

We also require that we have available algorithms for computing the following short products:

Algorithm 2.11 Mul short(f, g, n)

Input: Polynomials f =
∑n1
i=0 aix

i and g =
∑n2
j=0 bjx

j and a non-negative integer n.

Output: The low n terms of the product of f and g, i.e.
∑n−1
k=0 ckx

k where ck =
∑
i+j=k aibj .

Algorithm 2.12 Mul short opp(f, g, n)

Input: As for Mul short.

Output: All terms of the product of f and g except the first n, i.e.
∑n1+n2−1
k=n ckx

k where ck =
∑
i+j=k aibj,

if n1 + n2 − 1 ≥ n and 0 otherwise.

Firstly we describe the basic divide-and-conquer type algorithm for doing a long division. However we do
not return the remainder r, but the product of the divisor and quotient, qg, from which the remainder can
be computed as r = f − gq.
In all of the algorithms below, we always reduce to the case where deg(f) is m− 1 and deg(g) is n− 1 with
m = 2n − 1, so that the quotient also has degree n − 1. In the case where m > 2n − 1 we can truncate f
to length 2n− 1, do a division with remainder reducing the problem to one with a shorter dividend. When
m < 2n− 1 the quotient will have length l = m− n+ 1 and only depends on the leading 2l − 1 terms of f
and the leading l terms of g. We can compute this using a short division and multiply out and subtract to
obtain the remainder r = f − gq.

Algorithm 2.13 Divide conquer div(f, g)

Input: Polynomials f =
∑m−1
i=0 aix

i and g =
∑n−1
j=0 bjx

j

Output: The quotient q and the full product gq.

1. If n < Cutoff return Div(f, g)
2. If m 6= 2n− 1 reduce to the case m = 2n− 1
3. n1 := dn/2e, n2 := n− n1

4. Let b1, b2 be such that g = b1x
n2 + b2 with deg b2 < n2

5. Let b3, b4 be such that g = b3x
n1 + b4 with deg b4 < n1

6. Let a1, a2, a3 be such that f = a1x
n2+n−1 + a2x

n−1 + a3 with deg a2 < n2, deg a3 < n− 1
7. (q1, b1q1) :=Divide conquer div(a1x

n1−1, b1)
8. bq1 := b1q1x

n2+ Mul(b2, q1) (††)
9. t := a1x

2n2−1 + a2x
n2−1 − bq1 div xn1−n2

10. t′ := t mod x2n2−1

11. (q2, b3q2) := Divide conquer div(t′, b3) (*)
12. bq2 := b3q2x

n1+ Mul(b4, q2) (**)
13. Return q := q1x

n2 + q2, qg := bq3x
n1 + bq4 (†)

It is easy to turn this algorithm into an algorithm for short division, returning the quotient q only.

8

Algorithm 2.14 Divide conquer div short(f, g)

Input: As for Divide conquer div.

Output: The quotient q of f and g.

In Divide conquer div(f, g) replace the call to Divide conquer div at (*) by a call to the function
Divide conquer div short, remove the line (**), replace Div with Div short, replace Mul(b2, q1) at
(††) with Mul short opp(b2, q1, n1 − 1) and return only the quotient q at (†). �

This is our first variant of Mulders’ short division algorithm (with β = 1
2). We now describe an improved

version of this algorithm.

From now on, we assume that we have available an algorithm for classical division which only returns the
lowest n − 1 terms of the product of the divisor and quotient. We call it Div classical half full(f, g)
since it returns about half of the product that our long division returns. The ordinary classical algorithm for
long division can be modified in an obvious way to return this half product.

With this algorithm available we are now able to introduce an algorithm which we call half full division. As
for the half full classical algorithm, this recursive algorithm performs the same operation as a full division,
but only returns the lowest n− 1 terms of the product of the divisor and quotient.

At the bottom of the recursion, this algorithm does classical half full division which has fewer operations
than a full long division.

