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Abstract

In the Generalized Traveling Salesman Problem (GTSP), given a weighted
complete digraph D and a partition V1, . . . , Vk of the vertices of D, we
are to find a minimum weight cycle containing exactly one (at least one)
vertex from each set Vi, i = 1, . . . , k. Assignment Problem based ap-
proaches are extensively used for the Asymmetric TSP. To use analogs
of these approaches for the GTSP, we need to find a minimum weight
1-regular subdigraph that contains exactly one (at least one) vertex from
each Vi. We prove that, unfortunately, the corresponding problems are
NP-hard. In fact, we show the following stronger result: Let D = (V, A)
be a digraph and let V1, V2, . . . , Vk be a partition of V . The problem of
checking whether D has a 1-regular subdigraph containing exactly one
vertex from each V1, V2, . . . , Vk is NP-complete even if |Vi| ≤ 2 for every
i = 1, 2, . . . , k.

1 Introduction

A collection X1, X2, . . . , Xk of subsets of a set X is called a partition of X if ∪k
i=1Xi =

X , Xi ∩ Xj = ∅ and none of the sets Xi are empty. In the Generalized Traveling
Salesman Problem (GTSP), given a weighted complete digraph D and a partition
V1, . . . , Vk of the vertices of D, we are to find a minimum weight cycle containing
exactly one (at least one) vertex from each set Vi, i = 1, . . . , k. We will use the
abbreviation GTSP= (GTSP≥) for the “exactly one” (“at least one”) variant and
GTSP for both variants. Clearly, the (Asymmetric) TSP is simply the GTSP for
|Vi| = 1, i = 1, . . . , k. In this paper we consider the GTSP with no restrictions
imposed on the weights of the complete digraph, i.e., the asymmetric versions of the
problem. We call the Asymmetric TSP simply the TSP.
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The GTSP has applications in the design of ring networks, routing of welfare cus-
tomers through governmental agencies, sequencing of computer files, flexible man-
ufacturing scheduling, airport selection and routing for courier planes, and postal
routing; see, e.g., Noon [13], Noon and Bean [14], and Laporte, Asef-Vaziri and
Sriskandarajan [9].

Both types of the GTSP have been studied by Laporte, Mercure and Norbert [10],
and Noon and Bean [14]; their symmetric weight versions were investigated, among
others, by Fischetti, Salazar and Toth [4, 5], Laporte and Norbert [11], Salazar [15],
and Sepehri [16]; an informative account on the symmetric GTSP is in [6]. Transfor-
mations from the GTSP= to the TSP were provided by Noon and Bean [14], Lien,
Ma and Wah [12] and Dimitrijevic and Saric [2]. Notice that while the transforma-
tions are of value for small size instances of the GTSP=, for larger ones they produce
difficult TSP instances (containing large numbers). Thus, the transformations are
not of use for larger instances of the GTSP=.

A digraph H is 1-regular if every vertex of H is the tail (head) of exactly one
arc of H, i.e., H is a collection of vertex-disjoint cycles. One of the most successful
approaches to construct algorithms and (lower and upper) bounds for the TSP are
the ones based on applications of the Assignment Problem (AP). The AP-based
approaches start from computing a minimum weight spanning 1-regular subdigraph
F in the given weighted complete digraph. Subdigraph F provides a relatively quickly
calculated starting point for branch-and-bound type exact algorithms and various
successful construction heuristics (see, e.g., Cirasella, Johnson, McGeoch and Zhang
[1], Fischetti, Lodi and Toth [3], Glover, Gutin, Yeo and Zverovich [7], and Johnson
et al. [8]). In [8], AP-based heuristics are considered as a special class of heuristics
and the best among them, Zhang, Patch and COP, are shown to perform very well in
computational experiments.

Naturally one asks whether the obvious analogs of the AP-based approaches can
be used for the GTSP. For the GTSP= (GTSP≥) we need to find a minimum
weight 1-regular subdigraph that contains exactly (at least) one vertex from each Vi.
Unfortunately, the corresponding problems are actually NP-hard, see Corollary 2.2.
Thus, the analogs of the AP-based approaches are impractical for the GTSP.

2 Impossibility of AP-based approaches

Theorem 2.1 Let D = (V, A) be a digraph and let V1, V2, . . . , Vk be a partition
of V . The problem of checking whether D has a 1-regular subdigraph containing
exactly one vertex from each V1, V2, . . . , Vk is NP-complete even if |Vi| ≤ 2 for every
i = 1, 2, . . . , k.

Proof: We describe a polynomial time transformation from the well known 3-SAT
problem. We may assume that in each instance of 3-SAT every variable is used
in both positive and negative forms (otherwise, the instance can be reduced to the
desired form). Suppose that an instance (W, C) of this problem is given, where W is
the set of variables and C is the set of three-variable clauses over W ; |C| = k. We
denote by tji the ith term in the jth clause.
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Construct a digraph D1 as follows. Let

V (D1) = {x1, x2, . . . , xk} ∪ {cj
i : j = 1, 2, . . . , k, i = 1, 2, 3}

and A(D1) = {xjc
j
i : j = 1, 2, . . . , k, i = 1, 2, 3} ∪ {cj

ixj+1 : j = 1, 2, . . . , k, i =
1, 2, 3} ∪ {cj

ic
j
h : j = 1, 2, . . . , k, i = 1, 2, 3, h = 1, 2, 3, i �= h}, where xk+1 = x1 by

definition.
Construct a digraph D2 as follows. Let |W | = r be the number of variables, and

let ni be the number of clauses containing the ith variable (not negated) and let n̄i

be the number of clauses containing the negated version of the ith variable. Note
that

