
Rump Device Drivers: Shine On You Kernel Diamond

Antti Kantee
Helsinki University of Technology

pooka@cs.hut.fi

Abstract
BSD-based operating systems implement device

drivers in kernel mode for historical, performance, and
simplicity reasons. In this paper we extend the Runnable
Userspace Meta Program (rump) paradigm of running
unmodified kernel code directly in a userspace process to
kernel device drivers. Support is available for pseudo de-
vice drivers (e.g. RAID, disk encryption, and the Berke-
ley Packet Filter) and USB hardware drivers (e.g. mass
memory, printers, and keyboards). Use cases include
driver development, regression testing, safe execution of
untrusted drivers, execution on foreign operating sys-
tems, and more. The design and NetBSD implementa-
tion along with the current status and future directions
are discussed.

1 Introduction

The Runnable Userspace Meta Program (rump) ap-
proach divides the kernel into fine-grained functional
units called components and makes it possible to run
them without code modifications in a regular userspace
process. This is enabled by the observation that almost
all kernel code will work in unprivileged mode as such.
For machine dependent parts such as memory manage-
ment, a tiny amount of shim code is necessary. The com-
ponents, typically device drivers in the context of this
paper, may then be combined in various configurations
to create a virtual kernel running in userspace. Rump
has already been shown to be a working approach for the
networking stack [9] and file systems [10]. This paper
explores expanding the approach to device drivers.

Roughly speaking, device drivers can be divided into
two categories: ones which are backed by hardware and
ones which are not. The latter category is commonly
known as pseudo devices. Our implementation supports
drivers from both categories. USB drivers are the cur-
rently supported hardware drivers. To give an exam-
ple for the pseudo device category, rump supports the

NetBSD softraid implementation, RAIDframe [4]. In
fact, RAIDframe was originally created for prototyping
RAID systems and ran also in userspace. However, the
NetBSD kernel port of RAIDframe was not able to run
in userspace until recently as part of the work presented
in this paper [14].

In supporting kernel drivers in userspace, there are two
facets to consider. The first challenge is making the code
run and work as a standalone program. The second one is
seamlessly integrating the result with the host OS using
a driver proxy [6]. Let us consider RAIDframe again.
Having the RAID driver running inside a process does
not make it possible to mount a file system residing on
the RAID from the host running the process. A driver
proxy can be used to make this possible. If we consider
an analogy with file systems, puffs [8] is a proxy and
e.g. sshfs is the driver – although in the context of this
paper we want to integrate drivers which, unlike sshfs,
were not originally written to be run in userspace and to
be used by a proxy. Not having to rewrite existing and
tested kernel device driver code for userspace and proxy
interfaces is a key quality.

The most obvious application and original motivation
for rump is easy kernel code development. Code can
be written and tested as a userspace program and sim-
ply dropped into the kernel when it has reached required
maturity. The converse also applies: if a certain driver
has regressed beyond acceptable stability, it is still possi-
ble to run it as a userspace server. This makes continued
service is possible without the risk of bringing down the
entire host system in case of driver failure. Furthermore,
in an open source context, being able ask users to debug
driver failures as userspace programs greatly helps with
bug reports – the set of users being able to debug an ap-
plication given short instructions is far greater than the
set of users willing to set up a kernel debugging environ-
ment and perform live kernel debugging.

Security implications may also apply. USB devices
are generally plugged into mobile systems without much

consideration. Running the driver for an untrusted de-
vice in kernel mode risks compromising the entire sys-
tem in case of maliciously crafted or misbehaving hard-
ware. Minimizing kernel involvement by running most
of the driver in an unprivileged process limits direct dam-
age to the driver process in case the driver fails to handle
an unexpected device message. This is a less likely at-
tack than the similar one for untrusted file systems [10],
but still worth considering.

Although rump code may be an unmodified kernel
driver, it by no means has to be. This makes it possible
to have multiple, specialized versions of drivers which
sacrifice the generality of the driver for a performance
benefit in a specific application. It also makes it possible
to use drivers which are from a different different ver-
sions of NetBSD, or even the use of NetBSD drivers on
non-NetBSD operating systems [2].