We will use this algorithm instead of a full division in our improved version of Mulders’ division algorithm,
thus achieving a faster short division.

Algorithm 2.15 Half full div(f, g)

Input: As for Divide conquer div short.

Output: The quotient q and the low n− 1 terms of the product gq.

1. If m 6= 2n− 1 reduce to the case m = 2n− 1
2. If n < Cutoff return Div classical half full(f, g)
3. Let n1 = dn/2e, n2 = n− n1

4. Let b1, b2 be such that g = b1x
n2 + b2 with deg b2 < n2

5. Let b3, b4 be such that g = b3x
n1 + b4 with deg b4 < n1

6. Let a1, a2, a3 be such that f = a1x
n2+n−1 + a2x

n−1 + a3 with deg a2 < n2, deg a3 < n− 1
7. (q1, b1q1) := Half full div(a1x

n1−1, b1)
8. bq1 := b1q1x

n2+ Mul(b2, q1)
9. t := a1x

2n2−1 + a2x
n2−1 − bq1 div xn1−n2

10. t′ := t mod x2n2−1

11. (q2, b3q2) := Half full div(t′, b3)
12. bq2 := b3q2x

n1+ Mul(b4, q2)
13. Return q := q1x

n2 + q2, qg := bq3x
n1 + bq4

Finally we are able to describe our improved version of Mulders’ short division algorithm. As in Mulders’
paper we allow the algorithm to split the inputs into unequal parts, however as per Hanrot and Zimmerman,
we will allow the cutoff to vary with the length of the input polynomial g. For this purpose we define a
parameter k = k(n) whose optimal value will be determined experimentally.

Algorithm 2.16 Divide conquer div short improved(f, g)

Input: As for Divide conquer div short.

Output: The quotient q of f and g.

9

1. If n < Cutoff return Div short(f, g)
2. If m 6= 2n− 1 reduce to the case m = 2n− 1
3. Let n1 = dn/2e + k(n), n2 = n− n1

4. Let b1, b2 be such that g = b1x
n2 + b2 with deg b2 < n2

5. Let b3, b4 be such that g = b3x
n1 + b4 with deg b4 < n1

6. Let a1, a2, a3 be such that f = a1x
n2+n−1 + a2x

n−1 + a3 with deg a2 < n2, deg a3 < n− 1
7. (q1, b1q1) := Half full div(a1x

n1−1, b1)
8. bq1 := b1q1x

n2+ Mul short opp(b2, q1, n1 − 1)
9. t := a1x

2n2−1 + a2x
n2−1 − bq1 div xn1−n2

10. t′ := t mod x2n2−1

11. q2 := Divide conquer div short improved(t′, b3)
12. Return q := q1x

n2 + q2

2.2 Mulders’ vs divide-conquer-div-short-improved

We began our timing experiments by comparing times for our first variant of Mulders’ division algorithm
and the improved short division algorithm with k(n) = 0.

Unless otherwise noted, all our division timings and comparisons in this paper were performed on a 2.4GHz
AMD Opteron Server. Each computation was (automatically) repeated many times and the lowest timing
was recorded in each case.

Given a length n (degree n − 1) and a number of bits b we let f be a polynomial of length 2n − 1 with
uniformly random coefficients of 2b bits and g be a polynomial of length n with uniformly random coefficients
of b bits. We computed the short division of f and g using both algorithms.

