

Fast Integer Multiplication with Schönhage-Strassen's Algorithm

Alexander Kruppa

CACAO team at LORIA, Nancy

séminaire Algorithms INRIA Rocquencourt

Contents

Contents of this talk:

- Basics of Integer Multiplication
 (a) by polynomial multiplication
 - (b) Evaluation/Interpolation
 - (c) Karatsuba's method
 - (d) Toom-Cook method
 - (e) FFT and weighted transforms
 - (f) Schönhage-Strassen's Algorithm

Alexander Kruppa

- 2. Motivation for Improving SSA
- 3. Schönhage-Strassen's Algorithm
- 4. High-Level Improvements
 - (a) Mersenne Transform
 - (b) CRT Reconstruction
 - (c) $\sqrt{2}~{\rm Trick}$
- 5. Low-Level Improvements
 - (a) Arithmetic modulo $2^n + 1$
 - (b) Cache Locality
 - (c) Fine-Grained Tuning
- 6. Timings, Comparisons and Untested Ideas

Integer Multiplication

• Problem: given two *n*-word (word base β) integers

$$a = \sum_{i=0}^{n-1} a_i \beta^i,$$

 $0 \leq a_i < \beta$ and likewise for b, compute

$$c = ab = \sum_{i=0}^{2n-1} c_i \beta^i$$

=
$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_i b_j \beta^{i+j},$$

with $0 \leq c_i < \beta$.

by Polynomial Multiplication

• We can rewrite the problem as polynomial arithmetic:

$$A(x) = \sum_{i=0}^{n-1} a_i x^i$$

so that $a=A(\beta),$ likewise for B(x), then

$$C(x) = A(x)B(x) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_i b_j x^{i+j}$$

so that $c = ab = C(\beta)$.

• Double sum has complexity ${\cal O}(n^2)$ (Grammar School Algorithm), we can do much better

Evaluation/Interpolation

- Unisolvence Theorem: Polynomial of degree d-1 is determined uniquely by values at d distinct points
- Since C(k) = A(k)B(k) for all $k \in R$ for ring R, reduce the polynomial multiplication to:
 - 1. <u>Evaluate</u> A(x), B(x) at 2n 1 points k_0, \ldots, k_{2n-2}
 - 2. <u>Pairwise multiply</u> to get $C(k_i) = A(k_i)B(k_i)$
 - 3. Interpolate C(x) from its values $C(k_i)$

Karatsuba's Method

- First algorithm to use this principle (Karatsuba and Ofman, 1962)
- Multiplies polynomials of degree 1: $A(x) = a_0 + a_1 x$
- \bullet Suggested points of evaluation: $0,1,\infty$

•
$$A(0) = a_0, A(1) = a_0 + a_1, A(\infty) = a_1$$
 (same for $B(x)$)

•
$$C(0) = a_0 b_0, C(1) = (a_0 + a_1)(b_0 + b_1), C(\infty) = a_1 b_1$$

•
$$c_0 = C(0), c_2 = C(\infty), c_1 = C(1) - c_0 - c_2$$

• Product of 2n words computed with 3 pointwise multiplications of n words each, applied recursively: $O(n^{\log_2(3)}) = O(n^{1.585})$

Toom-Cook Method

- Generalized to polynomials of larger degree (Toom, 1963, Cook, 1966)
- Product of two n word integers with A(x), B(x) of degree d: 2d + 1 products of n/(d + 1) word integers
- For fixed d: complexity $O(n^{\log_{d+1}(2d+1)})$, e.g. d = 2: $O(n^{1.465})$
- \bullet Interpolation/Evaluation costly ($O(dn\log(d))),$ cannot increase d arbitrarily for given n
- Choosing d as function of n allows algorithm in $O(n^{1+\epsilon})$, for any $\epsilon > 0$. Small exponents need very large n

Evaluation/Interpolation with FFT

- FFT solves problem of costly evaluation/interpolation
- Length- ℓ DFT of $a_0, ..., a_{\ell-1}$ in R computes $\tilde{a}_j = A(\omega_{\ell}^j), 0 \le j < \ell$, with ω_{ℓ} an ℓ -th principal root of unity in R: ℓ -point polynomial evaluation
- Length- ℓ IDFT computes a_i from given \tilde{a}_j : ℓ -point polynomial interpolation
- With FFT algorithm, algebraic complexity only $O(\ell \log(\ell))$
- Problem: R needs to support length- ℓ FFT (preferably ℓ a power of 2): needs ℓ -th principal root of unity, ℓ a unit