The rest of this paper is organized as follows. The re-
mainder of the this section includes a brief introduction
and review of the main features of Runnable Userspace
Meta Programs. Section 2 details how applications ac-
cess device drivers and how to implement a proxy. Sec-
tion 3 discusses pseudo device support and applications,
while Section 4 does the same for hardware drivers. Fi-
nally, Section 5 concludes and summarizes future work.

1.1 Brief Introduction to rump

We use the term rump in a dual sense. For one, it is
the enabling technology for running unmodified kernel
components in userspace. Also, we use it to describe a
program which runs kernel code in this manner. The term
host is used to describe the operating system the rump is
running on.

The rump method is midway through two extremes of
making kernel code run in an unprivileged domain [7]:

1. full OS emulation

2. running small fractions of heavily #ifdef’d code
in a process, as is a typical way to do the initial
stages of kernel code development

Full OS emulation can be accomplished with tech-
niques ranging from full machine virtualization to par-
avirtualization to a usermode operating system. The key
difference between rump and a usermode operating sys-
tem is that a rump does not contain processes or virtual
memory, because they are unnecessary overhead when
interest is directly related to the kernel code and its func-
tionality. They key difference between rump and the
ifdef approach is that rump does not require adding ifdef-
blocks to source modules, but can utilize unmodified ker-
nel code as-is.

(user namespace)

rump kernel

host (kernel, libc, etc.)

ioctl()

user process

rump_sys_ioctl()

resources

application

(_KERNEL)

Figure 1: rump architecture: Architecture of a typical
rump process. The application part contains the program
logic (e.g. testing, userspace server, etc.). To satisfy the
program logic, the application makes calls to the drivers
in the rump kernel. If necessary, the application can also
call host interfaces, such as the ioctl() system call or
the printf() libc call.

A rump process consists of two parts: a userspace
part and a kernel part. Both parts are run inside the
same process, so the division is enforced in C names-
pace only as opposed to the common operating system
situation where the user application and kernel separa-
tion is enforced by the MMU. The userspace part makes
call into the kernel using exposed interfaces. By default,
the standard system call interface is provided, with the
difference that the calls have the rump_sys prefix, e.g.
the ioctl() system call is made into the rump kernel
with rump_sys_ioctl(). This general structure of a
rump is illustrated in Figure 1.

Different rump kernel configurations are created by
combining various rump components, either when link-
ing a program or dynamically loading components at
runtime. For example, a rump with RAIDframe support
would consist of at least these library components:

• rumpdev raidframe: RAIDframe itself

• rumpdev disk: generic in-kernel disk support

• rumpdev: device support in rump

• rumpvfs: VFS support. While RAIDframe itself
works on a device level and does not require file
system support, any user program wishing to con-
figure or access the raid will do so via the device
files /dev/raid*.

• rump: rump kernel base

• rumpuser: rump host call interface (for accessing
the files backing the virtual raid).

Another example is a rump supporting the rum(4)
wireless USB interface in the inet domain. It
uses the following components: rumpdev usbrum,
rumpdev ugenhc, rumpdev usb, rumpdev, rump-
net net80211, rumpnet netinet, rumpnet net, rumpnet,
rumpvfs, rumpcrypto, rump and rumpuser. The
interesting ones are:

• rumpdev usbrum: the rum driver itself.

• rumpdev ugenhc: the rump USB host controller.
We will discuss this in more detail in Section 4.

• rumpnet 80211: support routines for IEEE 802.11
networking.

• rumpcrypto: cryptographic routines required by
net80211

• rumpvfs: VFS support. For this rump VFS is re-
quired because the rum driver loads its firmware off
the disk when the driver is initialized. Note that
no real file system component is included, since
the firmware is actually being loaded off the host’s
file system by a pass-through driver included in the
rumpvfs component.

As a process running in non-privileged mode, a rump
kernel is indistinguishable from any other application
process and as such cannot be used to crash or exploit
the host it is running on. Also, a rump kernel startup
time is in the typical case in the millisecond range, mak-
ing it ideal for fast iteration. The only exception is slow
hardware probes where the kernel drivers perform long
delays to make sure hardware has initialized, but even in
those cases a highly granular rump process will not take
a second to start.

2 Accessing Device Drivers

Based on how a device is accessed by an application,
we divide device drivers into three categories. We then
discuss the categories briefly and explain their relevance
with rump.