Our timings showed that the improved algorithm was marginally faster (up to 23% but on average much
less). The biggest improvements are where n is large and b is small. In the interests of space we omit all
but the timings in this range. Timings for the improved algorithm are shown on the right and those for the
original on the left.

n\b 8 16 32 64

64 90.6µs 92.6µs 106µs 123µs
128 266µs 276µs 300µs 346µs
256 758µs 763µs 854µs 964µs
512 2.43ms 2.32ms 2.82ms 3.01ms

n\b 8 16 32 64

64 87.4µs 90.0µs 100µs 117µs
128 243µs 256µs 278µs 328µs
256 714µs 752µs 788µs 975µs
512 1.98ms 1.96ms 2.50ms 2.81ms

Table 3. Comparison of simple and improved Mulders’ variants

A second timing experiment we performed was to adjust the value of k(n) in the improved short division
algorithm. Whether or not this had an effect proved to be highly architecture sensitive. On a 1.8GHz AMD
K8 machine we found that if n is the length of g then for 20 < n ≤ 100 the value of k(n) should be about
n/5 and for n ≤ 20 the value of k(n) should be n/4.

However, on a 2.4GHz AMD K10 machine, a value of k(n) = 0 was roughly optimal for all sizes.

2.3 Comparison with other implementations

The most important comparison for the purposes of this paper is the comparison between our variant of
Mulders’ algorithm and the polynomial division available in other packages. For this purpose we compare
with the best open source and the best proprietary packages we are aware of. In the former case we compare
with NTL v5.5.2 and in the latter case with Magma v2.16-7.

10

Whilst we do not know the algorithm used by Magma, we know that NTL uses a multimodular approach,
performing the division using multiple primes then recombining with the Chinese Remainder Algorithm. It
leverages highly optimised functions for division over Z/pZ.

Our first comparison is made using random polynomials of lengths 2n− 1 and n respectively, as described in
the previous section. This tests the most general case for our algorithm. NTL does not offer inexact division
over Z, thus the first comparison is with Magma only (the top row in each case).

n\b 8 16 32 64 128 256 512 1024 2048 4096 8192

32 32.6µs 70.8µs 99.4µs 101µs 124µs 155µs 259µs 574µs 1.62ms 4.58ms 14.0ms
29.0µs 30.0µs 33.4µs 39.4µs 49.1µs 70.8µs 113µs 237µs 597µs 1.60ms 4.63ms

64 162µs 260µs 353µs 394µs 460µs 573µs 960µs 2.20ms 6.59ms 20.0ms 60.0ms
87.4µs 90.0µs 100µs 117µs 150µs 239µs 375µs 741µs 1.80ms 4.80ms 13.7ms

128 767µs 1.03ms 1.36ms 1.45ms 1.78ms 2.28ms 3.90ms 9.33ms 25.5ms 77.5ms
243µs 256µs 278µs 328µs 433µs 711µs 1.12ms 2.21ms 5.27ms 13.4ms

256 3.67ms 4.33ms 5.58ms 6.04ms 7.50ms 10.3ms 16.7ms 37.5ms 107ms
714µs 752µs 788µs 975µs 1.31ms 1.98ms 3.07ms 6.18ms 13.7ms

512 16.0ms 17.5ms 23.3ms 25.5ms 30.0ms 40.0ms 64.0ms 153ms
1.98ms 1.96ms 2.50ms 2.81ms 3.67ms 5.60ms 8.80ms 16.6ms

Table 4. Short division in Magma and FLINT

Finally we compare NTL, Magma and our improved divide-and-conquer algorithm (timing rows in that
order) on exact divisions. Here we construct polynomials f, g with the given lengths n and uniformly random
coefficients with the given number of bits b and perform the division h/g where h = f ∗ g.

n\b 8 16 32 64 128 256 512 1024 2048 4096 8192

32 43.0µs 43.8µs 49.8µs 76.6µs 145µs 294µs 684µs 1.93ms 5.87ms 20.1ms 73.3ms
23.2µs 49.1µs 82.5µs 92.8µs 106µs 139µs 237µs 533µs 1.57ms 4.59ms 14.0ms
29.1µs 29.0µs 32.0µs 34.8µs 46.3µs 68.0µs 106µs 227µs 558µs 1.57ms 4.57ms