Weighted Transform

- Since $(\omega_{\ell}^{j})^{\ell} = 1$ for all $j \in \mathbb{N}$, $C_1(x)x^{\ell} + C_0(x)$ has same DFT coefficients as $C_1(x) + C_0(x)$: implicit modulus $x^{\ell} 1$ in DFT
- FFT convolution gives $C(x) = (A(x)B(x)) \mod (x^{\ell} 1)$: cyclic convolution
- Can change that modulus with weighed transform: compute $C(wx) = (A(wx)B(wx)) \mod (x^{\ell} - 1).$ Then $A(wx)B(wx) = C_1(wx)x^{\ell}w^{\ell} + C_0(wx)$ $C(wx) = C_1(wx)x^{\ell}w^{\ell} + C_0(wx) \mod (x^{\ell} - 1)$ $= C_1(wx)w^{\ell} + C_0(wx)$

so that $C(x) = (A(x)B(x)) \mod (x^{\ell} - w^{\ell})$

• With $w^{\ell} = -1$, we get modulus $x^{\ell} + 1$: negacyclic convolution, but need 2ℓ -th root of unity in R

Schönhage-Strassen's Algorithm: Basic Idea

- First algorithms to use FFT (Schönhage and Strassen 1971)
- Uses ring $R_n = \mathbb{Z}/(2^n + 1)\mathbb{Z}$ for transform, with $\ell = 2^k \mid n$
- Then $2^{n/\ell} \equiv -1 \pmod{2^n + 1}$: so $2^{n/\ell} \in R_n$ is 2ℓ -th root of unity, multiplication by powers of 2 is fast! (O(n))
- \bullet Allows length ℓ weighted transform for negacyclic convolution
- Write input $a = A(2^M)$, $b = B(2^M)$, compute C(x) = A(x)B(x) (mod $x^{\ell} + 1$). Then $c = C(2^M) = ab \pmod{2^{M\ell} + 1}$
- Point-wise products modulo $2^n + 1$ use SSA recursively: choose next level's ℓ', M' so that $M'\ell' = n$

Improvements to Schönhage-Strassen's Algorithm

Motivation for Improving SSA

- Integer multiplication is fundamental to arithmetic, used in PRP testing, ECPP, polynomial multiplication
- Schönhage-Strassen's algorithm [SSA]: good asymptotic complexity $O(n \log n \log \log n)$, fast in practice for large operands, exact (only integer arithmetic)
- Used in GMP, widely deployed
- We improved algorithmic aspects of Schönhage-Strassen
- Validated by implementation based on GMP 4.2.1 [GMP]

Schönhage-Strassen's Algorithm

- SSA reduces multiplication of two S-bit integers to ℓ multiplications of approx. $4S/\ell$ -bit integers
- Example: multiply two numbers a, b of 2^{20} bits each \Rightarrow product has at most 2^{21} bits
 - 1. Choose $N = 2^{21}$ and a good ℓ , for this example $\ell = 512$. We compute $ab \mod (2^N + 1)$
 - 2. Write a as polynomial of degree $\ell,$ coefficients $a_i < 2^M$ with $M = N/\ell, \, a = a(2^M).$ Same for b
 - **3.** $ab = a(2^M)b(2^M) \mod (2^N + 1)$, compute $c(x) = a(x)b(x) \mod (x^{\ell} + 1)$
 - 4. Convolution theorem: Fourier transform and pointwise multiplication

- 5. FFT needs ℓ -th root of unity: map to $\mathbb{Z}/(2^n+1)\mathbb{Z}[x]$ with $\ell \mid n$. Then $2^{2n/\ell}$ has order ℓ
- 6. We need $2^n + 1 > c_i$: choose $n \ge 2M + \log_2(\ell) + 1$
- 7. Compute $c(x) = a(x)b(x) \mod (x^{\ell} + 1)$, evaluate $ab = c(2^M)$ and we're done!
- 8. Benefits:
 - Root of unity is power of $2 \ \ \,$
 - Reduction $mod(2^n + 1)$ is fast
 - Point-wise products can use SSA recursively without padding

Yes, multiply

High-Level Optimizations

Mersenne Transform

- Convolution theorem implies reduction $mod(x^{\ell}-1)$
- Convolution $mod(x^{\ell} + 1)$ needs weights θ^i with $ord(\theta) = 2\ell$, needs $\ell \mid n$ to get 2ℓ -th root of unity in R_n
- Computing $ab \mod (2^N + 1)$ to allows recursive use of SSA, but is *not* required at top level
- Map a and b to $\mathbb{Z}/(2^N 1)\mathbb{Z}$ instead: compute $c(x) = a(x)b(x) \mod (x^{\ell} - 1)$
- Condition relaxes to $\ell \mid 2n$. Twice the transform length, smaller n
- No need to apply/unapply weights