1. implicitly accessed devices

2. implicitly accessed devices configured through a
file system node

3. explicitly accessed devices (via file system node)

Network interfaces are used by applications via the
sockets interface. The interface is not explicitly named
when sending network traffic, but rather selected by the
system based on available interfaces and the peer’s ad-
dress. For incoming traffic, the interface is ”selected” by

the network. Furthermore, interface address configura-
tion is done through a socket, although in this case the
interface being configured is explicitly named.

Disk backed file systems, such as FFS, are ”config-
ured” by mounting them. The disk partition on which
the file system resides is identified in this step. This es-
tablishes a relationship between between a directory tree
hierarchy and the backing device. Applications are not
aware of the backing device, and simply access contents
through the file system hierarchy.

However, with e.g. a printer or the Berkeley Packet
Filter [12], the driver is explicitly named the by appli-
cation. In this case, the application addresses the driver
through a device special node in the file system, usually
located in /dev. In the cases mentioned above, the de-
vice nodes would be /dev/ulpt<n> and /dev/bpf,
respectively. The file system node contains a (major, mi-
nor) identifier tuple. The major number tells the kernel
which driver to direct access to, and the minor number
can be used by the driver for internal partitioning. For
example, the ulpt printer driver uses the minor number
to distinguish between multiple printers attached to the
system.

If the application part of the rump is to be able to con-
figure a driver through a device node, the device node
must exist in the file system namespace of the rump. It is
important to note that this namespace is (and should be)
different from the host’s file system namespace, since the
major number space between a rump kernel and the host
kernel is not necessarily the same. Finally, it is equally
important to note that if there are multiple rumps running
on a host, they all have their unique file system names-
paces.

Since NetBSD does not yet support devfs, we have
augmented the appropriate device components to cre-
ate /dev nodes on the rump in-memory root file sys-
tem namespace during attach. This allows the applica-
tion part to behave like an application and assume that
the necessary system nodes are already present. Now,
for example when examining bpf, the application can
open a file descriptor for the rump bpf driver by calling
rump_sys_open() on /dev/bpf, configure it with
rump_sys_ioctl() and read captured packets with
rump_sys_read().

2.1 Integration with the host (proxy)

When a device driver is running inside a rump kernel, it
is directly accessible only from the rump kernel. In some
cases access to this driver from the host system may be
desired, such as when wanting to mount a file system on
the host with the mass media driver being run in a rump
kernel. The simplest reason for wanting to do this is the
host not supporting the device in question.

kernel

n
...
2
1

syscall
& specfs

server
pud

n
...
2
1

device
driver

devsw

application rump kernel

specfs

puddevsw

proc2
user

ioctl(/dev/rumpsd0a)

application

proc1

Figure 2: rump device integration with the host: access to a device registered to pud is queued to be handled by
the pud userspace server which corresponds to the device major being accessed. The server calls the respective vnode
operation of the rump kernel to deliver the request to the device driver in rump. Access to the driver in rump works
also if the request is initiated by the host kernel instead of a process.

The well-known NetBSD method for mounting a file
system using a userspace server is puffs [8]. The Pass-
to-Userspace Device, or pud, driver in NetBSD uses the
same principle, but instead of providing a file server, it
attaches to a device major number. A block or character
device request made to a pud-registered device is proxied
to the server in userspace, handled, and the result of the
operation is passed back to the original caller. The caller
is not aware if the request was handled internally by the
kernel or by a userspace server.

By constructing a server which registers device ma-
jors with the host kernel and maps the incoming re-
quests to driver running inside the rump kernel, we
can achieve integration with the host. This approach is
similar to the rump file system p2k layer [10], which
maps incoming puffs operations to rump kernel vn-
ode operations for running kernel file system servers
in userspace. For the server to pass the request from
pud to the driver in the rump kernel, it calls the re-
spective vnode operation for the device special vnode in
the rump kernel, and this causes specfs to call the de-
vice entry point. For example, if we got a devsw open
request, we call RUMP_VOP_OPEN(), for a read re-
quest RUMP_VOP_READ(), and so forth. The reason
the rump kernel driver is called via the vnode interface
instead of the device switch directly is of a pragmatic

nature: the interfaces required to do so were readily ex-
ported by the rump infrastructure, so no extra effort was
needed. The proxy is illustrated in Figure 2.