64 104µs 105µs 116µs 176µs 323µs 646µs 1.48ms 4.00ms 12.1ms 40.9ms 148ms
81.1µs 180µs 294µs 340µs 370µs 510µs 905µs 2.10ms 6.12ms 18.3ms 57.5ms
83.3µs 84.4µs 88.1µs 98.5µs 136µs 231µs 360µs 721µs 1.73ms 4.56ms 13.3ms

128 284µs 285µs 306µs 461µs 785µs 1.53ms 3.37ms 8.76ms 28.1ms 84.7ms
310µs 668µs 1.17ms 1.30ms 1.46ms 2.00ms 3.54ms 8.24ms 25.0ms 70.0ms
211µs 212µs 228µs 262µs 376µs 688µs 1.06ms 2.12ms 4.98ms 12.5ms

256 838µs 839µs 880µs 1.33ms 2.11ms 4.00ms 8.35ms 20.6ms 57.8ms
1.19ms 2.66ms 4.50ms 5.17ms 5.92ms 8.00ms 14.7ms 32.9ms 97.5ms
502µs 512µs 553µs 661µs 982µs 1.87ms 2.93ms 5.71ms 13.5ms

512 1.71ms 1.71ms 1.80ms 2.68ms 4.26ms 8.33ms 17.0ms 43.4ms
4.67ms 10.7ms 18.3ms 20.0ms 23.9ms 32.2ms 57.5ms 133ms
1.18ms 1.19ms 1.31ms 1.63ms 2.50ms 5.00ms 7.77ms 15.9ms

Table 5. Exact division in NTL, Magma and FLINT

3 Conclusions

We have provided efficient divide-and-conquer style algorithms for the composition and division of univariate
polynomials over Z.

11

In the former case, we show that the algorithm is asymptotically fast with respect to bit complexity, effectively
handling coefficient explosion.

In the latter case we have provided two easy to implement variants of Mulders’ algorithm and shown that,
at least on modern computers, the divide-and-conquer approach deserves a closer look, often outperforming
other commonly used methods.

References

1. D. Bernstein, Multiprecision Multiplication for Mathematicians, accepted by Advances in Applied Mathematics
find at http://cr.yp.to/papers.html#m3, 2001.

2. C. de Boor B-Form Basics, Geometric Modeling: Algorithms and New Trends, SIAM, Philadelphia (1987),
pp. 131–148.

3. A. Bostan and B. Salvy, Fast conversion algorithms for orthogonal polynomials, Preprint.
4. H.Prautzsch, W.Boehm, and M.Paluszny Bézier and B-Spline Techniques, Springer, 2002.
5. R. Brent and H.T. Kung, O((n logn)3/2) Algorithms for composition and reversion of power series, Analytic

Computational Complexity, Academic Press, New York, 1975, pp. 217-225.
6. J. J. Cannon, W. Bosma (Eds.) Handbook of Magma Functions, Edition 2.17 (2010)

http://magma.maths.usyd.edu.au/magma

7. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.
8. G. Hanrot and P. Zimmermann. A long note on Mulder’s short product, Journal of Symbolic Computation, v. 37

3 2004, pp. 391–401.
9. W. Hart Fast Library for Number Theory: an introduction, Mathematical Software - ICMS 2010 Third Inter-

national Congress on Mathematical Software, Kobe, Japan, September 13-17, 2010, Proceedings Series: Lecture
Notes in Computer Science, Vol. 6327, pp 88–91. http://www.flintlib.org

10. D. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms, Third Edition. Addison-
Wesley, 1997, pp. 486–488.

11. W. Liu and S. Mann An analysis of polynomial composition algorithms, University of Waterloo Research Report
CS-95-24, (1995).

12. T. Mulders, On Short Multiplications and Divisions, AAECC, vol. 11, 2000, pp. 69–88.
13. V. Pan Structured matrices and polynomials: unified superfast algorithms, Springer-Verlag, 2001, pg. 81.
14. V. Shoup NTL: A Library for doing Number Theory, open-source library. http://shoup.net/ntl/

12