∑r
i=1 ni + n̄i = 3k. Let V (D2) = {y1, y2, y3, . . . , yr} ∪ {vj

i : j = 1, 2, . . . , r, i =
1, 2, . . . , nj} ∪ {v̄j

i : j = 1, 2, . . . , r, i = 1, 2, . . . , n̄j} and let the arc set of D2 be
defined as follows. Consider the cycle C = y1y2 . . . yry1. Now duplicate each arc in
C and in one copy of the arc yjyj+1 we insert the vertices vj

1, v
j
2, . . . , v

j
nj

(so that we

get the path yjv
j
1v

j
2 . . . vj

nj
yj+1), and in the other copy of the arc yjyj+1 we insert the

vertices v̄j
1, v̄

j
2, . . . , v̄

j
n̄j

.
Let a digraph D be the disjoint union of D1 and D2. Partition the vertex set of

D into the following partite sets. The vertices {x1, x2, . . . , xk} and {y1, y2, . . . , yr}
are placed into sets of size one. All other sets have size two, and each set contains
a vertex of the form cj

i and a vertex of the form vb
a (or v̄b

a), such that tji is the ath
appearance of the bth variable (or its negation, if we use v̄b

a). By our construction
we pair all cj

i ’s with the vb
a’s and v̄b

a’s.
Thus, the number of classes in our partition is k + r + 3k. We now claim that

there is a 1-regular subdigraph containing exactly one vertex from each partite set
if and only if our original instance of 3-SAT is satisfiable.

We assume that there is a 1-regular subdigraph F containing exactly one vertex
from each partite set in D and prove now that (W, C) is satisfiable. Observe that
F must contain at least 2 cycles. One cycle, which we denote by C1, contains all
{x1, x2, . . . , xk}, and a number of cj

i ’s and one cycle, which we denote by C2, contains
all {y1, y2, . . . , yr} and a number of vb

a’s (and/or v̄b
a’s). All other cycles (if there are

any) are 2-cycles and have the form cj
i c

j
hc

j
i , where j ∈ {1, 2, . . . , k} and i �= h.

Observe that C1 uses at least one vertex in {cj
i , c

j
2, c

j
3} for every j = 1, 2, . . . , k.

If cj
i lies on C1, then we assign true to tji . If this is a valid (partial) assignment, we

are done, and thus it remains to prove that no two terms tji , tqp are assigned true

and tji = t̄qp. Assume that tji , tqp are assigned true and tji = t̄qp. This means that cj
i

and cq
p belong to C1 and, without loss of generality, the sth variable equals tji and

its negation equals tqp. However, by the definition of partite sets in D, C2 can use
neither vs

1 nor v̄s
1, which is impossible.

Now assume that (W, C) is satisfiable and prove that D has a 1-regular subdigraph
containing exactly one vertex from each partite set. Without loss of generality, we
may assume that tj1 =true, j = 1, 2, . . . , k, is a valid partial assignment. We can ex-
tend this partial assignment in such a way that every variable in W is assigned either
true or false. Now we create a cycle C2, containing all the vertices {y1, y2, . . . , yr}.
We furthermore insert the path vj

1, v
j
2, . . . , v

j
nj

between yj to yj+1, if the jth variable
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is false. If the jth variable is true, then we insert the path v̄j
1, v̄

j
2, . . . , v̄

j
n̄j

between
yj to yj+1 instead. To construct C1 we take the vertices

{x1, x2, . . . , xk} ∪ {cj
1 : j = 1, 2, . . . , k}

and add to them the vertices from {cj
2, c

j
3 : j = 1, 2, . . . , k}, whose pairs from the

partite sets do not belong to C2. Clearly, C1 ∪C2 is the desired 1-regular subdigraph
of D. �

Corollary 2.2 Let D = (V, A) be a weighted complete digraph and let V1, V2, . . . , Vk

be a partition of V . The problem is NP-hard of finding a minimum weight 1-regular
subdigraph F in D such that F contains exactly (at least) one vertex from each partite
set Vi.

Proof: Let H = (V, E) be a digraph and let V1, V2, . . . , Vk be a partition of V . Let
D be a weighted complete digraph obtained from H by assigning weight 1 to every
arc of H and adding arcs of weight 2 to make D complete. Clearly, H has a 1-regular
subdigraph containing exactly one vertex in each partite set if and only if D has a
1-regular subdigraph of weight k containing exactly (or, at least) one vertex in each
partite set. It remains to apply Theorem 2.1. �

Similarly to Theorem 2.1 one can prove the following:

Theorem 2.3 Let D = (V, A) be a digraph and let V1, V2, . . . , Vk be a partition
of V . The problem of checking whether D has 1-regular subdigraph containing at
least one vertex from each V1, V2, . . . , Vk is NP-complete even if |Vi| ≤ 2 for every
i = 1, 2, . . . , k.

References

[1] J. Cirasella, D.S. Johnson, L.A. McGeoch, and W. Zhang. The asymmetric
traveling salesman problem: Algorithms, instance generators, and tests. In A.L.
Buchsbaum and J. Snoeyink, editors, Algorithm Engineering and Experimenta-
tion, Third International Workshop, ALENEX 2001, Lect. Notes Comput. Sci.,
Vol. 2153, pages 32–59. Springer-Verlag, Berlin, 2001.
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