Most drivers can be integrated in this manner, but
for drivers without a device node this is not possible.
Examples of drivers in this class are network interface
drivers. Still, ad hoc integration solutions, like the use of
/dev/tap, may be attempted. We have not currently
implemented such an approach.

A problem with the current implementation is the lack
of devfs support in NetBSD. Each server must register
the device majors it supports and then create the appro-
priate device nodes. Even though the rump kernel might
be providing a ”well-known” driver instance, such as
sd0, the device numbers for sd0 may already be bound
in the kernel, even though there might be no sd0 con-
figured in the system. Now, since it is possible for the
host kernel to attach sd0 while the pud server is run-
ning, the well-known /dev/sd0x device nodes cannot
be used. Instead, the server must use pseudo-names such
as /dev/rumpsd0x. Another implication is that cur-
rently it is not possible to write a generic pud-to-rump
proxy, but rather each rump driver must be supported by
a pud server which is aware of the device name and minor
number mapping conventions. These issues will hope-
fully be addressed when NetBSD grows devfs support.

3 Pseudo Devices

As mentioned in the introduction, pseudo devices are
drivers which are not backed by hardware devices.

The current list of supported pseudo device drivers is:

• Berkeley Packet Filter (bpf)

• Cryptographic Disk Driver (cgd)

• Device Mapper / LVM (dm)

• netsmb (used by the SMB file system client)

• RAIDframe (raidframe)

• Entropy Collector / RNG (rnd)

• System Monitor (sysmon, framework for e.g.
watchdogs and environmental sensors)

The curious case in the list is netsmb. It would seem
to belong to networking instead of devices. However,
we classify it as a device for several reasons. First,
it is not a networking domain, i.e. it does not supply
DOMAIN_DEFINE() like true domains such as inet
(inetdomain) or unix local (unixdomain). Second,
it is accessed by userspace programs via entries in /dev
instead of socket system calls. Therefore, we classify it
as a device.

More pseudo devices can be easily supported by
adding them to the build infrastructure. So far, this has
been done for the above pseudo devices on a need basis.

3.1 Implementation
Since pseudo devices do not require direct access to hard-
ware, supporting them in rump did not essentially extend
support from what was already required for file systems
or networking. The only exception was having to include
the kernel autoconf code in rump. However, that worked
without problems.

3.2 Uses
Beyond the obvious use in kernel development and stan-
dalone regression tests, pseudo devices in userspace have
a number of application uses, depending a little on the
device in question. For example, the cgd crypto driver [5]
can be used to write applications which do encryption
and decryption. Since the encryption policy is the one
used in the kernel, it is possible to access and modify
encrypted partitions been written by the kernel. It is
also possible to write applications which produce an en-
crypted kernel-readable partition. One possible use is to
include support for this in makefs [13] to produce en-
crypted installation file system images with a portable
userspace application.

4 Hardware Drivers: A Case Of USB

Hardware devices differ from pseudo devices in the sense
that they must be able to access the device hardware.
This access is typically available only when the CPU
is operating in privileged (kernel) mode. USB devices
are an excellent candidate for userspace support, since
the kernel USB stack readily exports USB device access
to userspace via the USB generic driver, or ugen. Af-
ter ugen attaches to a USB bus node, it provides access
to the particular piece of hardware from userspace via
the /dev/ugen<n> device nodes. What is important
is that the protocol spoken from userspace to the kernel
is by all major accounts the same as what the kernel uses
internally. This allows preexisting kernel drivers to talk
to ugen without any complex protocol translation.

Our main goal with USB support was to show it is
possible to do kernel device driver development safely
and conveniently in a process. The two subproblems we
had to solve were being able to access the hardware and
to integrate with the device autoconfiguration subsystem
and be able to supply a meaningful device configuration.

4.1 Other Passthrough Solutions
Various device driver ”passthrough” mechanisms to un-
privileged domains have been attempted and already
exist. For example, Xen on NetBSD supports PCI
passthrough to DomU’s. Doing so gives the unprivileged
guest access to the machines physical memory space, and
may be undesirable [1], as programming errors will bring
the machine down.

The qemu [3] machine emulator includes support for
USB hardware. Not only does it emulate some popular
hardware devices such as a mouse, it also includes a host
device mode, where devices from the host are presented
to the guest operating system running inside qemu. On
BSD systems the passthrough happens using ugen. For
purposes of being able to use the device in another OS in
case your host OS does not support it, this is convenient.
However, for the purposes of driver development, this
adds complexity including but not limited to long restart
cycles [7].