CRT Reconstruction

- \bullet At least one of $(2^{rN}-1,2^{sN}+1)$ and $(2^{rN}+1,2^{sN}-1)$ is coprime
- Our implementation uses $(2^{rN}+1, 2^N-1)$: always coprime, good speed
- Smaller convolution, finer-grained parameter selection

The $\sqrt{2}$ Trick

- If $4 \mid n, 2$ is a quadratic residue in $\mathbb{Z}/(2^n+1)\mathbb{Z}$
- In that case, $\sqrt{2} \equiv 2^{3n/4} 2^{n/4}$: simple form, multiplication by $\sqrt{2}$ takes only 2 shift, 1 subtraction modulo $2^n + 1$
- Offers root of unity of order 4n, allows $\ell \mid 2n$ for Fermat transform, $\ell \mid 4n$ for Mersenne transform
- Sadly, higher roots of 2 usually not available in $\mathbb{Z}/(2^n+1)\mathbb{Z},$ or have no simple form

Low-Level Optimizations

Arithmetic modulo $2^n + 1$

- Residues stored semi-normalized (< 2^{n+1}), each with m=n/w full words plus one extra word ≤ 1
- Adding two semi-normalized values:

```
c = a[m] + b[m] + mpn_add_n (r, a, b, m);
r[m] = (r[0] < c);
MPN_DECR_U (r, m + 1, c - r[m]);
```

Assures r[m] = 0 or $1, c - r[m] > r[0] \Rightarrow r[m] = 1$ so carry propagation must terminate.

- Conditional branch only in mpn_add_n loop and (almost always
 non-taken) in carry propagation of MPN_DECR_U
- Similar for subtraction, multiplication by 2^k

Improving Cache Locality

- SSA behaves differently than, say, complex floating point FFT: elements have hundreds or thousands of bytes instead of 16
- Recursive implementation preferable, reduces working data set size quickly, overhead small compared to arithmetic
- Radix 4 transform fuses two levels of butterflies on four inputs. Half as many recursion levels, 4 operands usually fit into level 1 cache

- Bailey's 4-step algorithm (radix $\sqrt{\ell}$ transform)
 - groups half of recursive levels into first pass, other half into second pass
 - Each pass is again a set of FFTs, each of length $\sqrt{\ell}$
 - If length $\sqrt{\ell}$ transform fits in level 2 cache: only two passes over memory per transfrom
 - Extremely effective for complex floating-point FFTs, we found it useful for SSA with large ℓ as well
- Fusing different stages of SSA
 - Do as much work as possible on data while it is in cache
 - When cutting input a into M-bit size coefficients $a = \sum_{0 \le i < \ell} a_i 2^{iM}$, also apply weights for negacyclic transform and perform first FFT level (likewise for b)
 - Similar ideas for other stages

Fine-Grained Tuning

- Up to version 4.2.1, GMP uses simple tuning scheme: transform length grows monotonously with input size
- Not optimal: time over input size graphs for different transform lengths intersect multiple times:

- New tuning scheme determines intervals of input size and optimal transform length
- Also determines pairs of Mersenne/Fermat transform lenghts for CRT
- Time-consuming (ca. 1h up to 1M words) but yields significant speedup

Timings and Comparisons

• Our code is about 40% faster than GMP 4.2.1 and Magma 2.13-6, more than twice as fast as GMP 4.1.4

- New code by William Hart for FLINT is competitive with ours, up to 30% faster for some input sizes
- Prime95 and Glucas implement complex floating point FFT for integer multiplication, mostly for arithmetic mod $2^n 1$ (Lucas-Lehmer test for Mersenne numbers)
 - Considerably faster: Prime95 10x on Pentium 4, 2.5x on Opteron; Glucas 5x on Pentium 4, 2x on Opteron
 - Danger of round-off error due to floating point arithmetic
 - Provably correct rounding possible with about 2x the transform length
 - Prime95 written in assembly, non-portable

Untested Ideas

- Special code for point-wise multiplication:
 - Length $3 \cdot 2^k$ transform
 - Karatsuba and Toom-Cook with reduction mod $2^n + 1$ in interpolation step
 - Short-length, proven correct complex floating-point FFT
- Truncated Fourier transform
- Fürer's new algorithm has lower theoretical complexity $O(n \log(n) 2^{\log^*(n)})$. How fast is it in practice?

References

[GMP] T. Granlund, The GNU Multiple Precision Arithmetic library, http://gmplib.org/

[SSA] A. Schönhage and V. Strassen, *Schnelle Multiplikation großer Zahlen*, Computing 7 (1971)

Source tarball with new code available at
<http://www.loria.fr/~kruppaal>