4.2 Structure of USB
At the root of USB topology is a USB host controller.
It controls all traffic on the USB bus. All devices ac-
cess the bus through the host controller using an interface
called USBDI, or USB Driver Interface. This, along with
ugen, is a detail which makes USB suitable for userspace
drivers: we merely need to implement a userspace host
controller which maps USBDI to ugen instead of having
to care about all bus details.

pain-rustique> dmesg | grep ugen2

ugen2 at uhub4 port 3
ugen2: Apple iPod, rev 2.00/1.00, addr 3

pain-rustique> ./sdread probe

Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010
The NetBSD Foundation, Inc. All rights reserved.

Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.

NetBSD 5.99.24 (RUMP-ROAST) #0: Wed Feb 10 13:28:37 EET 2010
pooka@pain-rustique.localhost:/usr/allsrc/src/sys/rump/librump/rumpkern

root file system type: rumpfs
mainbus0 (root)
ugenhc2 at mainbus0
usb0 at ugenhc2: USB revision 2.0
uhub0 at usb0: vendor 0x0000 product 0x0000, class 9/0, rev 0.00/0.00, addr 1
uhub0: 1 port with 1 removable, self powered
umass0 at uhub0 port 1 configuration 1 interface 0
umass0: Apple Computer product 0x1301, rev 2.00/1.00, addr 2
umass0: using SCSI over Bulk-Only
scsibus0 at umass0: 2 targets, 1 lun per target
sd0 at scsibus0 target 0 lun 0: <Apple, iPod, 2.70> disk removable
sd0: 968 MB, 30 cyl, 255 head, 63 sec, 2048 bytes/sect x 495616 sectors

pain-rustique>

Figure 3: USB mass storage autoconfiguration output. We see ugenhc2 (the number “2” denotes /dev/ugen2)
attach to mainbus. sd@scsibus@umass is probed to be found in ugen2.

The rump host controller is called ugenhc. Calling the
autoconf match routine of the device ugenhc<n> results
in the ugenhc driver trying to open /dev/ugen<n> on
the host. If the open is successful, the kernel has attached
a device to the respective ugen instance and ugenhc can
return a successful match. After this, the ugenhc driver
is attached, along with a usb bus and a usb root hub. The
root hub then explores which devices are connected to
it, causing the probes to be delivered first to ugenhc and
through /dev/ugen to the kernel to the actual hardware.
Figure 3 contains a “dmesg” of the process.

By default, ugen attaches at a low priority if no other
driver claims the hardware, but this can be changed to
make ugen attach at the highest priority claiming all USB
hardware, or it can be made to claim hardware attaching
to specific ports using the standard kernel configuration
specification language.

4.3 Defining Device Relations with Config

Device autoconfiguration [16] is a central part of the
NetBSD kernel. The device configuration determines
the relationship of device drivers in the system. This
relationship is expressed in a domain specific language

(DSL). The language is divided into two parts: a global
set of descriptions on which drivers can attach to which
busses, and a system-specific configuration of what hard-
ware is expected to be present and how this particular
configuration should allow devices to attach. For exam-
ple, even though the USB bus allows a USB hub to be
attached to another hub, the device configuration might
allow a USB hub to be attached only to the host controller
root hub and not other hubs.

NetBSD is still in the process of transforming from the
completely monolithic kernel to one which supports ker-
nel modules. Currently the practice is to write the device
configuration, have it translated into C tables by an util-
ity called config, compile the generated tables into the
kernel, and use the configuration information at runtime.
However, in its current state, config takes care of all is-
sues related to building a kernel, including generating the
necessary makefiles from the configuration file. This is
not granular enough for a single device driver.

Any device drivers loadable as kernel modules have
their own ad-hoc way of specifying the compilation re-
sult of the config DSL in C. Handcoding the relationships
in C lacks the sanity checks performed by the config util-
ity. Additionally, it is very easy to make mistakes when

ioconf ums

include "conf/files"
include "dev/usb/files.usb"
include "rump/dev/files.rump"

USB HID device
uhidev* at uhub? port ?

configuration ? interface ?

USB Mice
ums* at uhidev? reportid ?
wsmouse* at ums? mux 0

Figure 4: USB mouse device configuration

manually describing the relationships. And ultimately,
debugging any errors at runtime is extremely cumber-
some and code reading is the best way of debugging, al-
though it is by no means simple either.

We added an ioconf keyword to the config DSL. This
keyword instructs config to generate the runtime load-
able device configuration description. This in turn makes
it possible to describe rump component device configu-
rations in the familiar config DSL and preserve the pre-
runtime safety checks. The created tables must still be
loaded manually in the component constructor, but in the
future we hope to improve config to produce the neces-
sary code to load the tables automatically. Also, each
rump is currently limited to including one ioconf state-
ment. This is because the devices are described starting
from root, and multiple ioconf’s would result in dupli-
cate definitions being loaded at runtime. This is another
issue we hope to address soon.

An example of a configuration file describing a sys-
tem configuration attaching a USB mouse is presented in
Figure 4 and a similar one for USB mass memory disks
is shown in Figure 5.

4.4 DMA and USB
As is well-known, direct memory access (DMA) allows
devices to be programmed to access memory directly
without involving the CPU. Being able to freely program
the DMA controller to read or write any physical mem-
ory address from an application is of course a security
and stability issue and should not be allowed.

Due to USBDI, we do not have to worry about USB
drivers attempting to perform actual DMA operations,
since they are done by the host controller. However,
drivers will still allocate DMA-suitable memory to pass
to the host controller in hopes of the host controller being
able to perform the DMA operations. We must be able to
correctly emulate the allocation of DMA-safe memory.

ioconf umass

include "conf/files"
include "dev/usb/files.usb"
include "dev/scsipi/files.scsipi"
include "rump/dev/files.rump"

USB Mass Storage
umass* at uhub? port ?

configuration ? interface ?

SCSI support
scsibus* at scsi?
sd* at scsibus? target ? lun ?
cd* at scsibus? target ? lun ?

ATAPI support
atapibus* at atapi?
sd* at atapibus? drive ? flags 0x0000
cd* at atapibus? drive ? flags 0x0000

Figure 5: USB umass storage configuration. This con-
figuration supports both SCSI and ATAPI attached disk
drives and CD/DVD devices. Technically, the actual
drives (sd & cd) should be in a different component so
they could be loaded independently.

In NetBSD, all modern device drivers use the ma-
chine independent bus dma [15] framework for manag-
ing DMA memory. bus dma specifies a set of interfaces
and structures which different architectures and busses
must implement for machine independent drivers to be
able to manage DMA memory. We can plug into the
bus dma interface in rump to provide our userspace DMA
memory management routines. As device driver I/O is
currently the ugen host controller driver doing read/write
on /dev/ugen, there is no DMA happening and a bus dma
implementation can be handled simply with virtual mem-
ory and malloc.

A problem for us in the bus dma interface specification
is that it allows the use of macros in the bus.h header
for implementing the interface specification on a given
CPU architecture. As long as the leaked implementation
does not contain privileged CPU instructions, this is not
a show stopper for rump. However, this leaks the im-
plementation of the interface to the caller which in our
case is an unmodified kernel driver. To make the driver
link against rump, the rump implementation must match
the leaked interface. One option would be to provide
stubs with the correct linkage for all the bus dma inter-
face implementations. However, this would be a consid-
erable amount of work given the amount of CPU archi-
tectures supported by NetBSD. An easier way is to intro-
duce a blanket machine/bus.hwhich provides a pure

???

Hub1 (uhub)

keyboard

USB Host Controller

Hub0 (root)

Hub2 (ugen)

mouse umass Hub3

Figure 6: Attaching USB Hubs: hub1 on the left is at-
tached properly as uhub and probing the rest of the bus
is possible. However, on the right Hub2 is attached as
ugen. This makes attaching the direct children and fur-
ther probing of the bus impossible.

function-style implementation of bus dma and is found
from the include path before the real machine/bus.h.
We use this blanket header for all architectures that have
macros in their implementation (currently all except i386
and amd64).

4.5 USB Hubs

A feature of the ugen interface is that an instance of ugen
can access only the specific USB device it is attached to;
this prevents for example security issues by not allowing
access to any device on the USB bus. For USB func-
tions, such as mass memory or audio, this does not have
any implications, as we are only interested in accessing
the particular device. However, USB hubs expose other
USB devices (functions or other USB hubs) further down
the bus. If a USB hub is attached as ugen, it is possible
to detect that devices are attached to the hub, but it is not
possible to access any devices after the USB hub, includ-
ing ones directly attached to it – all ugen access will be
directed at the hub. Figure 6 illustrates ugen concealing
all nodes on the bus after it.

In practice hub-as-ugen is not an issue, but rather one
needs to be aware of it. Already, the host ugen driver
attaches to USB hubs, so hub support must be present
in the host kernel for rump USB access to work at all.
The only implication is that for the full bus to be probed,
the hub driver must attach at a higher priority than ugen.
The kernel variable uhub_ubermatch takes care of
this when set to non-zero and forces hubs to attach at
a higher priority than any other drivers. The difference
between correct and incorrect kernel hub match is illus-
trated in Figures 8 and 7 (output has been trimmed for
presentation purposes).

kernel probe:

uhub5 at uhub2 port 1: OnSpec Generic Hub
uhub5: 2 ports with 0 removable
ugen2 at uhub5 port 1
ugen2: Alcor Micro FD7in1
ugen3 at uhub5 port 2
ugen3: CITIZEN X1DE-USB

rump probe:

ugenhc2 at mainbus0
usb2 at ugenhc2: USB revision 2.0
uhub2 at usb2
umass0 at uhub2
umass0: Alcor Micro
umass0: using SCSI over Bulk-Only
scsibus0 at umass0
sd0 at scsibus0
sd0: 93696 KB, 91 cyl, 64 head, 32 sec,

512 bytes/sect x 187392 sectors
sd1 at scsibus0
sd1: drive offline
ugenhc3 at mainbus0
usb3 at ugenhc3: USB revision 2.0
uhub3 at usb3
umass1 at uhub3
umass1: using UFI over CBI with CCI
atapibus0 at umass1
sd2 at atapibus0 drive 0
sd2: 1440 KB, 80 cyl, 2 head, 18 sec,

512 bytes/sect x 2880 sectors

Figure 7: Attaching a USB device with an internal
hub with uhub ubermatch. sd1 does not have media
inserted and is therefore offline. sd2 is a USB floppy
driver.

kernel probe:

ugen2 at uhub1 port 1
ugen2: OnSpec Generic USB Hub

rump probe:

ugenhc2 at mainbus0
usb2 at ugenhc2: USB revision 2.0
uhub2 at usb2
uhub2: 1 port with 1 removable
uhub3 at uhub2 port 1: OnSpec Inc.
uhub3: 2 ports with 0 removable
uhub4 at uhub3 port 1: OnSpec Inc.
uhub5 at uhub3 port 2: OnSpec Inc.

Figure 8: Attaching a USB device with an internal hub
without uhub ubermatch.

4.6 Other Hardware Families
In this section we speculate on how easy it is to extend
the concept of rump hardware device driver support to
other hardware families. The main challenge is in ex-
porting kernel interfaces which are general enough to be
useful, but safe enough to not lead to a host system com-
promise or crash.

Some other driver families beyond USB export ugen-
like interfaces to userspace. An example of this is the uk
(unknown) driver for SCSI bus. The potential of these
driver families should be analyzed and root drivers simi-
lar to the ugen host controller can be created.

For device families such as PCI support is centrally a
question of DMA. Device drivers running in kernel mode
have full access to system memory and can program any
address they like on the DMA controller. However, when
programmed from unprivileged mode, the DMA con-
troller should be programmed to access only physical
memory belonging to the process in question.

The easiest solution is to ignore the DMA problem
and allow it for root processes. This is a ”95%” so-
lution, which makes userspace development available
in the very near future and makes development almost
crashproof. The developer must just be aware to exercise
extra caution when doing device-to-host DMA write.
However, since there is no guaranteed protection, this ap-
proach cannot be used for running untrusted drivers.

One approach would be to create a new language
which could be passed from userspace to a kernel driver.
The language would contain instructions on how to pro-
gram the DMA controller. However, since the DMA
controllers are programmed by NetBSD drivers in a non-
semantic manner as just a set of device accesses, it is dif-
ficult to extract which part is actually programming the
host address and should be put under scrutiny. Changing
DMA programming would require very heavy modifica-
tions to the driver base, and is not currently on our list of
things to attempt.

As a third option, the problem can be solved with the
use of an IO-MMU which can enforce memory access
permissions [11]. This requires hardware capabilities not
present in every system, but would be an effective mea-
sure where available.

5 Conclusions

We presented rump device drivers, unmodified kernel de-
vice drivers running in userspace, and discussed their de-
sign and implementation. We found that non-hardware
device drivers (”pseudo devices”) are directly usable in
userspace. Hardware device drivers require kernel assis-
tance for hardware access. For the currently supported
USB driver family, this was readily available in NetBSD

with the ugen driver. We adapted the config tool used for
configuring the kernel to be able to describe the driver
relationships in a rump device component.

The work done on rump also benefits other uses in
NetBSD. For example, the new features of config can
benefit kernel modules. On the USB front, the hub
issue was likewise a problem for qemu USB driver
passthrough mode, and once NetBSD grows support for
”usermode OS” operation, the ugen host controller will
be usable for attaching host USB devices.

In the future we wish to extend hardware driver sup-
port beyond USB, and already outlined and evaluated the
possible steps for this. Additionally, more pseudo de-
vices should be supported. Since in most of the cases the
only task is to write a Makefile for producing the com-
ponent library (and possibly code to autogenerate the file
system device nodes), we plan to look into making this
automatic with the help of config(1).

Availability

Rump device drivers are available in NetBSD-current
and will be a part of NetBSD 6.0. Device components
are installed in binary form as libraries in /usr/lib
with the prefix rumpdev (e.g. librumpdev_usb or
librumpdev_wscons).

Acknowledgments

Thanks go to Roland Dowdeswell for the idea with cgd
and Quentin Garnier for help with config(1). Special
thanks go to anyone who has ever submitted a bug re-
port for rump.

References

[1] NetBSD/xen Howto, Referenced Feb 2nd, 2010.
http://www.NetBSD.org/ports/xen/howto.html.

[2] Rump on non-NetBSD Operating Sys-
tems, Referenced Feb 2nd, 2010.
http://www.NetBSD.org/˜stacktic/rumpabroad.html.

[3] F. Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proc. of USENIX Annual Technical
Conference, FREENIX Track, pages 41–46, 2005.

[4] W. V. Courtright II, G. Gibson, M. Holland, L. N.
Reilly, and J. Zelenka. Raidframe: A rapid proto-
typing tool for raid systems, 1997.

[5] R. C. Dowdeswell and J. Ioannidis. The cryp-
tographic disk driver. In Proc of. USENIX An-
nual Technical Conference, FREENIX Track, pages
179–186, 2003.

[6] G. C. Hunt. Creating user-mode device drivers with
a proxy. In Proc. of the USENIX Windows NT Work-
shop, 1997.

[7] A. Kantee. Kernel development in userspace - the
rump approach. In BSDCan 2009.

[8] A. Kantee. puffs - Pass-to-Userspace Framework
File System. In Proc. of AsiaBSDCon, pages 29–
42, 2007.

[9] A. Kantee. Environmental Independence: BSD
Kernel TCP/IP in Userspace. In Proc. of AsiaBS-
DCon, pages 71–80, 2009.

[10] A. Kantee. Rump file systems: Kernel code reborn.
In Proc of. USENIX Annual Technical Conference,
pages 201–214, 2009.

[11] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Un-
modified device driver reuse and improved system
dependability via virtual machines. In Proc. of the
6th OSDI, pages 17–30, 2004.

[12] S. McCanne and V. Jacobson. The BSD packet fil-
ter: a new architecture for user-level packet capture.
In Proceedings of the USENIX Winter 1993 Confer-
ence, pages 259–269, 1993.

[13] L. Mewburn and M. Green. build.sh: Cross-
building NetBSD. In Proc. of USENIX BSD Con-
ference, pages 47–56, 2003.

[14] G. Oster. Porting RAIDframe to NetBSD. private
communication, January 2010.

[15] J. Thorpe. A machine-independent DMA frame-
work for NetBSD. In Proc. of USENIX Annual
Technical Conference (FREENIX track), pages 1–
12, 1998.

[16] C. Torek. Device Configuration in 4.4BSD, Decem-
ber 1992.

